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ABSTRACT 
The present work evaluates the influence of different primers applied in the reinforcement steel on the 

apparent diffusion coefficient of oxygen (Dap (O2)) and on the corrosion intensity (Icorr), comparing the 

results with a reference cimentitious mortar. Oxygen flow (J (O2)) until the reinforcement steel was 

measured by potenciostático method in steady state. The Icorr was monitored by the Polarization 

Resistance technique (Rp). Evaluations related porosity of the primers were made through magnifying 

glasses, optical microscopy and SEM. Primers that represent barrier protection systems proved to be less 

permeable to oxygen. The Dap (O2) values ranged from 2.1 x 10-6 cm2/s to 4 x 10-9 cm2/s, causing 

variation in the Icorr due to cathodic control of the corrosion process. 
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Coeficiente de difusão aparente de oxigênio e o controle da corrosão de 

armaduras revestidas com primers 

 
RESUMO 

O presente trabalho avalia a influência de diferentes revestimentos aplicados nas armaduras sobre 

o coeficiente de difusão aparente de oxigênio (Dap(O2)) e sobre a intensidade de corrosão (Icorr), 

comparando os resultados com um revestimento de referência (argamassa cimentícia). O fluxo de 

oxigênio (J(O2)) até a armadura foi medido pelo método potenciostático no estado estacionário. A 

Icorr foi monitorada pela técnica de Resistência de Polarização. Avaliações referentes a porosidade 

dos revestimentos foram feitas por meio de lupas, microscopia ótica e SEM. Os revestimentos que 

representam sistemas de proteção por barreira mostraram-se menos permeáveis ao oxigênio. Os 

valores Dap(O2) variaram de 2,1 x 10-6 cm2/s até 4 x 10-9 cm2/s, ocasionando variações na Icorr, 

devido ao controle catódico do processo de corrosão. 

Palavras-chave: concreto armado; controle da corrosão; difusão de oxigênio; primers. 

 

Coeficiente de difusión aparente de oxígeno y el control de la corrosión de 

armaduras revestidas con primers 

 
RESUMEN 

RESUMEN 
El presente trabajo evalúa la influencia de diferentes recubrimientos aplicados en la armadura en 

el coeficiente de difusión aparente de oxígeno (Dap (O2)) y en la intensidad de corrosión (Icorr), 

comparando los resultados con un revestimiento de referencia (mortero cimentício). El flujo de 

oxígeno (J (O2)) hasta la armadura se midió por el método potenciostático en estado estacionario. 

La Icorr se controló mediante la técnica de resistencia de polarización. Evaluaciones respecto a la 

porosidad de los recubrimientos fueron hechas con lupas, microscopio óptico y SEM. Los 

revestimientos que representan sistemas de protección por barrera han resultado menos permeables 

al oxígeno. Los valores de Dap (O2) variaron de 2.1 x 10-6 cm2/s a 4 x 10-9 cm2/s, causando 

variaciones en la Icorr debido al control catódico del proceso de corrosión. 

Palabras clave: concreto armado; control de la corrosión; difusión de oxígeno; primers. 

 

 

1. INTRODUCTION 
 

The rebar of the reinforced concrete structures, typically, are protected from corrosion by a passive 

layer of oxides formed due the high alkalinity of the concrete, which determines the so-called state 

of passivation of steel reinforcement. This layer protects indefinitely the steel reinforcement of the 

corrosion, while the concrete preserve your good quality, no cracks and not have physical or 

mechanical characteristics changed due to the action of aggressive external agents. The passive 

protection layer is destabilized by the decrease in the pH of the concrete around the reinforcement 

to values less than 9, due to the carbonation of concrete, or due the penetration of chloride ions 

through the porosity of concrete, reaching critical limits, leading to despassivation and start 

corroding. After the passive layer is broken down and triggered the corrosion process, resistivity 

and temperature of concrete and the flow of oxygen to the surface of the steel rebar are the main 

controllers factors of the propagation period of corrosion. (Gjorv; Vennesland; El-Busidy, 1986; 

Andrade et al., 1990; Castelotte et al., 2001; Francinete; Figueiredo, 1997). The reactions of 

corrosion can be controlled by several factors, according to illustrate the diagrams of Figure 1. 

