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Abstract 

 
  
This paper uses a game of strategic interaction to simulate entry and location of fast 
charging stations for electric vehicles. It evaluates the equilibria obtained in terms of 
social welfare and firm spatial differentiation. Using Barcelona mobility survey, 
demographic data and the street graph we find that only at an electric vehicle 
penetration rate above 3% does a dense network of stations appear as the equilibrium 
outcome of a market with no fiscal transfers. We also find that price competition drives 
location differentiation measured not only in Euclidean distances but also in consumer 
travel distances. 
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A Introduction

The reduction of carbon dioxide emissions has been one of the main objectives of various

United Nations summits with the intention of moderating or reversing climate change. In

this regard, the focus has fallen on the road transport sector, which contributes more than any

other industry to the volume of emissions. Indeed, according to the latest statistics published

by the European Union, the sectors share in total emissions in 2010 was as high as 19.98 per

cent.

While electric vehicles are not zero-emissions, given that electricity has to be generated

to power them, a number of studies, including (Ahman 2001 and WWF 2008), show that

electric vehicles are more efficient, generating lower emissions per kilometer. This reduction

is even higher in countries with a mix of electricity generation sources, that is, with a higher

share of renewables, whether hydro, wind or solar power.

While the introduction of electric vehicles should play a key role in reducing road transport

emissions, their eventual adoption must first overcome a host of barriers. One of the key

barriers is the limited number of charging stations that generate ‘range anxiety’ among users

of electric vehicles, fearful of not reaching their destination. In this regard, the deployment

of a network of fast charging stations that can reduce this anxiety is essential to the adoption

en masse of electric vehicles.

This paper uses a game of strategic interaction to simulate the entry of fast charging

stations for electric vehicles. The study evaluates the equilibria in terms of social welfare

and firm space differentiation. Demand specification considers consumer mobility. Decisions

of consumers and producers are modelled taking into account the expectation of finding a

given facility located in each feasible location. The model is applied to the case of the city of

Barcelona using the mobility survey, demographic and income data, and the street graph of

the city.

To the best of our knowledge, this is the first paper to study the entry and location

of fast charging stations using a simulated game of competitive strategic interaction among

potential entrants. By so doing, we seek to offer novel perspectives on the following two

questions. First, the simulations identify the penetration rate of electric vehicles necessary to

have a fast charge station network profitable, and a network that can overcome commuters

‘range anxiety’ . Second, the model allows us to assess whether competing firms tend to cluster

or disperse when consumers move around commuting routes. Differentiation is measured in

terms of consumer deviations from the commuting paths to the facilities, rather than distances

from a given fixed consumer location to facilities.

With respect to the first question, we calculate that the threshold for the penetration of
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electric vehicles would have to reach 3% to guarantee the sustainability of the fast charge

station network in Barcelona. This threshold allows commuters to recharge close to 10%

of their energy requirements on the go, and overcome their range anxiety. This threshold

is 30 times higher than the current penetration rate. With respect to the second issue,

we find evidence that price competition drives location differentiation. Price competition

lead firms to locate farther away from competitors measured in deviations from commuting

paths. This results is novel but similar to the results obtained by the traditional models of

space differentiation that measure how firms locate farther apart in distances with respect to

consumer fixed locations.

Following on from this introduction, the rest of the paper is organized as follows. In

section 2 we present the literature related to this paper on spatial localization of firms. In

Section 3, we describe the set-up of the game of strategic interaction used in simulating

entry at the different locations. In section 4 we present our data and empirical methodology.

Section 5 reports the results obtained in the simulation for the city of Barcelona and the

robustness checks, and finally the paper ends by discussing the main conclusions arising from

the simulation.

B Literature Review

There are two forces acting behind firm location decisions known in the economic literature

as ‘the market power effect’ and the ‘business stealing effect’ . The ‘market power effect’ is

known as the capability of firms to set differentiated prices from competitors when situated

farther apart from them. Distance increases the flexibility in the price-setting decision of

firms and, therefore, offers incentives to locate far apart from competitors. The ‘business

stealing effect’ , on the other hand, offers the opposite incentive. Being close to a competitor

increases the probability of stealing some market share. If ‘business stealing effect’ dominates

the ‘market power effect’, agglomeration of firms is expected.

Previous theoretical studies examining the spatial localization of firms do not report a

unique outcome in their predictions as to whether entrants locate in close proximity to in-

cumbents or at some distance from them. Results depend on the assumptions made over

consumer preferences and costs, the type of competition examined and the number of com-

petitors in the market. Indeed, a great effort has been devoted in the economic literature to

study the spatial competition among firms since the seminal studies of Hotelling (1929) and

D’Aspremont and Thisse (1979) that report opposing outcomes of minimum and maximum

differentiation, respectively, in a setting with two players. These opposite results are due

to the different assumptions regarding consumer transportation cost: while Hotelling (1929)
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consider lineal transport costs, D’Aspremont and Thisse (1979) introduces transport costs in

a quadratic form. Hotelling (1929), however, do not find a unique stable equilibrium when

more than two entrants are taken into account. Indeed, closer to our paper are the studies

examining competition in both price and location in an oligopoly. In particular, in a set-

ting with heterogeneous consumers Anderson et al. (1992) predict that the agglomeration

of firms is the most probable outcome. In this setting, differentiation in pricing implies a

differentiation in locations in contrast to uniform price setting that leads towards clustering

in locations.

In the empirical literature, clustering outcome tends to dominate; although there is evid-

ence of both outcomes.

Early empirical studies that show clustering include the examination by Borenstein and

Netz (1999) and Salvanes et al. (2005) of spatial competition in airline departures times for

United States and Norway, respectively. The first authors find that when prices are fixed

exogenously airlines tend to schedule departure times next to the others or, equivalently,

cluster. No competiong in pricing seems to drive clustering in departure times. For the

unregulated period, however, results are not conclusive. Salvanes et al. (2005) main finding

is that competitors tend to cluster when prices are set endogenously, in the case of duopoly

routes compared to monopoly routes. With price competition, oligopolies seem to offer more

clustered frequencies rather than monopolies.

