
14th World Congress on Computational Mechanics (WCCM)
ECCOMAS Congress 2020)

Virtual Congress: 11-–15 January 2021
F. Chinesta, R. Abgrall, O. Allix and M. Kaliske (Eds)

AN EQUI-DIMENSIONAL FINITE ELEMENT APPROACH FOR FLOW
PROBLEMS IN FRACTURED POROUS MEDIA

MARCO FAVINO1 AND MARIA GIUSEPPINA CHIARA NESTOLA2

1Institute of Earth Sciences
University of Lausanne, Lausanne, Switzerland

marco.favino@unil.ch

2Institute of Computational Sciences Institute of Geochemics and Petrology
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Abstract. We propose a novel approach for flow simulations in fractured porous media based on an
equi-dimensional representation of the fractures and a standard continuous finite element (FE) method.
We employ an adaptive mesh refinement strategy to automatically adjust an initial regular mesh to any
fracture distribution with a desired accuracy. The proposed approach is easily implementable in any FE
software, does not involve the coupling of different discretizations, and provides symmetric and positive
definite stiffness matrices. We provide a systematic validation of our method and we show that it can be
used to simulate fluid flow for fracture networks of realistic complexity.

1 INTRODUCTION

The numerical simulation of fractured porous media is relevant for many applications in the Earth, en-
vironmental, and engineering applications, such as geothermal energy production, hydrocarbon explo-
ration, nuclear waste disposal, CO2 storage. Fractures are heterogeneities characterized by 1) material
properties which are highly different with respect to the ones of the embedding background and 2) one
dimension, usually referred to as aperture, that is much smaller compared to the other ones.

The geometric complexity of realistic fracture networks and the multiple length scales involved pose
several difficulties to the numerical simulation of fractured media. In particular, for models based on
an equi-dimensional representation of the fractures, i.e., models in which the fractures have the same
dimension of the embedding background, the generation of meshes is one of the major challenges. This
finds its expression in the fact that the use of equi-dimensional models have so far been limited to small
numbers of the fractures [6, 14, 5]. Among the methods based on an equi-dimensional representation,
the mimetic finite difference (MFD) is the most successful one, as it is robust even on anisotropic and
distorted meshes [1].

To overcome such difficulties, discrete fracture-matrix (DFM) approaches allow for a hybrid-dimensional
representation of the fractures, i.e., fractures are considered objects of one dimension less than the em-
bedding background. In DFM approaches, the same model is simulated in the fracture and in the back-
ground domains and suitable terms are introduced to couple the two models. Hence, the arising stiff-
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ness matrices present a block structure. Several conforming and non-conforming discretization methods,
based on finite volume (FV) and finite element (FE) methods, have been proposed for the DFM approach.

Among the conforming methods, we name the BOX, which is a vertex-centered FV method [8], the
TPFA, which is a control-volume finite difference method which uses a two-point flux approxima-
tion [11], the MPFA, which is a generalization of the former and employs a multi-point flux approx-
imation [17]. Among the non-conforming methods, we name the embedded discrete fracture-matrix
(EDFM) [13], the extended finite elements (XFEM) [12], and methods base on mortar-type techniques [3].

Although hybrid-dimensional representations partially simplify the process of mesh creation, conforming
methods still require meshes that match at the intersections and the mesh generation still remains an issue
for cases of high geometrical complexity. On the other hand, non-conforming methods provide more
freedom in the mesh generation, as the fracture mesh can be located arbitrarily inside the background
domain. However, in general, they are not straightforward to implement and may present high condition
numbers, when the fracture grid cuts the background elements in small subelements. Moreover, hybrid-
dimensional models rely on the assumption of negligible aperture. However, fracture apertures which are
two-orders-of-magnitude less than the background size are often encountered [10, 5, 2]. In these cases,
the assumption of negligible aperture is not applicable and the error coming from the lower-dimensional
representation of the fractures may dominate the discretization error.

In this work, we present an alternative approach based on an equi-dimensional representation of the
fractures and a continuous FE method on adapted meshes that allows to simulate fractured media of
realistic complexity. Employing an idea similar to the one presented in [4], we use an adaptive mesh
refinement (AMR) strategy to create a hierarchy of meshes that approximate the interfaces between the
fractures and the embedding background with increasing accuracy without the need to explicitly resolve
them. Starting from an initial regular mesh unrelated to the fracture distribution, at each step of the AMR
strategy, we create a new mesh level by refining the elements which have non-empty overlap with the
interfaces between fractures and background.