These factors change the polarization characteristics of the reinforcement steel. 
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Figure 1. Evans diagram, showing the influence of process of controls anodic, cathodic, mixed 

and by ohmic resistance about the intensity of corrosion (McCafferty, 2009). 

 

When the polarization occurs mainly at the anode, the corrosion reaction is controlled anodically 

and the reaction of metal dissolution is diminished. When the resistivity of electrolyte (concrete) is 

very high, to the point of preventing ion movement, the resulting current is insufficient to polarize 

the anode and the cathode. In this case, the corrosion reactions are under ohmic resistance control. 

In practice, the reactions occur in the same intensity at the anode and the cathode and thus has a 

mixed control. The cathodic control occurs when the oxygen reduction reaction (Equation 1) is 

constrained by the reduction in oxygen access to the cathodic region, limiting the consumption of 

electrons from the anode region and, consequently, controlling the kinetics of corrosion. 

 

O2 + 2H2O + 2e-                4 (OH)-                                               (Equation 1) 

 

The presence of oxygen on the surface of the reinforcement steel is essential for reduction reactions 

occur in the cathodic areas. The oxygen diffusion coefficient in concrete is a concrete property very 

important and determinant on durability of reinforced concrete structures (Page; Lambert, 1987; 

Helene, 1993; Hansson, 1993). In some study, the measured oxygen flow is used to predict the 

durability of the steel reinforcement, based on the relationship between the anodic dissolution, or 

corrosion, and the amount of oxygen that can be reduced in cathodic areas (Andrade et al., 1990). 

Kobayashi e Shutton (1991) e Tuutti (1982) studied the influence of the water/cement ratio, the 

thickness of the covering, the air humidity and the saturation degree of the concrete pores, the presence 

of mineral additions to cement and concrete curing conditions on the diffusion of oxygen through the 

concrete. 

Restricting the access of oxygen to the steel reinforcement is one of the performance requirements 

that the coatings applied to the steel reinforcement, or even repair mortars and paints of surface 

protection, must meet in order to fulfill with efficiency the functions of preservation and restoration 

of protection and control of reinforcement corrosion.  
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The measurement of the apparent diffusion coefficient of oxygen (Dap(O2)) through of the concrete 

covering or through the coatings applied to the steel reinforcement, show the conditions of oxygen 

supply to the cathodic regions that regulate corrosion kinetics in the anodic regions. Currently, to 

compose a repair system of concrete structures attacked by corrosion, the technical means has an 

ample variety of coatings (primers) that are applied on the steel reinforcement. The mechanisms of 

protection exercised by these coatings can be for barrier, repassivation, inhibition and cathodic 

protection. In practice usually occurs the joint action of two or more protection mechanisms 

(Figueiredo, 1994). 

The knowledge of the composition and properties of primers (coatings) that are directly related to 

the ability of protection and control of corrosion is important to the overall assessment of the 

performance of the primers. Such information is also important for the designers of repairing can 

choose the products most appropriate for a given situation. Therefore, the present study aims to 

assess the influence of five different types of coatings, specified for protection of steel 

reinforcement, on the apparent diffusion coefficient of oxygen (Dap(O2)) and on the intensity of 

corrosion (Icorr), in comparison to a reference coating composed of a cement-sand mortar. 

 

2. EXPERIMENTAL PROGRAM 
 

2.1 Materials and specimens 

For the realization of the experiment were casting prismatic mortar specimens in the dimensions 

20 mm x 55 mm x 80 mm. The reference mortar was produced with cement/sand ratio of 1/3 and 

water/cement ratio of 0.50, both in mass. In the mixing water was mixed 3% CaCl2, in relation to 

the cement mass, to promote the despassivation of steel reinforcement. The cement used was a high 

early strength. Table 1 shows the chemical and mineralogical composition and physical and 

mechanical characteristics of Portland cement used to produce the specimens.  