Pinske and Slade (1998) and Netz and Taylor (2002) study the case of gasoline retail

markets. The first ones focus in studying whether firms with similar contractual agreement

tend to cluster or to differentiate. Using only data of the gasoline stations integrated with the

four existent oil companies, the authors find that firms with equal contracts tend to cluster.

The hypothesis of clustering among firms is obtained also in Vitorino (2012) analysis about

shopping centers stores in the United States. Other papers such as Buenstorf and Klepper

(2010) and Pennerstorfer and Weiss (2013) also find some sort of clustering.

On the contrary, spacial differentiation is also found in other papers. Of particular relev-

ance for our analysis, the study of Netz and Taylor (2002) reports by focusing in Los Angeles

market, that when localized in a more competitive market, gasoline stations tend to spatially

differentiated from each other.

Spatial differentiation across firms is also found as a result in Seim (2006) respect to video

retail industry and in Borrell and Fernandez-Villadangos (2011) for the case of pharmacies.

Finally, Elizalde (2013) find an inverse relationship between differentiation in multiple

dimensions: geographical location and product variety. In the case of the Spanish movie

theatre exhibition market, he finds that clustering in location drives differentiation in movie

variety, while spatial differentiation in location drives clustering in movie variety. .
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Summing up, in the empirical literature, there is evidence of both outcomes, clustering

and spatial differentiation depending on the degree and the type of competition in pricing

and other dimensions such as location and product quality and variety. So, only by studying

the details of the drivers of localization and competition in pricing and in other dimensions

that we would be able to foresee whether clustering or sparsity would dominate in the case of

the deployment of new networks of fast charging stations for electric vehicles. We will study

such details using and entry game of strategic interaction and mobility data.

C The entry game of strategic interaction

Consider a model of entry where within the geographical space there is a road network used

by individuals to undertake all types of journey. Consider also that the intersection points

of the road network constitute a set of finite feasible locations j (j = 1, 2, ..., J) at which the

firms might decide to enter.

Each location is differentiated in terms of two features that are common knowledge to the

firms: on the one hand, they are differentiated by the station set-up costs (essentially grid

reinforcement and localization costs) outlined in the vector zrj , where r indexes different cost

shifters r = 1, 2, ..., R; and, on the other, they are differentiated in terms of their attraction

to consumers, dependent on whether the location provides additional amenities, including,

for example, a coffee shop, supermarket, car wash, etc. as detailed in the vector xj .

Unlike common entry games and following Houde (2012), we assume that demand is

not fixed in any single area and consumers are considered to be mobile between origin and

destination nodes. We also take into account that consumers differ with respect to income as

in Berry et al. (1995)(BLP).

Additionally, as is usual in models of this type, we consider an identically and independ-

ently distributed (i.i.d.) random draw constituting profit relevant information on costs across

all feasible locations (sεεj) for any feasible location j (j = 1, 2, ..., J), where sε is the standard

deviation of ε. We also consider idiosyncratic consumer tastes regarding the utility for indi-

vidual i (i = 1, 2, I) traveling between the origin and destination nodes oi, di (o,d=1,2,...J)

to purchase from a facility located in j (εij) to be identically and independently distributed

(i.i.d). Both random shocks are private information: the former is private information for

consumer preferences when deciding where to recharge batteries on the go, and the latter is

private information of the costs for each potential entrant at each location.

Firms take observable information to estimate the expected profits of entering at each

feasible location j and simultaneously decide to enter when profits are non-negative. The

probability of entry at each feasible location is expressed by σj . The sum of probabilities of
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entry into the market is then given by:

N =

J∑
j=1

σj (1)

We assume that there is one and only one potential entrant at each node, and that they are

one-shop stations. We assume that there are no chains. We could also compute the equilibrium

for just one monopolist in the city. Having competing chains is computationally hard because

of the curse of dimensionality. Absence of economies of scale in energy consumption and lack

of differentiation between energy supplied by different brands support the non-existence of

chains.

C.1 Demand specification

Let demand for the fast charging of electric vehicles be modeled as a discrete choice prob-

lem over j = 0, 1, 2, 3, ..., J possibilities. Consumers are therefore able to choose between

consuming at one of the J feasible locations or recharging at home (outside-good, j = 0).

Let the commuting paths of individuals between origin-destination zones be called (o, d)

Additionally, let the utility of buying from store j = 1, 2, ..., J depend on the distance

between the commuting paths of the individuals and location j, the features of the location,

the characteristics of individuals and unobservable idiosyncratic tastes over each j location.

Then, the deterministic component of the indirect utility of recharging from station j to

individual i that makes a trip between o, d, (φij) can be expressed as follows:

φij = λD[(oi, di), lj ] + βxj + (α+ α log Yi)pj (2)

being the indirect utility function of recharging at any of the feasible locations j:

uij = φij + εij (3)

and the indirect utility function of recharging at home:

ui0 = 0 + εi0 (4)

where D[(oi, di), lj ] represents the distance between path (oi, di) and facility j with its

location expressed as lj and λ is a parameter that expresses the disutility of deviating from

the commuting path to reach facility j measured in minutes; xj is a binary variable that takes

the value of 1 whenever there are any amenities, such as car wash services, supermarkets or

coffee stores, at feasible location j; αpj measures the disutility of paying the posted prices; and

α log(Yi)pj introduce the interaction between income and prices and express the differentiation
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between individuals that make the same trip in terms of price sensitivity for different levels

of personal income.

As usual in multinomial logit models, the utility of recharging at home is normalized to

zero.

