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Abstract—A large number of testing procedures have been
developed to ensure vehicle safety in common and extreme
driving situations. However, these conventional testing procedures
are insufficient for testing autonomous vehicles. They have to
handle unexpected scenarios with the same or less risk a human
driver would take. Currently, safety related systems are not
adequately tested, e.g. in collision avoidance scenarios with
pedestrians. Examples are the change of pedestrian behaviour
caused by interaction, environmental influences and personal
aspects, which cannot be tested in real environments. It is
proposed to use Virtual Reality techniques. This method can
be seen as a new Pedestrian in the Loop testing procedure.

Index Terms—Autonomous vehicles, Advanced driver assis-
tance systems, Collision avoidance, Vehicle testing, Virtual reality,
Testing with pedestrians

I. INTRODUCTION

Testing of autonomous vehicles for complex and uncertain

environments has become one of the biggest challenges in

the automotive industry. Automation and computational intel-

ligence will increase abilities of the vehicle [1]. The environ-

ment perception and situation understanding will be covered,

by computer algorithms. In addition to vehicle dynamics, the

environmental states have to be incorporated into the test [2].

In order to ensure safety, it is required to test the intelligent

vehicle in a reasonable way. It is also necessary to have

prediction mechanisms to infer the consequences of decisions

correctly. Conventional testing procedures are insufficient to

ensure safety of increasingly complex future assistance func-

tions involving machine perception and cognition [3]. The pa-

per is structured as follows: The first chapter introduces testing

for safety related systems. In the second chapter the state of the

art of test environments is summarized and the third chapter

rates their use in situations with pedestrians. In chapter four

solutions are proposed and finally some conclusions for this

new test environment are discussed.

A. Compromise in risk taking

The vehicle has to find in each situation a reasonable

trade-off between safety and efficiency, which can lead to

different levels of risk taking especially in motion planning. In

classical driving situations a driver perceives the environment

through to his sense organs, thinks and decides consciously

Fig. 1. Aspects for a compromise in risk taking for motion planning of
(autonomous) vehicles

or unconsciously about the next suitable driving manoeuvre.

The same is true for a pedestrian, where the dynamics is

different. The ability of pattern recognition helps to decode

the causality of the situation and enables to infer future

situations and reason about the consequences of the (planned)

action [4]. More experienced and talented drivers can take

more risky manoeuvres than untalented drivers. With higher

risks, the probability for collisions will increase. The driver

nevertheless has a responsibility within his decision making,

which has to be translated into a machine understandable

language. Fig. 1 shows aspects of a reasonable trade-off in

risk taking influenced by society, environment and vehicle.

Safety generally has a higher priority than traffic flow, but

it is also expected that the vehicle does not hinder other road

users. Risk depends also on which kind of driving manoeuvres

are authorized or restricted. The perception and cognition of

the environment and the trust in correctness of the perceived

information is also decisive. Whether the environment is

structured or unstructured, simple or complicated, changes

the scope for action. Urban environments are often more

complicated than highways. With the total knowledge about



a new situation and resulting determinism, the consequences

and risk of a (planned) action can be inferred. This is not

the case if the situation is uncertain. This kind of predictive

sensing of the future can be distinguished by the type of

information about a certain event. The (un-)certainty about

a future event can be modelled as belief or disbelief [5]. The

belief or disbelief that a perceived pedestrian will cross the

street can be modelled by classical probabilistic forms. In

each situation there exists always a lack of knowledge, e.g.

the future intention of the pedestrian. The lack of knowledge

leads to several plausible possibilities where the pedestrian

can move in the future. Situation prediction can be divided

in the most probable belief or different possible future beliefs

(multimodal beliefs) [4].

The control or loss of control of the vehicle depends on

the environment, the modelled system dynamics (e.g. lin-

earity/nonlinearity), the control architecture, the proper func-

tioning of the whole system (e.g. electronic devices) and

external influences (e.g. weather, road conditions). The system

behaviour (e.g. vehicle dynamics) can be divided in known

and deterministic or variable and uncertain behaviour. Overall,

this kind of aspects will lead to certain degrees of confidence

about the future situation, the acceptance of lack of knowledge

(compare e.g. Dempster Shafer rule in [5]) and a variable

assessment of risk.

B. Need for testing new functionality

Aim of an autonomous vehicle is to show a superior perfor-

mance over an average driver with respect to persons injured.