We employ this approach for the simulation of single-phase fluid flow problems and we validate it using
the four tests proposed in the seminal benchmark paper for single-phase flow in fractured porous me-
dia [5]. We show that a reasonable number of AMR steps allows to reproduce the fundamental character-
istics of the solutions of all the proposed tests. As the proposed approach is based on standard continuous
FE method and does not involve coupling terms, it can be easily implemented in any FE framework, the
condition number does not suffer for elongated or distorted elements, and the resulting stiffness matrix
is suitable for the solution with efficient algebraic multigrid method. Moreover, our approach can be
employed for the computation of reference solutions of models with equi-dimensional representations of
the fractures in the process of validating hybrid-dimensional representations in complicated and realistic
fracture networks.

This work is organized as follows. In Section 2, we introduce the flow problem and the FE discretization
of adapted meshes. In Section 3, we discuss the AMR strategy. In Section 4, we report the results of the
validation of our method. Finally, we offer some concluding remarks in Section 5.
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2 MATHEMATICAL PRELIMINARIES

We present the mathematical model and the FE discretization in a two-dimensional setting. The approach
discussed below can be straightforwardly extended to three-dimensional settings.

2.1 Geometrical definitions

We denote a polygonal domain in the Euclidean space E 2 by Ω. The boundary of Ω is BΩ and the outward
normal to Ω is n. In case of an axis-aligned rectangular domains, we employ the symbol ΩL and the two
dimensions of the domain are denoted by Lx and Ly. We introduce a set F of rectangular inclusions
f i Ă Ω with i“ 1,2 . . .N f , where N f “ |F | is the number of inclusions. We define the background and
inclusions subset of Ω, respectively, by

Ω f :“

˚N f
ď

i“1

f i and Ωb :“ ˚
ΩzΩ f .

Both Ωb and Ω f may be non-connected sets. The set Γ :“ ΩbXΩ f is the interface between the back-
ground and the fracture subdomains.

2.2 The model problem

We assume BΩ can be decomposed into ΓD and ΓN , i.e., respectively, the subsets where Dirichlet and
Neumann boundary conditions are imposed. Dirichlet boundary conditions are denoted by pD and Neu-
mann boundary conditions by qN . Neglecting source terms, the weak formulation of single-phase flow
in porous media reads

Find p PU such that
ż

Ω

k ∇p ¨∇qdΩ“

ż

ΓN

qN vdΓ @v PV, (1)

where p is the pressure, V “tv PH1pΩq : v|ΓD “ 0u, and U “tv PH1pΩq : v|ΓD “ pDu. The permeability
k attains different values in Ωb and Ω f , i.e.,

k “

#

kb, in Ωb,

k f , in Ω f .

Existence, uniqueness, and stability results for the weak problem (1) follow from Lax-Milgram theorem.

Close to the vertices of the inclusions, usually referred to as singular points, the solution p can be written
as the sum of a regular function in H2pΩq and some singular functions [7, 16]. Such singular func-
tions reduce the regularity of solution. For example, we report one of the well-known regularity results
from [15], which states that

Theorem 1 The solution of problem (1) fulfills p P H1`1{4pΩq.

Hence, due to the discontinuities in k, the regularity of the solution is reduced and classical smooth
solutions to (1) are not defined.

2.3 Finite element approximation

To discretize Eq. (1), we employ a standard conforming FE method defined on non-conforming meshes.
Meshes are locally refined close to the interface but they do not resolve the interface Γ. We refer to these
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kinds of meshes as unresolved or unfitted. Due to the use of unresolved meshes, material properties may
be discontinuous over the elements of the mesh that are crossed by the interface. Corresponding material
properties are assigned to the quadrature point during the assembly. Due to this lack of regularity, we
employ a composite quadrature rule with one node per sub-element and 102 sub-elements per mesh
element.

The discretization of the weak formulation (1) results in a linear system of the form

Ap“ f, (2)

where the stiffness matrix A is symmetric and positive definite. We remind that due to Theorem 1,
convergence of the FE method could be suboptimal for such a problem, as it requires that the solution
belong to be in H2pΩq to ensure at least a convergence of order one in energy norm.

3 ADAPTIVE MESH REFINEMENT FOR EQUI-DIMENSIONAL INCLUSIONS

We briefly describe the AMR strategy for the generation of adapted equi-dimensional meshes for arbi-
trary fracture networks. We follow the strategy presented in [4] even if we employ a different criterion to
choose the elements to refine. Such an approach has been used for the simulation of hydro-mechanical
coupling in fractured porous media in [9, 18].