Thus, the probability that individual i making trip o, d will recharge at facility j, Φij

is given by a multinomial logit model, where the individual is allowed to choose between

recharging at any facility j = 1, 2, ..., J , recharging at home j = 0, or buying from any other

location. However, as we focus in a utility model in which each consumer and potential

entrant does not know where all the available stations are, following Bajari and Nekipelov

(2010) and Borrell and Casso (2011) we allow consumers to evaluate the utility of recharging

at each node with respect to the utility of recharging at any other node in expectation of

the probability that finally a station will be available at these other nodes. This is why the

existence of a facility at any other location apart from j enters in expected terms as the

probability that individual i making trip l will find a facility at any other location. This

probability of having any entrant at each location is named by the parameter σk. Consumers

form their expectation of σk simultaneously, as an assumption of tractability.

Φij is therefore given by:

Φij =
exp[φij ]

1 + exp[φij ] +
∑J

k=1 σk exp[φij ]
(5)

and the probability for the outside good is given by:

Φi0l =
1

1 +
∑J

j=1 σk exp[φijl]
(6)

On the other hand, we assume that individuals demand heterogeneous quantities of energy

proportional to the distance traveled per year, which is obtained by multiplying all the trips

between origin (oi) and destination nodes (di) as registered in the survey for each individual

i by the number of days in a week and the number of weeks in a year.

We also consider that the quantity of energy demanded depends on the share of the electric

vehicle (υ). It also depends on the share of consumption of the electric vehicle recharged on the

go (τ), and the energy consumption per kilometer (C0). We assume that all these parameters

are common for all individuals. Therefore, individual demand for energy on the go (ei) is

given by:

ei = υτC0D(oi, di) (7)
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C.2 The supply

Given the previous set-up, expected sales at location j (qj) are given by integrating, by

simulation, the probability of recharging at each location j across consumers:

qj =
I∑
i=1

pjΦijei (8)

and expect profits are therefore as follows:

πj = qj −
I∑
i=1

cjΦijei − Fj (9)

where cj are the variable costs of providing energy common to all locations, and Fj is the

fixed costs associated with location j.

Let the fixed costs Fj have an observable part comprising a common component in equip-

ment for all locations c, a component that is specific to each location j as regards grid

reinforcement and localization zrj , and the unobservable (i.i.d.) random draw on costs (sεεj).

Therefore, the fixed cost equation is given by:

Fj = c+ µrjz
r
j + sεεj (10)

where µrj is a parameter that takes different values according to variable zrj , for any

r = 1, 2, ..., R.

C.3 Solving the entry game of strategic interaction

We assume that each entrant competes à la Bertrand in prices with respect to the set of ex-

pected entrants that are differentiated by location. From the system of first order conditions,

the Nash equilibrium pricing is as follows:

pj = cj −
∑I

i=1 Φijqi∑I
i=1

∂Φij

∂pj
qi

(11)

where
∑I

i=1 Φijqi∑I
i=1

∂Φij
∂pj

qi
is the mark up of the firm that enters at location j.

Consider now that from Bertrand competition an equilibrium price is obtained. Finally,

suppose that given equilibrium pricing pj and expected profits at each feasible location πj ,

each potential firm at each node simultaneously decides whether to enter or not to enter. As

we assume that the unobserved costs distribute as a type-one extreme value random shock,

the probability of entry is given by the following logit model:
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σj =
exp[E(πj)]

1 + exp[E(πj)]
(12)

It is straightforward to verify that the result of the game of strategic interaction gives the

total number of entrants to the market N :

N =

J∑
j=1

σj (13)

As far as the equilibrium is concerned, the type-one extreme value distribution of the error

term guarantees that the firms conjectures are monotonic, continuous and strictly bounded

inside the set (0,1). Therefore, by Brower’s fixed point theorem the entry game of strategic

interaction has at least one solution.

D Data and methodology

We use Barcelona as a case study for testing how the free entry game of strategic interaction

simulates the entry and location of fast charging stations in a dense city (for which we have

access to mobility survey data as well as demographic and income data), under a number of

assumptions regarding the values of certain parameters, including the percentage of electric

vehicles in the citys overall vehicle park.

The origin-destination paths. The origin-destination commuting paths were built using

four sources of information: the Mobility Survey conducted by the Metropolitan Transport

Authority and the Territorial Department for the year 2006; the Catalonia Road Graph; and,

the Barcelona Neighborhood and Census Zoning Maps published by the Regional Government.

The survey collects data on all the trips made by the residents of Catalonia of above 4

years old. Participants in the survey are randomly selected and the interview is made by

phone. Within the survey, the Metropolitan Region of Barcelona is divided into 308 zones, 63

of which correspond to the city of Barcelona. The data corresponding to the trips made by

residents of the Metropolitan Region in their private vehicles within the Metropolitan Region

number 58,443. Of these, 18,411 have Barcelona as their origin or destination while 6,330

are made within the city. Taking into account commuter trips, the most frequent origin-

destination zone is 17 (the southern entrance to the city), while in the case of trips within

the city the mode zone is 12, in the city center.

The Catalonia Road Graph was filtered leaving information just for the city, and four

nodes and two arcs were added using the city map published online at the website of the
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Barcelona City Council. In total, the road graph contains 891 nodes and 2,436 arcs. These

arcs were made bidirectional, as the map uses a simplified version of the city network.

The Barcelona Neighborhood Map used corresponds to 2011 and it divides the city in

75 neighborhoods. It provides population information disaggregated by gender and area in

square meters for each of the polygons. The total population is 1,631,259 inhabitants, with a

density per neighborhood between 0.1 and 5.99 per cent.

The Census Zoning map used also corresponds to 2011. It divides the city in 1,063 census

zones and provides the same information as the former map but for smaller statistical areas.

The mean population per zone is 1,537, while the minimum and maximum populations in a

zone are 466 and 7,291, respectively.