By statistical considerations, a highway assistant should be

tested on a reference route of 240 million km [6]. In practice

this is not feasible. Another problem is the assessment of

driving performance using simple metrics. The selection of

such metrics is not straightforward [6]. The complexity of

tests for autonomous vehicles is much higher, compared with

conventional test procedures. Additional to vehicle states,

information of the environment is incorporated in the decision

making process of an autonomous vehicle. This leads to

an increase of complexity, also because of predictions. The

possibility to miss important and risky trajectories is the major

safety risk [7]. Although no error could be detected in a

test-run, it does not mean that there has not been an error,

good conditions of the environment could have masked the

error. Also the analysis of failed tests is not trivial. To find

error causes (e.g. why there has been a collision) in data

is a problem, due to the complexity of driving situations

and unknown causal chains. Reproducibility of test cases

and adequate representation forms of complex situations (e.g.

semantic representation) are further aspects.

General requirements of test procedures for autonomous

vehicles include:

• Clear and reproducible statements;

• As easy as possible, as complex as necessary;

• Possible and adequate for all environments and situations

[1];

• Meaningful metrics (e.g. measures for the safety-risk-

ratio) and suitable description forms;

• Measures for robustness and redundancy for safety rea-

sons;

• Adequate for testing realistic driving scenarios [8];

• Comparison to human performance [9];

II. STATE OF THE ART

This chapter starts with a section II-A about the histor-

ical development of vehicles and continues with some test

procedures and test environments (section II-B). Existing test

environments are analysed for the use in automated driving

situations (section II-C).

A. Historical development of vehicles

In Fig. 2 the historical development1 of vehicles is shown

simplified in four stages and six categories based on [3]. In

the first period, vehicles were just deterministic machines, con-

trolled by human drivers without any algorithmic environment

recognition aiming at a stable reaction to the driver control

and only vehicle states were measured by sensor types like

odometry and inertial sensors. This kind of proprioceptive

sensing was extended to exteroceptive sensing [3], where

details from the surrounding environment were detected. The

idea was to build systems which inform, warn or increase the

comfort for the driver.

In the last decade it became possible to drive with au-

tonomous vehicles in simple structured environments2. In

many cases stochastic concepts for representing uncertainty

(lack of knowledge) were used. In complex situations there are

a lot more concepts necessary for safety of autonomous ve-

hicles in environments with pedestrians. Urban environments

have a very complex causal structure. Decoding the causal

structure and its effects is relevant for situation prediction.

Also the future intention of the pedestrian cannot be directly

inferred by analysing the position, gesture and social environ-

ment. The causality of a new situation has to be safely decoded

[4] in combination with concepts for uncertainty quantification

[5] to increase vehicle safety. A pedestrian is a social sub-

ject, where environmental influences, the urban development,

culture and interactions will also influence the behaviour of

the pedestrian. In many cases infrastructural information and

biomechanics have to be incorporated. To reach an even better

risk compromise, the environment perception with onboard-

sensors needs to be complemented by network perception

systems.

B. Test methods and environments

Testing safety of dynamic systems can be divided in dif-

ferent strategies [7]. To classify a system as a safe system, it

is necessary to make sure that trajectories never reach unsafe

states.

1In the context of environmental understanding and decision-making
2In [10] autonomous vehicles are classified in four levels depending on the

degree of autonomy



Fig. 2. Evolution of vehicles (expanded from [3])

The validation of technical systems is often done by simu-

lation and experiments. If the trajectory hits the unsafe state

during a simulation, the system can be declared an unsafe

dynamical system. As long as a counterexample has not been

found, there is no direct way to declare the system safe. There

are some exploring techniques for the state space to find the

counterexample systematically [7].

In conventional driving tests (e.g. testing vehicle dynam-

ics), internal vehicle states have to be examined at specified

manoeuvres. For autonomous driving functions, there are

no standardized tests, because states of the environment are

essential. It is not trivial to determine the external states and

conditions that have to be used for tests in order to ensure a

clear statement for the safety of the vehicle. Also, due to the

diversity of situations, the number of tests for demonstrating

safety is tremendous.

For the reproducibility of real-world tests, some strategies

are known. Steering robots are already used in experimental

settings. Another strategy is to collect a large amount of data

during long-term studies to ensure that the system is tested

for all possible situations [6]. Hereby the problem of missing

trajectories plays an essential role.

Soft-crash-targets and passable target robots can be used to

model accident scenarios. These crash target robots are already

used because they can be precisely coordinated [6].

The decision making process is influenced by the interac-

tion with other road users. The intention estimation and the

prediction for the future movement of road users is vital for

the motion planning of the ego-vehicle [2].

C. Existing test environments and their applicability to au-

tonomous vehicles

Existing test environments are analysed for the usage in

automated and cooperative driving scenarios (Fig. 3). They

can be classified as indoor, outdoor and virtual test envi-

ronments. A separate class is used, which is not directly a

new test environment, to accentuate the existence of tests

with special test equipment. Indoor tests [12] enable specific

environment conditions, where pedestrians or real complex

environments cannot be incorporated. Therefore, models have

to be created, which represent the main aspects of the real

behaviour of pedestrians and environments. The same applies

for virtual environments, where virtual models are used in a

specific software language. A special environment with use of

augmented reality to test the driver performance is presented

in [13]. Outdoor experiments have often the same problem

of simplifying the reality to certain expressions and levels.