 

Table 1. Mineralogical and chemical composition and physical and mechanical characteristics of 

employee cement in experiments. 

Chemical Composition Results (%) 

CaO 61,34 

SiO2 18,32 

Al2O3 5,43 

Fe2O3 3,28 

SO3 3,04 

MgO 1,51 

K2O 1,04 

Na2O 0,15 

Cl- 0,02 

P.F. 3.13 

R.I. 1,92 

Mineralogical Composition Results (%) 

C3S 60,54 

C2S 6,85 

C4AF 9,98 

C3A 8,84 

Mechanical Characteristics Results (MPa) 

Compressive Strength (3 days) 27,8 

Compressive Strength (28 days) 59,1 
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Physical Characteristics Results 

Initial setting time 85 minuts 

Final setting time 150 minuts 

Specific weight 3,15 g/cm3 

 

In each specimen were placed two steel reinforcements type CA50 (Brazilian standard 

denomination) of 6 mm in diameter and 8 cm long, in order to obtain the duplication of results. 

Table 2 presents the chemical composition of the steel reinforcements used in the experiments. 

 

Table 2. Chemical composition of the steel reinforcement. 

Element Composition (%) 

Fe (Iron) 98,94 

C (Carbon) 0,17 

Mn (Manganese) 0,59 

Si (Silicon) 0,25 

P (Phosphorus) 0,02 

S (Sulfur) 0,03 

 

The steel reinforcements (steel bars) went through a cleaning process, in accordance with the 

ASTM G1 (1999) recommendations, before being immersed in the mortar. This procedure gives 

to the steel bars identical superficial grade cleaning before being coated. An insulating tape 

delimited the study area of 5.6 cm2, which was applied protective coating of rebar (primer). 

Between the two bars of study was placed a graphite bar to act as counter electrode. Figure 2 shows 

details of the specimen used in the experiments. Table 3 presents the characteristics of coatings 

(primers) supplied by manufacturers. 

 

 
Figure 2. Details of the specimen. 



 

    Revista ALCONPAT, 8 (3), 2018: 288 – 300 

 

Apparent diffusion coefficient of oxygen and corrosion control of reinforcement rebar coated with primers      

                                                                                                                      E. Pazini Figueiredo, C. Andrade 
293 

Table 3. Characteristics of the primers (coatings) studied provided by manufacturers. 

Primer Composition 
Number of 

Components 

Wet thickness 

(µm) 

Density 

  (kg/l) 
pH 

1 Cement + 

thermoplastic 

polymer + 

special loads 

2 1000 a 2000 

(applied in 2 

coats) 

1,90 > 10 

2 Cement + 

thermosetting 

polymer + 

inhibitor 

(Ca(NO2)2) 

3 1000 a 2000 

(applied in 2 

coats) 

2,00 N.E. 

3 Epoxy + zinc 1 135 µm/demão 

(applied in 2 

coats) 

2,00 N.E. 

4 Epoxy 2 N.E. N.E. N.E. 

5 Polymer + lead 1 300 µm (applied 

in 3 coats) 

1,36 ± 0,05 9,4±0,2 

    N.E. (Not specified) 

 

After casting, the specimens was stored in chamber of 100% relative humidity, remaining in this 

condition for more than 100 days. In the second stage, until the time of the implementation of the 

measures, the specimens were provided partially submerged, in order to promote the reinforcement 

corrosion. The measures of oxygen flow (J (O2)) were made when the specimens completed 1 year. 