In order to estimate the shortest path corresponding to every commuting trip, an origin-

destination (OD) matrix was built. For trips within the city, a three-step methodology was

used. First, each origin and destination zone was assigned to a node in the network by first

building the geometric centroids and then assigning them to the corresponding node with the

population density criterion. This yielded as a result, original (c) origins and destinations oc

dc, with c = 1, 2, ..., 63. Second, the spatial correlation within the origins and destinations was

tested and kriging techniques were applied. With the results of the kriging and the density

of population corresponding to each node, we were able to assign a probability of being an

origin or a destination to all the nodes in the network. Therefore, in our case study, final

origins and destinations are given by: o = 1, 2, ..., 891 and d = 1, 2, ..., 891. Finally, a random

sample with uniform distribution was built for every origin and every destination of the paths

in order to assign the nodes corresponding to each commuting path within the survey (see

Appendix A for a fuller explanation).

Commuters were assigned to the corresponding node of entry in to or out of the city,

according to the shortest path given by googlemaps. The destination or origin within the city

was assigned as above.

To estimate the commuting path between each origin and destination, Dijkstras shortest

path algorithm was used (Dijkstra 1959). Thus, we ascertained the mobility flows via the 891

nodes and 2552 arcs across the city of Barcelona.

With this information, we were able to make a plausible approximation of the mobility

flows in the city for all types of movement: home to work, home to study, home to shopping,

home to any other destination, all back-to-home movements, and paired movements between

all these destinations across the 891 nodes and 2436 arcs.

The feasible locations. The nodes were differentiated in terms of set-up costs and their

ability to attract demand. To this end, a map showing all fuel stations, hypermarkets and
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malls in the city was drawn up and these facilities were assigned to the closest node in the

network. Second, the nodes in the network were assigned to one of the 73 neighborhoods of

Barcelona.

The set-up cost vector zrj contains four different variables (i.e. R=4). For the grid re-

inforcement cost (r=1,2,3), locations were aggregated into three categories according to the

following criteria (Figure 1): nodes with a petrol station and a car wash (z1
j = 1); nodes with

a petrol station with more than 10 pumps(z2
j = 2); and neither of the previous two options

(z3
j = 3). Entrants at most of the nodes need to pay set-up costs upfront and in full for grid

reinforcement as nodes are equipped with neither a petrol station with a car wash nor a petrol

station with ten pumps(z3
j = 3). Entrants at nodes with a petrol station with more than ten

pumps has to afford half of the grid reinforcement cost (z2
j = 2). Finally, at locations with

a car wash entrants do not have a grid reinforcement cost (z1
j = 1). However, all facilities

must pay the localization cost corresponding to the rent of a commercial establishment in

the neighborhood in which the node is located. Following, z4
j = x, where x takes 73 different

values according to the localization in the corresponding neighborhood. Set-up costs range

from 57, 676 eto 1, 236 e.

Petrol station data were obtained from the website of the Spanish Ministry of Industry,

Tourism and Commerce. The costs of connection were taken from Schroeder and Traber

(2012) and set in 15, 000 e. Costs of localization in Barcelona were assigned according to

the average price in 2007 of a square meter of a commercial establishment as published by

Barcelona Open Data.

The malls and hypermarkets (Figure 1) together with the amenities of the petrol stations

were used to characterize the feasible locations in terms of their ability to attract demand.

This feature was included by using a binary variable that took a value 1 whenever amenities

such as a bar, restaurant, store, and so on were available at the feasible location.
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Figure 1: Current location of fuel stations, malls and hypermarkets in Barcelona

The marginal cost of providing energy was considered to be equal to 0.15 euros/kWh

applied to a standard recharging of 16 kWh for every feasible location. This represents the

average cost of the kWh plus the transport cost for the Spanish market in 2013.

Assumptions regarding consumers and mobility. Consumers considered were all mak-

ing trips in private vehicles between the different zones of the city and commuting trips to

Barcelona from the rest of Catalonia.

An homogeneous penetration of electric vehicles in each zone of Barcelona was considered.

Income data for the citys residents were taken from a report on income distribution conducted

by the Barcelona City Council and the Catalan Statistics Institute (IDESCAT). Income data

for commuters resident in the Metropolitan Region were taken from the statistics prepared

by the Barcelona Provincial Council. And data for the residents of the rest of Catalonia were

taken from IDESCAT. The average income for the individuals in the sample takes a value of

16,439.41 e/year, with a standard deviation of 5,600.26 e/year, where the maximum income

was 33,809 e/year and the minimum 10,276 e/year.

The parameters The equilibrium of the entry game of strategic interaction was solved

given the parameters of the indirect utility function: {λ, β, α, α}; υ and τ for the quantity of

energy needed; and, µj for the grid reinforcement costs.

Of these, λ was taken from Houde (2012) (1.0004), as it is the only paper that includes

the disutility of deviating from the commuting path in the estimation of gasoline demand

when considering consumer mobility.
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β was set-up at 2.5, as the existence of amenities constitutes a fundamental characteristic

at the moment of choosing whether to recharge at a station or to recharge at home, taking

into account that the average time for a recharge is 20 minutes.

Regarding price elasticity, α was set-up at −0.65 and α at 0.06.

Robustness checks for the indirect utility function parameters were made and are shown

in the Results Section.

Different scenarios were considered with regard to the share of electric vehicles (EVs)

within the overall vehicle park υ. Our results are presented for the 1%, 3% and 5% scenarios.

The last scenario was included as this is the goal for EV penetration set by the European

Commission, while the first two are included to ensure that the market at least meets the

10% recharging on-the-go target.

To fix the upper bound of the market potential, the share of consumption of the electric

vehicle recharged on the go, τ was considered to be equal to 10.5%. This choice was condi-

tioned by the calibration of the model to approximate the recharging on the go to the 10%

projections made by the European Commission.

Finally, µ1
j takes the value of 0 whenever there is a petrol station with car wash facilities

at the feasible location, µ2
j 1, 019 ea year whenever there is a petrol station with 10 or

more pumps at the location, µ3
j 2, 038ea year when the location does not have any of the

aforementioned facilities. These results are derived from considering an annual payment with

an interest rate of 6 per cent for a ten-year credit for grid reinforcement costs. Finally, µj

takes the value of 1 for r = 4.