We consider meshes that are non-conforming tessellations of Ω with elements K. Hence, we assume that
a mesh can have hanging vertices, i.e., there could exist a vertex of an element Ki that may belong to an
edge of another element K j. We restrict ourselves to the case of 1-irregular (or balanced) meshes, for
which at most one hanging node can exist per edge.

We denote the initial regular mesh by T 0. Denoting by Nx the number of elements along one direction,
we employ the symbol T 0

Nx
to stress the resolution of the initial mesh. By red-refinement, we refer to the

split of a parent element into four identical child elements. An adapted mesh T ` (or T `
Nx

), with ` ą 1 is
obtained by red-refining a subset A of elements of T `´1 (or T `´1

Nx
q. We denote by h`Nx

“ Lx{Nx{2` the
size of the smallest edge present in the mesh T `

Nx
.

In order to construct the mesh T ` from T `´1, we add the elements of T `´1 that intersect the interface Γ

to the set A . Then, we add all the elements that are needed to ensure that T ` is 1-irregular. Finally, we
replace the elements in A with their red-refinement.

Figure 1 shows some steps of the AMR strategy for a unitary square with two fractures. The domain,
reported Subfigure 1a, contains two fractures, which are centered in p0.5,0.5q, have length of 0.8, and
have an aperture of 0.05. We on purpose consider thick fractures to visualize the adaptive steps. The
skewed one is inclined of an angle of 30˝. In Figure 1b, we report an initial mesh T 0

10. In Figures 1c-1h,
we report the hierarchy of adapted meshes created with the AMR strategy. We observe how in the first
three steps, all elements which are in the interior of the fracture are refined. Later, in the steps from
3 to 6, the refinement is performed only on close to the boundary. After six steps, the mesh size is
h6

10 “ 1{10{26 « 1.5ˆ10´3.

4 NUMERICAL RESULTS

We validate the described approach using the tests proposed in the benchmark paper [5]. This work
presents
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(a) Ωb (b) T 0
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Figure 1: (a) Unitary square domain containing two fractures (red) intersecting each other at an angle
of 30˝. The blue rectangle denotes the fracture tip, for which blowups are shown on the right of each
subfigure. (b) Initial regular mesh. (c)-(h) Adapted meshes created at steps from 1 to 6 of the AMR
strategy.

• four tests for single-phase fluid flow in fractured porous media featuring fracture networks of
different complexity intended to be benchmarks for discretization approaches;

• a comparison of the results obtained with different discretization approaches. The considered ap-
proaches are all based on hybrid-dimensional formulations, except one based on an equi-dimensional
formulation and a mimetic finite difference (MFD) method.

Following the nomenclature of the benchmark paper, we refer to the four tests with the names: 1) regular
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fracture network, 2) Hydrocoin, 3) complex fracture network, 4) realistic fracture network. For problem
1), two cases are considered: a conductive network, featuring fractures with a permeability larger than the
one of the background, and a blocking network, featuring fractures with a permeability much smaller than
the one of the background. We refer to the conductive and blocking cases with 1c) and 1b), respectively.
For problem 3), two cases are considered: a vertical flow (top to bottom) and a horizontal flow (left to
right). We refer to the vertical and horizontal cases with 3v) and 3h), respectively.

Tests 1), 3), 4) are defined in axis-aligned domain ΩL and, hence, a structured initial mesh is employed.
Test 2) is defined in a polygonal domain and an initial mesh has been created with Cubit 13.1.

As proposed in the benchmark paper, we analyze the pressure profiles along some segments. For tests
1), 2), 3), we compare our solutions against the reference one computed with an equi-dimensional MFD
method. Instead for problem 4), we compare our solutions against the solutions obtained with the hybrid-
dimensional approaches.

Simulations have been performed with parrot2, a software applications implemented in the FE frame-
work MOOSE. The arising linear system has been solved using the algebraic multigrid solver Hypre
BoomerAMG for tests 1), 2) 3). For test 4), the linear system has been solved using the parallel direct
solver Mumps.

4.1 Regular fracture network

The first test consists of a regular fracture network of six fractures embedded in a unitary square. Fracture
aperture is 10´4 m, i.e., four-orders-of-magnitude less than the domain size. In Figure 2, we report an
example of the adapted meshes resulting by the application of the AMR strategy: an initial mesh with
Nx “ Ny “ 40 is reported in Figure 2a, while the adapted meshes resulting after 6 AMR steps is reported
in Figure 2b. We observe how all elements overlapping with the boundary of one fracture, which is
modeled as a rectangle, are gradually refined to improve the resolution. This illustrates the effectiveness
of the meshing algorithm. Figures 2c and 2d reports the spatial pressure distribution for the conductive
and blocking cases, respectively, computed on the mesh T 8

160.