This leads to lack of generalizability. For safety reasons,

real pedestrians and complex urban environments are often

incorporated only after a large amount of tests in other test

environments (e.g. long-term study). The type of experiments

with real pedestrians are more observational studies rather

than randomized controlled experiments. It is important to test

interaction, perception, environmental influences and external

interventions [4], [14].

III. PROBLEM DESCRIPTION

In this chapter the challenges in predicting and testing

safety critical situations with pedestrians are discussed. In

section III-A influences on the human behaviour are analysed.

In section III-B important test criteria are discussed and a



Fig. 3. Qualitative analysis of test environments for automated driving in simple and complex structured environments (based on [2], [6], [1], [9], [4], [11])

selection of these test criteria are used to rate existing test

environments for the use in test scenarios with pedestrians.

A. Influences of human behaviour

Influences on the algorithmic understanding of human be-

haviour are summarized in six different groups (Fig. 4). The

human behaviour is influenced by the environment. For ensur-

ing the safety of autonomous vehicles it is necessary to test the

algorithms of autonomous vehicles especially in complex and

uncertain environments with pedestrians. The causality of each

situation should be decoded to detect intention-changes and

influences of external interventions. Uncertainty is inherent in

every situation, that is why no absolute certainty is ensured

in each movement prediction. Some of the authors of this

contribution proposed to distinguish between epistemic and

aleatory uncertainty [15]. If the position of a pedestrian is

measured, the epistemic uncertainty for the future predicted

movement can be reduced with more measurements, but there

exists a non-reducible uncertainty (aleatory uncertainty). On

the other hand there is a certain amount of determinism

in human behaviour, which can be employed for movement

prediction. The bio-mechanics and also the environment (e.g.

perception and physical constraints by walls and rivers) of

a pedestrian constrain the dynamics. A lower dimensional

dataset can be representative for the human movement com-

paring to the number of joint angles of a human body (high-

dimensional dataset) [16]. Also statistically repeated patterns

(e.g. habits) can be usable for developing algorithms for

describing the behaviour (e.g. movement prediction). Each

person is unique. Depending on the knowledge there is a fluent

crossing between determinism and uncertainty. Psychological

aspects, unexpected happenings and events, and changes of

perception lead to change in behaviour.

B. Evaluation for test environments with criteria in collision

avoidance scenarios

Some decisive criteria for testing collision avoidance algo-

rithms with pedestrians are illustrated in the category columns

of Fig. 5. The environment complexity is one of the most

important aspects, where the interaction between road users,

the perception, the motion, and environmental influences have

to be tested. To check the generality of real-world test cases

with pedestrians it is necessary to recreate real world scenarios

and repeat each experiment. A classification in representative

target groups might be advantageous.



Fig. 4. Influences on human movement (based on [4], [5], [11])

Fig. 5. Qualitative evaluation of existing test methods with selection of important criteria (based on [2], [6], [1], [9], [4], [11], [12])



Fig. 5 summarizes a qualitative evaluation of existing test

methods with important criteria. In all test environments,

besides real traffic tests, there are models for the represen-

tation of human behaviour. The movement of pedestrians is

mostly pre-programmed and describable by fixed trajectories.

Stochastic models and interaction, environmental influences,

and personal aspects are not tested. There exists often no

pedestrian perception stimuli unit. Exceptions are long-term

studies, where pedestrians appear randomly and the type of

experiment is observation inspired [17].

IV. PROPOSED SOLUTIONS

From chapter III following facts are revisited to propose a

new test concept:

• There is no absolute certainty in pedestrian movement

prediction due to a lack of knowledge.

• Environmental understanding and human behaviour is a

core challenge for automated vehicles.

• Many situation predictions for pedestrians might be plau-

sible.

• Motion planning with pedestrians is a safety critical

application; environmental influences, intention changes,

perception, interaction and personal aspects are not di-

rectly testable in a randomized controlled experiment.

• Personal aspects, interaction, perception, intention

changes and environmental influences on pedestrians

must be tested.

Section IV-A features ideas on the representation of a

real environment in a virtual framework based on current

technologies. A virtual environment is proposed as an indoor

solution in section IV-B. The virtual environment can be

extended in a large scale network (see section IV-C), where

pedestrians can be integrated into an environment with virtual

reality glasses, motion capture systems and driving simulators.

As a result, real vehicle environments can be simulated with

different environmental conditions.

A. Environmental modelling

Four different representations of the town hall square in

Vienna are shown (Fig. 6). With current technologies it is

possible to track pedestrians’ movements via cloud or network

systems to get information how a pedestrian moves in a certain

environment. For the virtual test environments described in

the next sections it is also necessary to use 3D models

to stimulate the perception of the test person, who should

behave like a pedestrian. There is a need for a realistic

and often computationally expensive rendering to represent

realistic virtual 3D environments.