Methodology. To avoid the curse of dimensionality, we integrate logit demand across a

random sample of only 100 representative individuals a la BLP. They were selected from the

Mobility Survey as a random sample but respecting the weights of each trip (See Appendix

B for details).

The probability of entering at each location was obtained via a simulation process including

the simultaneous determination of: i) the probability of individual i on origin-destination trip

i recharging at facility j (Φij); ii) the Bertrand (Nash in prices) equilibrium pricing at each

feasible location j (pj); and, iii) the probability of entry at location j (σj).

The probability of individual i on origin-destination trip i refueling at facility j (Φij) was

introduced as a multinomial logit with random coefficients as in Berry et al. (1995). The

sources of heterogeneity included are two: i) origin-destination path (oi, di); and ii) income

Yi.

The price equation pj was derived from the first order condition of the firms by considering

Bertrand competition (Nash in prices equilibrium). See also Berry et al. (1995). Finally, the
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probability of entry at location j (σj) was introduced as a discrete choice logit model where,

following Borrell and Casso (2011), the expected profits of a potential entrant at each location

j depend on the probability of having any number of competitors at the other j − 1 feasible

locations.

The simultaneous non-linear entry game problem was solved in Matlab by iteration.

To search for multiple equilibria, first, we obtained the vector of entry probabilities in

equilibrium starting iterations with σ1 = ... = σk = ... = σJ = 1 as if consumers expect

to find a fast charging station at all nodes and entrants expect to have a competitor at

all other nodes, and the vector of entry probabilities in equilibrium starting iterations with

σ1 = ... = σk = ... = σJ = 0 as if consumers expect to find only one fast charging station

and entrants at each node expect to be monopolists and to have no competition at the other

nodes. Second, we run the entry game from both extreme solutions to look for the equilibria,

allowing the model to converge to multiple equilibria.

E Results

E.1 The equilibria

The model shows that a unique stable equilibrium can be achieved for every level of penetra-

tion of electric vehicles (EVs) considered. Starting iterations with σ1 = ... = σk = ... = σJ = 1

as if consumers expect to find a fast charging station at all nodes and entrants expect to have

a competitor at all other nodes always renders a unique equilibrium with the expected number

of entrants being equal to only 2, 51 entrants or as many as 83, depending on the level of

penetration of EVs being 1%, 3% or 5% respectively. Starting the iterations by assuming that

σ1 = ... = σk = ... = σJ = 0 as if consumers expect to find only one fast charging station while

the entrants at each node expect to be monopolists, we always obtain these same equilibria

as previously described (Figure 2).
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Figure 2: Equilibria at 1%, 3% and 5% share of EV

The entry game of strategic interaction shows that the free market solution offers sufficient

recharge on the go from a 3% threshold of EV penetration. Even though an equilibrium

is achieved for a 1% share of EV penetration, recharging on the go would satisfy only an

insignificant part of energy needs (0.482%)(Table1). In the case of 3%, the market can be

considered to offer sufficient recharging on the go, since 8% of energy needs would be met by

recharging in the network of fast charging stations. Finally, if 5% of the vehicle park were

to be electric, around 9.5% of recharges would be on the go, which is very close to the 10%

target set by the European Commission (MEMO 24/12/2013 EC). Note that Table 1 shows,

as expected, that the mean price falls with the number of entrants. Congestion problems do

not appear to be relevant, as all the entrants show available capacity after serving current

demand.
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Table 1: Equilibria at 1%, 3% and 5% of penetration of EV
Variable/ Share EV 1% 3% 5%

Number of entrants 2 51 83

Share ‘on the go’ (%) 0.482 8.06 9.47

Mean Price (e) 25.09 18.87 18.55

Expected profits seem to depend more on demand drivers as distance to stations and

existence of amenities. Nevertheless, the entry cost play also a role in determining the entry

locations. In table below it is shown a full characterization of the locations of the fast charging

stations for each rate of penetration of EV.

Table 2: Characterization of locations at 1%, 3% and 5% of penetration of EV
Variable/ Share EV 1% 3% 5% Total feasible locations

Number of locations 2 51 83 891

Amenities 100% 100% 75% 8.4% (75)

Grid reinforcement costs
Type 1 (0 cost) 0% 23.5% 19% 2.24% (20)
Type 2 (half cost) 0% 4% 4% 0.45% (4)
Type 3 (full cost) 100% 72.5% 77% 97.3% (867)

Localization costs (average e) 2250 1786 1791 1811

E.2 The spatial competition

In addition, we find evidence that supports the spatial differentiation of competitors in the

free-pricing competitive scenario. Results are robust with two different counterfactuals and

several distance measures.

We first compared the competitive outcome to that obtained by simulating a monopoly

with free entry. As state in Netz and Taylor (2002),the monopoly equilibrium should be

characterize by a situation where facilities are located minimizing transportation costs of

consumers. These locations maximize the amount of consumer surplus that can be appro-

priated by the monopoly by charging higher prices. Introducing competition, if firms have a

tendency to a minimum differentiation the outcome would be clustering among competitors.

By contrast, if competitive firms tend to maximum differentiate, increasing competition would

turn in firm spatial differentiation. Hence, whether competition increase the degree of spatial

differentiation or not relies on whether firms tend to maximum or minimum differentiate.

Differently from the airline industry (See Salvanes et al. 2005) and equal to gasoline

stations, we expected to find higher spatial differentiation among firms as the degree of com-

petition in the market increases. Overall, because possible capacity contraints may encourage

firms to locate far from competitors and charge higher prices than trying to steal some sales
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by locating close.

We calculated the monopoly solution by obtaining the system of price equations from the

first order condition of the profit maximization problem, as usual in these kinds of games.

Hence, price for the j location is given by:

pj = cj + ∆−1
I∑
i=1

Φijqi (14)

where ∆ is a J by J matrix, whose (j, k) element are given by:

∆j,k =
−∂(

∑I
i=1 Φikqi)

∂pj
(15)

and the (j, j) elements are given by the facility j own price elasticity:

∆j,j =
−∂(

∑I
i=1 Φijqi)

∂pj
(16)

We compare the results in terms of location:where would the monopolist locate the same

exact number of entrants than in the single facility competition case.