 

2.2 Experimental methodologies and evaluations 

The oxygen flow through a material is influenced by your thick and interconnectivity of your 

porous network. In this sense, were made measurements of the thickness of each coat and the total 

thickness of the wet applied coatings (fresh state), employing a fresh film thickness gauge on a 

glass plate, as shown in Figure 3. The dry thickness of the primers, the estimate of the size of the 

pores and your interconnectivity were evaluated by means of magnifying glass, optical microscopy 

and scanning electron microscopy (SEM). The magnifying glass with increased 4 times was 

employed to identify surface defects of dry films. These evaluations were also important to detect 

by comparing possible changes existing surface after the end of the tests and rupture of the 

specimens. When on the surface were detected imperfections, with suspicion that could have 

continuity and reach the steel reinforcement, made use of the stereomicroscopic to observe and 

photograph the defects with more details. At various times, to enter through the defect or surface 

porosity of the second coat, it was possible to identify the presence of primer from the first coat, 

reaching the conclusion that the pore no continuity. In this sense it is evident the importance of 

number of coats to the coating adhere your barrier function. Microscopy allowed estimating pore 

size and the thickness of hardened coatings, identify elements and semi quantitative composition 

and observe the presence of resin within the porosity, in order to interrupt the continuity of the 

pores. While the thickness and porosity of coatings are associated with barrier protection 

mechanism of the steel rebar, the high pH value of coatings is key to activate the repassivation 

protection mechanism (FIGUEIREDO, 1994). The pH of the coatings was measured with 

equipment having glass and calomel electrodes combined with pH range 0 to 14. Ph measurements 

were obtained 15 minutes after mixing of components of coatings. 
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Figure 3. Measurement of thickness of the primer 1 newly applied (wet thickness). 

 

The corrosion intensity (Icorr) was measured by Polarization Resistance technique, where a 

polarization of  10 mV around of the corrosion potential (Ecorr) was applied and the ohmic drop 

of the covering was compensated by means of the positive feedback of the potenciostat between 

the working electrode (reinforcement steel) and the reference electrode (calomel electrode 

saturated). Intensity changes resulting from the application of potential difference were determined 

with at a sweep rate of 10mV/min. Corrosion intensity (Icorr) was calculated using the equation of 

STERN and GEARY (1957). 

To determine the oxygen flow to the surface of the steel rebar inside of the specimen, was measured 

the cathodic current (Icat) at a constant potential-750 mV relative to the saturated calomel electrode 

(ECS). At this level of potential the only reaction possible is the cathodic reduction of oxygen 

(GJORV et al., 1986; ANDRADE et al., 1990). Cathodic intensity (Icat) was measured when the 

cathodic current versus time curve reached the so-called steady state. After 24 hours of test it was 

possible to verify that all the reinforcement coated found their stationary states, as shown in Figure 

4. 

 
Figure 4. Typical curve of the cathodic current versus Time obtained in the tests carried out. 

 

With the value of the Icat as steady-state applied to Faraday's law to get the oxygen flow J(O2)) 

until the reinforcement steel. 

 

J(O2) =
Icat

n∗F
                                                          (Equation 2) (GJORV et al, 1986)     

 

onde, 

J(O2) → oxygen flow in mol/second; 

Icat → cathodic current intensity in the steady-state in amper (A); 

n  → number of electrons consumed (4); 

F  → Faraday constant (96500 coulomb/mol). 

From the oxygen flow (J(O2)), and using the first Fick's law, it has been calculated the apparent 

diffusion coefficient of oxygen (Dap(O2)). 
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Dap(O2) =
J(O2)∗e

S∗Co
                              (Equation 3) (PAGE; LAMBERT, 1987) 

 

Onde: 

Dap(O2) → apparent diffusion coefficient of oxygen in cm2/s; 

J(O2) → oxygen flow in mol/s; 

e  → thickness of the covering in cm (0,7 cm); 

S             → study area in cm2 (5,6 cm2); 

Co → oxygen concentration in a saturated solution of Ca(OH)2 in mol/cm3 

(1,06 x 10-6 mol/cm3, in accordance with PAGE, LAMBERT, 1987). 

 

3. RESULTS AND DISCUSSION 
 

Figure 5 shows examples of images obtained by optical and scanning electron microscopy (SEM). 