For the conductive case, the analysis is performed along the horizontal (y “ 0.7) and vertical (x “ 0.5)
dashed black segments reported in Figure 2a. For the blocking case, the analysis is performed along the
diagonal dashed black segment.

For the conductive case, the pressure profiles computed along the horizontal and vertical segments are
reported in Figures 2e and 2f, respectively, for different mesh sizes of the initial mesh and different
number of AMR steps. From Figure 2e, we observe that our approach is able to correctly reproduce
the pressure profile along the horizontal segment even for coarse meshes. Instead, for what concerns
the vertical line (2f), we observe that the results are mostly dominated by the minimum mesh size. In
particular, a value of h`Nx

“ 1{40{211 provides a pressure profile that coincides with the reference one.
These results are confirmed also by additional numerical simulations performed on denser meshes that
we are not reported.

For the blocking case, the pressure profiles are reported in Figure 2g. We observe that our approach
based on a continuous FE method and an equi-dimensional formulation is able to reproduce the correct
pressure profiles even for coarse meshes. This result is particularly interesting, as some methods based
on continuous FE, but hybrid-dimensional formulations (BOX and EDFM), were not able to capture the
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(f) Conductive case: vertical line

arc length [m]
0 0.5 1 1.5

p
re

s
s

u
re

 [
P

a
]

1

1.5

2

2.5

3

3.5

MFD

T 9
80

T 10
80

T 11
80

arc length [m]
0 0.5 1 1.5

p
re

s
s

u
re

 [
P

a
]

1

1.5

2

2.5

3

3.5

MFD

T 8
160

T 9
160

T 10
160

(g) Blocking case

Figure 2: (a) Initial regular mesh where we depict the fracture network in red. (b) Adapted mesh obtained
after six AMR steps. (c)-(d) Pressure distribution for the conductive and the blocking case, respectively.
(e-f) Solutions are evaluated along the back segments for the conductive case. (g) Solutions evaluated
along the back segments for blocking case.

pressure discontinuities. Again, as for the vertical segment in the conductive case, we observe that there
exists a threshold value for the minimum mesh size in order to obtain results that are superimposed with
the reference solution. Such a value is h`Nx

“ 1{40{212.

As a result of this first analysis, we can conclude that the our approach based on an equi-dimensional
formulation and continuous FE is able to reproduce the correct pressure distribution, if the interfaces are
approximated with a sufficient accuracy. Such accuracy may depend on the material properties of the
background and of the fractures.

4.2 Hydrocoin

This test was proposed within the international Hydrocoin project, (Swedish Nuclear Power Inspectorate
(SKI). The original domain has been slightly modified according to the description provided in [5]. The
aperture of the fractures is about 101 m, i.e., two-orders-of-magnitude less than the domain size.
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Figure 3: (a) Initial regular mesh where we depict the fractures in red. (b) Adapted mesh obtained after
six AMR steps. (c) Pressure distribution. (d) Pressure profiles evaluated along the black segment.

The initial mesh, reported in Figure 3a, is quite coarse and is characterized by Nx “ 12 and Ny “ 9. In
such a figure, we have superimposed the two inclined fractures of this test and the horizontal segment
along which the analysis is performed . The adapted mesh after six steps of AMR is reported in Figure 3b.
The resulting adapted mesh is characterized by an h6

12 « 2, meaning that roughly five elements fit in the
fracture aperture. Figure 3c depicts the spatial distribution of the pressure on such a mesh.

Figure 3d reports the pressure profile computed along the horizontal line (y“-200 m) for different steps
of AMR. As for the first test, increasing of the number of AMR steps allows to obtain solutions which
are perfectly superimposed with the reference one. For this test, such a characteristic has not been ob-
served for discretizations based on hybrid-dimensional formulations. This is due to the fact that hybrid-
dimensional formulation relies on the assumption of negligible aperture that is not justified for fractures
that are so large.

4.3 Complex fracture network

This test features a unitary square with ten fractures distributed as in Figure 4a. Eight fractures, depicted
in red, are conductive and two fractures, depicted in blue, are blocking. A resulting adapted mesh after
5 steps of AMR is reported in Figure 4b. At the quadrature points belonging to more than one fracture,
the assigned permeability is the harmonic mean of the permeabilities of each fracture.