The second benchmark is the counterfactual given by establishing a uniform regulated

price. With no entry restrictions and the same number of entrants, the comparison with

the uniform regulated price scenario allow us to identify differences in location due to price

competition. Here again, we expected to find larger location differentiation between firms in

the free-pricing and single firm competition setting.

Recall that, differently from previous literature, in our case, transportation costs are

given by the distance traveled by consumers to facilities as deviations from their commuting

path. Consumers are not expected to stop by a facility close to their home but close to their

commuting path. Hence, we first measure differentiation between firms through the average

distance consumers need to deviate from their commuting path in the different settings. If

the deviation is lower, then firms must be located closer to the paths were demand flows

and to each other (being the extreme case the monopoly setting). If the average deviation is

higher, firms must be located far away from competitors increasing the distance commuters

have to travel to reach them. To check the robustness of results, in second place we use two

different measures of geographical distance: a) we compare the Euclidean distance between

competitors in the different settings with different definitions of market size (half-, one-, and

two-mile radii) as in Netz and Taylor (2002); b) we compare the distance between competitors

taking into account network paths in the graph.

For the uniform price benchmark, for the 3% scenario, the regulated price was set at 16eso

as to achieve the same outcome as in the free pricing case in terms of the number of entrants
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(51 facilities). For the 5% scenario, the same procedure was adopted and the regulated price

was set at 26ereaching 83 entrants as in the case of free entry.

Results measuring the distance trough deviations of commuting paths are presented for the

5% of electric vehicles scenario. For the 3% scenario results are inconclusive: the monopoly

setting do not render to a unique stable comparable equilibrium, and, statistical significance

of the results obtained in the second benchmark can not be guaranteed. This is, the difference

in average deviation is only statistically significant in the 5% scenario.

The results for the three settings are presented in (Table3).

Spatial differentiation of firms when both price and entrance are unregulated is the out-

come we obtain when single facility firms compete. The monopoly case renders the largest

degree of facilities agglomeration around commuting flows, and therefore, to each other fa-

cility. As shown in the table, the average deviation of the commuting path in the monopoly

case is just 9 meters. We also observe that, as expected, the deviation and distance between

facilities significantly increases if single facility firms compete in the market.

We restrict the analysis to the location of the more profitable 83 facilities in the monopoly

case (5% penetration rate), the same number as in the single facility firms competition.

However, in monopoly, the number of facilities with non-negative profits is much larger (361)

as mean pricing is also much higher. These more profitable locations in the monopoly case are

the locations in which travel costs of commuters are minimized given the number of locations

are 83.

The comparison between the free-price setting and uniform price-setting also shows that

deviation is larger when firms are allowed to compete in prices. This was the expected result

as in the regulated setting the market power effect is not biding and therefore firms have

only incentives to locate closer to competitors to steal part of their sales. However, the small

difference found between the uniform and free price settings also may show that the market

power effect is important but not very large.

Table 3: Distance among competitors measured in deviations of the consumers
Share EV- Entrants 5%- 83

Variable Free Regulated Monopoly

Average deviation (m) 144.84 127.23 9.67

ttest 1.7724* 17.9419***

Note: statistical significance at 1% (***), 5% (**) and 10% (*).

Moreover, our results are consistent with the theoretical previous work that used two

sets of assumptions to guarantee the existence of Nash equilibria in the location and price

games. On the one hand, it is consistent with the results found in Osborne and Pitchik (1987)
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using a mixed strategies approach; on the other, it is also a feasible outcome considering pure

strategies with heterogeneous consumers as in Anderson et al. (1992).

Results using Euclidean distance in space and through the road network (shortest path)

are only conclusive when the independent competitive firms setting is compared with the

monopoly setting. In (Table4)are presented the distances between competitors for the dif-

ferent market definitions. As observed,results confirm that competition increases the spatial

differentiation between firms.

Table 4: Distance among competitors measured in Euclidean and shortest path distances
Distance In space -Euclidean- In the network -shortest path

Miles half one two half one two

Monopoly 361.8 720.6 1052.5 373.4 702.4 1088.2

Independent firms 457.8 902.9 1748.5 461.0 872.9 1776.5

ttest 3.2860*** 4.2485*** 12.0020*** 2.6819*** 3.7259*** 10.7340***

Note: statistical significance at 1% (***), 5% (**) and 10% (*).

Comparison between the locations chosen by independent single facility competitors and

the ones that would have been chosen by a monopoly setting up the same number of facilities

is shown in (Figure 3).

  Estación de ss. con 

lavadero  

   Estación de ss con más 

de 10 surtidores 

   Estación de ss. Con 

menos de 10 surtidores, 

mercados, etc. 

   Otros 

    Independent firms 
 
 
    Monopoly 

Figure 3: Locations equilibria at 5% penetration rate: monopoly vs. independent competitors
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As an additional interesting result looking at figure 3, the model shows that in a free

pricing setting of independent single facility firms in competition, no zones in the city remain

with a lack of supply of fast charging stations.

E.3 The social welfare

Having obtained the counterfactuals to the free price and location competition among single

facility firms, we compute consumer and producer surplus, and also total welfare, to analyse

whether some public intervention could render an improvement in social welfare with respect

to the free price and location competition.

As usual, we estimated welfare as the sum of the expected producer and expected consumer

surpluses:

SW =

J∑
j=1

E(πj) +

I∑
i=1

E(CSi) (17)

Following Train (2009) we calculated the expected consumer surplus in euros as:

E(CSi) =
Yi
αipj

E[maxj(φij + εij)] (18)

where
αipj
Yi

is the marginal utility of income and maxj(φij + εij) the alternative that

provides the greatest utility to consumer i. The results presented are from simulating 100

times εij following a type-one extreme value distribution.

Results for the 3% and 5% of penetration of the electric vehicle are presented in (Table5).