B. Solution with virtual reality

A solution for testing safety critical systems with pedestri-

ans is illustrated in Fig. 7. The movements and gestures of

a test person acting like a pedestrian in a real environment

are recorded (e.g. motion capture system) and the perception

of the pedestrian is stimulated by virtual reality glasses (e.g.

oncoming vehicle and buildings), Fig. 7-4. The software of

motion planning can be integrated in the virtual environment,

so that safety critical scenarios can be tested. The advantage

of this approach is that interaction, real pedestrian behaviour,

environmental influences and personal aspects can be incor-

porated into the test. The perception of the test person is

stimulated by virtual reality glasses (e.g. oncoming vehicle

and buildings). The whole experiment is visualized in a virtual

environment (Fig. 7-1), processed by a processing unit (Fig.

7-2). Safety critical systems (e.g. motion planning algorithm

with VIL) can be tested (Fig. 7-3). Other features of the highly

active research area in immersive virtual reality can extend the

test environment. An example are walking in place platforms

[26].

C. Perspectives in a large scale environment

A natural extension to the small-scale solution of section

IV-B is illustrated (Fig. 8) to incorporate many test persons in

different real world situations as a kind of virtual online game.

In these large scale experiments persons from different cultures

and social backgrounds can be incorporated in the virtual

environment with virtual reality glasses, driving simulators

and motion capture systems. Automotive companies can test

their software incorporating existing SIL, PIL, HIL, VIL tech-

nologies. Engineers, psychologists and experts from different

disciplines can analyse the behaviour of the pedestrians and the

performance of developed algorithms and systems with(out)

stimulating the environment. Global behaviour of pedestrians,

external influences, personal aspects and interaction will be

testable in this Pedestrian and Environment in the Loop

approach. Google Street View [27] and Google Earth [19] are

examples of large scale virtual environments, where interfaces

for virtual reality glasses and motion capture systems can be

incorporated.

D. Limitations

Sickness of motion and the amount of computations is a

disadvantage of this approach. In a future paper solutions with

augmented reality devices and experimental settings will be

proposed. The amount of time to model virtual environments,

the amount of hardware and the processing is lower with use

of augmented reality glasses.

V. CONCLUSION

Currently, driving situations with pedestrians are often

tested in observational statistical studies rather than in a

randomized control experiment, due to safety reasons. This has

an enormous impact on the development of motion planning

strategies (conservative configuration) in autonomous vehicles

and the usage for real scenarios (low generalizability, some

aspects are not tested, i.e. intention, environmental aspects).

The behaviour of pedestrians can be detected by onboard-

sensors of the vehicle, wearables, smartphones, or cloud

services and sensor networks (e.g. webcams). A randomized

control experiment is proposed with the incorporation of

virtual technologies. The advantage is that real test persons

can be incorporated in an experiment (Pedestrian in the loop).



Fig. 6. Four different representations of town hall square in Vienna [18]: 1. Pedestrian detection with webcams and Google Earth [19], 2. Matlab [20] models
of famous buildings around the town hall square, 3. Virtual representation with SketchUp [21], 4. Simulation in IPG CarMaker [22]

Fig. 7. Incorporation of real test persons for virtualization of collision avoidance scenarios with real traffic. 1: Virtual environment of collision avoidance
scenario. 2: Processing unit. 3: Vehicle in the Loop (SIL, PIL, HIL also possible). 4: Incorporation of test person with virtual reality glasses, position estimation
and motion capturing. Sources of illustrations: [23], [24], [25]

It is easily possible to change the virtual environments and

to stimulate the perception of the test person. Deterministic

mechanics of the human body (i.e. joint angles) can be

measured with motion capture systems. Experiments with

different persons offer new perspectives for the development

of autonomous vehicles. Examples are tests for risky and safe

motion planning and analysis of influences of interventions

described in [14]. To extend the whole experiment it is also

proposed to incorporate huge environmental structures, real

world events and network systems (e.g. online games, world

wide web). Engineers could incorporate safety critical systems

for performance testing in real world scenarios which would

help accelerate the transition to autonomous vehicles.
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Fig. 8. Solutions for virtualization of collision avoidance scenarios and real traffic scenarios with incorporation of real test persons. Incorporation of huge
amount of persons with a networked virtual system. 1: Person with virtual reality glasses. 2: Virtual Reality online game. 3: Real person with virtual reality
glasses and motion capture system. 4: Experts, Specialists and Psychologists analysing the behaviour of people in the environment. 5: Vehicle in the Loop
(or ”SIL, PIL, HIL”). 6: Real drivers in a driving simulator
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