During the attainments and evaluations of the images was possible to estimate the thickness and 

pore size of dry coatings applied on the reinforcement steel, as well as assess the interconnectivity 

of the pores. The results are in Table 4. In Table 4 are also the thicknesses of the fresh film applied 

on each coat, total fresh film thickness and the pH of the coatings (primers). 

 

 
Figure 5. Microphotographs obtained by optical microscopy and scanning electron microscopy 

(SEM). 
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Table 4. Results of evaluations with fresh thickness gauge, magnifying glass, optical microscopy, 

SEM and pH. 

Primer 

Wet thickness (µm) Dry 

thickness 

(µm) 

Estimated 

pore size 

(µm) 

Pore 

connectivity 
pH 

1ª 

coat 

2ª 

coat 

3ª 

coat 
Total 

Refer - - - - 7000 (*) 1000 

(***) 

Existence of 

connectivity 

13,15 

1 550 550 - 1100 1000 ≤ 250 Frequently 

interrupted by 

the presence of 

resin and 

overlapping of 

coats 

12,53 

2 700 650 - 1350 800 ≤ 100 Frequently 

interrupted by 

the 

overlapping of 

coats 

11,47 

3 175 175 - 350 330 ≤ 50 Despite the 

low porosity, 

low presence 

of resin and 

high zinc allow 

a lot of 

connectivity 

between the 

pores 

8,48 

4 350 - - 350 500 (**) ≤ 40 Without 

connectivity 

10,91 

5 100 100 100 300 250 ≤ 20 High presence 

of small pores 

with 

possibility of 

connections 

8,31 

    *   The reference mortar was also on the primers 

    ** Greater than the newly applied thickness because the observed area was situated between two 

ribs, where there is an accumulation of epoxy resin. 

    *** Air pores    

    

The values of cathodic current (Icat), corrosion intensity (Icorr), oxygen flow (J(O2)) and apparent 

diffusion coefficient of oxygen (Dap(O2)) obtained in experimental evaluation, are presented in 

Table 5 and Figure 6. 
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Table 5. Results of Icorr, Icat, J(O2) e Dap(O2). 

Primer Icorr (µA) Icat (µA) J(O2) (mol/s) Dap(O2) (cm2/s) 

Refer. 8,000 6,800 1,76 x 10-11 2,07 x 10-6 

1 0,004 0,030 8,00 x 10-13 9,00 x 10-9 

2 1,200 1,500 3,90 x 10-12 4,60 x 10-7 

3 35,000 27,990 7,25 x 10-11 8,55 x 10-6 

4 0,008 0,013 3,00 x 10-13 4,00 x 10-9 

5 0,250 3,010 7,80 x 10-12 9,20 x 10-7 

 

 

Figure 6. Comparison between values of Icorr, Icat, J(O2) e Dap(O2). 

 

Observing Figure 6 it is possible to note that the less-active rebar, protected with primers 1, 2, 4 

and 5, the Icat proved greater than the Icorr. This means that in the reinforcement coated with 

primers of largest barrier effect the anodic dissolution reactions are controlled, while in the cathodic 

regions of these rebars, due to introduction of a potential-750 mV (ECS) and the presence of some 

dissolved oxygen in the vicinity of the rebars, the oxygen reduction reactions end up happening. 

The reinforcement steel protected with the reference mortar and primer 3, after one year of 

exposure to chlorides, recorded Icorr values indicative of that were in the process of corrosion. In 

this case, the high values of Icat registered may indicate that was taking place, also, the reduction 

of iron oxides presents on the surface of these reinforcements. Figure 6 shows that there are still 

major differences between the primers studied with regard to its characteristics of permeability to 

oxygen. The primers 1, 2 and represent barrier protection systems and showed less permeable to 

oxygen than others under the conditions tested. The assessments regarding the porosity and pore 

connectivity shown in Table 4 support and help in the understanding of the smallest values of 

Dap(O2), especially with regard to the primer 4 based in epoxy resin. 