As expected, in the free pricing scenario utility increases with the number of entrants as

consumers value variety. Expected profits increase primarily because of the expansion of the

market, while the business stealing effect is shown to exist, albeit only at a very low level.

Total welfare therefore increases with the share of penetration of EVs.

The counterfactual given by the uniform regulated price show that in the 3% scenario,

social welfare is higher with uniform prices that are set lower than the mean nonuniform un-

regulated prices, while in the 5% scenario the opposite outcome is obtained, welfare decreases

with uniform prices that are set higher than the mean free prices. Hence, this implies that a

policy intervention that sets a uniform price lower than the one obtained in the free pricing

equilibrium while keeping the same number of facilities and the degree of differentiation may

improve social welfare.

Moreover, in the 5% scenario, the higher welfare obtained in the free scenario is consistent

with the results obtained in the spatial analysis (SeeOsborne and Pitchik 1987). By differ-

entiating, firms tend to locate closer to the efficient result. Higher uniform pricing leads to

clustering and to a less efficient equilibrium.
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Further research should be aimed at assessing the extent to which different combinations

of price regulations and/or transfers would provide better outcomes than those obtained with

free entry, free pricing and no transfer equilibria. This question remains out from the scope

of this paper.

Table 5: Welfare decomposition and evolution. Free vs Regulated Pricing
Share EV 3% 5%
Setting Free Regulated Free Regulated

Price (e) 18.87 16 18.55 26

Number of entrants 51 51 83 83

Utility (e) 3,372,123,036 5,955,926,350 3,519,014,534 2,552,805,932

Standard deviation 115,579,880 133,609,881 124,869,843 127,680,934

Expected Profits (e) 784,253 587,677 1,679,874 2,238,592

Total Welfare (e) 3,372,907,289 5,956,514,027 3,520,694,408 2,555,044,524

E.4 Robustness checks

As for the consistency of the demand parameters, all robustness checks conducted support

the reliability of the results obtained. First, we calculated the travel costs in line with Houde

(2012): taking the rent (Y) to rent per minutes and in cents of euros, where the travel cost is

given by λ
α+α∗log(Y ) . The results show the need for a 1.7119 cents difference in price in order

to deviate one minute from the commuting path. Therefore, given an average recharge of

16 kWh, this implies a compensated cost for deviating to complete an average recharging of

16.43 euros per hour. This amount is similar to the average income of 13.07 euros per hour

published by the statistics office IDESCAT for Catalonia for the year 2006.

Second, the price elasticity of recharging at location j with respect to the other locations

and the outside good was obtained: the 3% scenario gives an average result of a 2.21 per

cent reduction in quantity sold at location j for j = 1, ..., J because of a one per cent price

increment; the 5% scenario gives a result of −2.23. Of these amounts, a certain percentage is

dedicated to the other locations and another to recharging at home.

The price elasticity of recharging on the go with respect to recharging at home was also

calculated. The results show how recharging at home increases with a one per cent increment

in the price of the fast recharge. The outcome for the 3% scenario is −0.098 while that for

the 5% scenario is −0.104. Previous evidence for the demand elasticity of gasoline supports

the calibration of the parameters used in this model. Espey (1998) meta-analysis includes

studies published between 1966 and 1997 and he reports that estimates for the short-run price

elasticity of gasoline ranged between 0 and -1.36. Brons et al. (2008) meta-analysis draws

on data published between 1978 and 1999 and the authors report estimates of price elasticity

ranging between -1.36 and 0.37, with the highest frequency of estimates in the -0.1 to -0.2
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interval followed by the interval corresponding to estimators between 0 and -0.1.

F Concluding remarks

This paper has simulated a full game of strategic interaction to model the entry and location

of fast charging stations for electric vehicles. It draws on mobility information in the city

of Barcelona for both residents and commuters together with their income and demographic

data. Additionally, it employs information about the road network, petrol stations and other

amenities, including super/hypermarkets, and the cost of location around the city to simulate

the equilibria of the game. Robustness checks conducted on the parameters support the

evidence provided by the simulation.

A sufficient network of fast charging stations is only found to offer a solution for ‘range

anxiety’ when the electric vehicle penetration rate rises above 3%. For the 3% and 5% scen-

arios, a unique stable equilibrium is achieved with the entry of 51 and 83 firms, respectively.

Thus, our results indicate that a system of transfers to support a network of fast charging sta-

tions is not needed if electric vehicles attain a significant rate of market penetration. However,

this threshold is 30 times higher than the current penetration rate in Barcelona.

Demand drivers seem to have a stronger influence than entry costs in determining the

localization of the fast charging stations. Further, when competing in terms of location and

price, firms seem to differentiate from competitors more in spatial terms than when they are

in the same setting with a uniform price or in comparison to the monopoly case. ‘Market

power effect’ and ‘market expansion effect’ seem to be stronger than the ‘business stealing

effect’Ṫhe model also shows that without any entry restrictions the entire geographical space

would be supplied with fast charging stations.

As it is usual in differentiated product markets, consumers show a preference for variety.

Here, the market expands with the rise in penetration of electric vehicles in two ways: first, in

response to the growth in the need for electricity and, second, because of the greater demand

for recharging on the go.

The counterfactual establishing uniform regulated prices shows that a policy intervention

in the form of a uniform price lower than that obtained in the free-pricing equilibrium would

improve social welfare. However, policy intervention is not found to improve welfare for every

level of penetration of electric vehicles.

Further research will be conducted to assess the extent to which different combinations of

transfers and price regulations would provide better outcomes than those obtained with free

entry, free pricing and no transfer equilibria.
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Appendix A Kriging and Origin Destination Matrix

Kriging is an interpolation method used to predict the unknown values of a variable given the

spatial correlation presented by the observable values. The technique uses both the distance

and the degree of variation between known data points to estimate values in unknown areas.

The degree of relation between points is measured by using the semivariance. As the distance

between points to be compared increases so does the semivariance.