In Figures 4c and 4c, we report the pressure distribution for the vertical and horizontal flow cases, re-
spectively. These pressure distributions resemble the ones reported in the benchmark paper.

The pressure profiles are evaluated along the black segment reported in Figure 4a. In Figures 4e and 4f,
we report the pressure profiles for the vertical flow case. In Figures 4g and 4h, we report the pressure
profiles for the horizontal flow case. For all the results, we observe that the error is always dominated by
the accuracy with which the fractures boundary are resolved and almost no influence is given by the initial
background mesh. As also observed in [5], the vertical flow is approximated more easily. Conversely,
for the horizontal flow, finer meshes are necessary. Again, our approach, even though continuous, is able
to reproduce the pressure drop close to the blocking fractures.
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Figure 4: (a) Initial regular mesh where we depict the conductive fractures in red and the blocking
fractures in blue. (b) Mesh obtained after five AMR steps. (c) Pressure distribution for the vertical
flow. (d) Pressure distribution for the horizontal flow. (e)-(h) Pressure profiles evaluated along the black
dashed segment depicted in (a).

4.4 Realistic fracture network

This final test features a realistic network of 63 fractures of different length. The aperture is four-orders-
of-magnitude less than background size. The conductivity of the fractures is six-orders-of-magnitude
larger than the one of the background. For this test, we start from a coarse mesh with Nx “ 7 and Ny “ 6.
This initial mesh is reported in Figure 5a as well as the horizontal and the vertical segments, along which
the solution is evaluated. The meshes after three and five AMR steps are reported in Figures 5b and
5c, respectively. In total, we apply to this mesh up to 10 AMR steps. The mesh T 10

7 is characterized
by a value h10

7 « 10´2, that coincides with the fracture aperture. The resulting pressure distribution is
illustrated in Figure 5d. For this test, no reference solution based on equi-dimensional representations
has been provided, due to the difficulties in the generation a mesh that is able to resolve the intersections
and the interfaces between the background and the embedded fractures. For this reason, we perform a
comparison against all the solutions reported in [5] and based on hybrid-dimensional models. We observe
that the pressure profiles obtained with our approach are in agreement with the published solutions along
the two proposed segments, (Figures 5e and 5f). In particular, our approach is able to reproduce all the
features of the solution along these two segments.
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Figure 5: (a) Initial regular mesh where we depict the fractures in red. (b) Adapted mesh obtained
after three AMR steps. (c) Adapted mesh obtained after five AMR steps. (d) Pressure distribution.
(e) Pressure profiles evaluated along the horizontal black dashed segment depicted in (a). (f) Pressure
profiles evaluated along the vertical black dashed segment depicted in (a).

5 CONCLUSIONS

We have proposed an approach for the simulation of fluid flow in fractured porous media based on an
equi-dimensional representation of the fractures and a continuous FE method. The equi-dimensional
representation of the fractures allows to consider the full physics occurring in the fracture, i.e., to include
cross-fracture phenomena, which are usually neglected in hybrid-dimensional representations. In order
to create suitable meshes for fractured media, we employed an adaptive mesh refinement strategy, which
allows, starting from a regular initial mesh, to refine the element close to interfaces between fractures
and the embedding background. In this way, we can adapt any initial mesh to approximate even the more
complicated fracture distribution with a desired accuracy. As our approach does not require any coupling
between different geometrical entities, it can be directly implemented in any FE framework. Moreover,
it provides provides linear systems characterized by a stiffness matrix which is symmetric and positive
definite. Hence, the solution can be realized with efficient algebraic multigrid solvers.

We have validated our approach using the tests proposed in the seminal benchmark paper for single-
phase fluid flow. We showed that our method is able to correctly reproduce all the pressure profiles and
that the accuracy with which the fractures are approximated is the fundamental criterion to obtain correct
results. This aspect is much more relevant than the accuracy of the background mesh.
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Although the proposed method has shown to be able to reproduce all the pressure profiles proposed in the
several tests, the accuracy depends on the fracture aperture, the conductivity, the geometry, the segment
along which the numerical solutions are evaluated. For geometries for which a reference solution does
not exist, a possible strategy would be to evaluate two solutions computed on meshes obtained from
subsequent application of our AMR strategy. However, the use of error estimators for interface problems
would provide a more sound strategy in the choice of the mesh.

Finally, we would like to point out that the proposed approach can be employed to compute reference
solutions with equi-dimensional formulations in order to evaluate the accuracy and the approximation
properties of methods based on hybrid-dimensional formulations.
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