A.1 Ordinary Kriging fundamentals

As presented in Hengl (2009) ordinary kriging is based on the model presented below. For

expository reasons, the variable that is spatially distributed along x (latitude and longitude)

locations will be called o, the known values of the variable will be presented as o(xc) and at

unobserved locations as o(xe).

o(x) = µ(x) + ε(x) (A.1.1)

where µ(x) is the global mean and ε(x) the spatially correlated stochastic part of the

variable o. By using ordinary kriging the predictions of the value of a variable at some new

location xe are given by:

ô(xe) =

N∑
e=1

we(x
e)o(xc) (A.1.2)

where we are the kriging weights and o(xc) the values at the observed locations.

This is the same as:

ô(xe) = λeo
c (A.1.3)

with λe the vector of kriging weights and oc the vector of C observed values.

The technique uses the semivariance γ(h) to express the degree of relationship between

points (weights):

γ(h) =
1

2
E[o(xc)− o(xc + h)2] (A.1.4)

where o(xc) is the value of the variable at some observable location and o(xc+h) the value

of the neighbour at a distance xc + h. By plotting all semivariances versus the separation

distances a variogram is obtained. And using the average values for a standard distance called

’lag’ an experimental variogram is obtained. As expected, semivariances should be smaller at

shorter distance and at certain distance ’sill’ should stabilize.

After obtaining the experimental variogram this is fitted to some theoretical variogram

model such as the linear, spherical, gaussian, exponential, etc
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A.2 Kriging Results

The estimation was made twice, once for origins and again for destinations. In our case the

known values are, as stated, 63 (oc = 1, 2, ..., 63) and the unknowns 828 (oe = 1, 2, ..., 828).

For destinations, the variable could be renamed with the same amount of known and unknown

values.

In both cases, the experimental variogram was fitted to a theoretical model using a least

squares fit of various theoretical variograms to an experimental, isotropic variogram.

The theoretical model was chosen using the goodness of fit criterion as several models

were tested (spherical, pentaspherical, exponential, gaussian, circular,mattern, among oth-

ers). The theoretical model selected for both origin and destination variables was the linear

model.

In the case of origins, the Gaussian model presented a higher goodness of fit than that of

the linear model, but some results for the unobserved positions became negative because of

the nonlinearity of the weights. As the difference in goodness of fit was almost imperceptible

between models (0.7111 over 0.7093), we decided to use the Linear for both samples. The

goodness of fit for origins is 0.7093 and for destinations 0.7208. The variograms are presented

in Figure A.2.1, a and b.
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Figure a. Origins  

Figure b. Destinations  
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Figure A.2.1: Experimental and Theoretical Variograms

A.3 Construction of the OD Matrix within Barcelona

As stated, the kriging technique was applied to distribute origins and destinations within

Barcelona across the whole road network. By making use of the number of trips at observed

locations (node centroids) and the spatial correlation between observed values, we were able

to approximate the number of trips at unknown locations (rest of nodes in the network).

Additionally, we used the distribution of population within the city to establish the weight of

each node and to distribute existing trips across the full network.

We ran the procedure described below twice: first for origins, with the variable value being

the number of trips originating from node x, o(x); and, second for destinations, with variable

value being the number of trips with their destination at node x, d(x). For expositive reasons

we explain the procedure using only o.

Data used: 1. number of trips at each origin and destination;2. georeferences; 3. popula-

tion of every neighbourhood of Barcelona;4. population at census areas within the city.
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Steps: 1st step. We distributed the population of Barcelona between the 63 original

origin- destination nodes (ocanddc). This was achieved by assigning the population of the

neighborhoods of Barcelona to the corresponding node (centroid of the survey zone). For

the case of neighborhoods without a centroid, the population was assigned using the distance

criterion to the closest node. Henceforth, population at each known location is referred to as

P (xc).

2nd step. We obtained our weighted observed values (wo(xc)) by dividing the number of

trips at every observed location o(xc) by the corresponding population at the location P (xc):

wo(xc) =
o(xc)

P (xc)
(A.3.1)

for every c = 1, 2, ..., 63

3rd step. We applied the ordinary kriging method. This involved the construction of

the experimental variogram; the fitting of the latter to the authorized variogram; and, the

interpolation of the values using kriging. From this step we obtained the ŵo(xe) for every

i = 1, 2, ..., 828 unknown values. Combining known and unknown values we have a total of

891. Total estimators are wo(x), where x = 1, 2, ..., 891

4th step. We distributed the population of Barcelona across all the nodes of the network

(891) by using the map of census areas. Population at node x can be expressed as P (x).

5th step. We obtained the new number of trips at each location ô(x) by multiplying the

ŵo(x) by the population obtained in 4 P (x):

ô(x) = o(x)P (x) (A.3.2)

with, as stated, P (x) the population by node assigned in step 4 and (x = 1, 2, ..., 891)

6th step. By using the estimators obtained in 5 (ô(x)) we were able to create a probability

of being chosen for every node in the network.

Appendix B Sample Selection

We need to integrate by simulation à la BLP over a set of individuals that have idiosyncratic

tastes. We take a 100 draws from a sample of 18411 trips for which we know origin, destination

and personal characteristics. The selection was made taking into account the number of trips

of the population that each in the survey represents.
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B.1 The weights

Every trip of the survey has assigned a survey weight according to the trips made by the

entire population of the region. This survey weight was assigned by the Metropolitan Agency

of Transport considering the mobility characteristics of the trip and socioeconomic character-

istics of the people surveyed. From now on, we will express the trip made in between origin

and destination (o,d) as l and survey weight as swil. This last expression accounts for all the

trips l made by the population with equal characteristics.

B.2 The Selection

Each journey made by private transport containing at least origin or destination in Barcelona

constitutes our full survey. The sample was randomly selected taking into account the sample

weight generated as described in the equation below:

$il =
swil

ΣL
l=1swil

(B.2.1)

with, $il the sample weight, swil the survey weight, and L = 18411.
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