The values found for the flow and diffusion coefficient, relative to the reference (cement mortar 

and sand), were of the same order of magnitude of the found by other authors, as can be seen in 

Table 6. 
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Table 6. Dap(O2) values for cement mortar obtained by various authors. 

Author Dap(O2) (cm2/s) 

Gjorv et al (1986) 1,3 x 10-6 a 3,4 x 10-6 * 

Andrade et al (1990) 2,44 x 10-6 ** 

Kobayashi et al (1991) 084 x 10-6 

Hansson (1993) 2,36 x 10-6 ** 

Figueiredo (1994) 2,07 x 10-6 

*   variation in function of thickness of the covering 

** calculated from data from the authors 

 

The area used for the calculation of the Dap (O2), presented in Table 5, was 5.6 cm2, so the total 

area under study. It is important to note, however, that this may not be correct, since the barrier 

effect exercised by certain coatings reduces the area that effectively is in contact with the 

electrolyte, reducing, thus, the area where it would be possible take place the oxygen reduction 

reaction on the rebar. When there are identical situations (same metal type, same polarization 

imposed (-750 mV, ECS), same environment (reference cement mortar) and same ambient 

conditions) for all specimens, it is expected that the oxygen diffusion coefficient calculated is 

always the same. The differences found, therefore, are probably due to differences in areas where 

oxygen reduction takes place, which, for your time, depend on the greater or lesser barrier effect 

exerted by each primer. Based on the above, it is possible deduce the equations 4, 5 and 6 that can 

be applied to calculate the effective oxygen reduction areas of each case and to compare with the 

reference. 

 

Drefer = Dprimer x(O2)                                               (Equation 4) 

 

 
Drefer(O2)

Arefer∗Co
=

Jprimer x(O2)

Aprimer x∗Co
                                               (Equation 5) 

 

 
Jrefer(O2)

Arefer
=

Jprimer x(O2)

Aprimer x
                                                (Equation 6) 

 

where: 

Drefer (O2) → is the diffusion coefficient of oxygen of the reference mortar; 

Arefer   → is the reference area of the study (5,6 cm2); 

Dprimer x (O2)  → is the oxygen diffusion coefficient of primer studied.; 

Aprimer x → is the effective area of oxygen reduction related to the primer studied in 

                               cm2; 

Jrefer  → is the oxygen flow of the reference cement mortar, in mol/s; 

Jprimer x  → is the oxygen flow of the studied primer, in mol/s. 

 

Table 7 presents the effective area values (Aprimer x) for each primer studied by using the values 

of J(O2) presented in Table 6 and applying Equation 6. 
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Table 7. Effective area values calculated. 

Primer Refer. Primer 1 Primer 2 Primer 3 Primer 4 Primer 5 

Aprimer x 

(cm2) 
5,6 0,03 1,24 23,13 0,01 2,49 

 

The values shown in Table 7 indicate that, with the exception of primer 3, all other exercised at the 

time of measurement of Icat, barrier effect superior to the reference mortar. The value obtained for 

the effective area of the primer 3 probably is due to the registration of the reduction of oxygen on 

the surface of the zinc particles present in this primer. 

Due to corrosion of zinc, both Icorr and Icat show higher values than reference because the reactions 

of anodic oxidation and cathodic reduction get along on the surface of the reinforcement steel and 

the zinc particles. In this case, the primer 3 would be exercising a cathodic protection mechanism 

and not by barrier. 

The values of J(O2) and Dap(O2) presented in Figure 6, as well as the values of Aprimer x, shown 

in Table 7 indicate that the primer 4 (epoxy-based polymer coating) represented the largest barrier 

to the oxygen diffusion. 

As time goes by test, primer can deteriorate. Thus, the calculation of the effective area of contact 

between the electrolyte and the reinforcement steel (Aprimer x) can be used as a parameter to track 

the evolution of primer deterioration over time, if the area obtained to increase each test. 

 

4. FINAL CONSIDERATIONS 
 

The primers can protect the reinforcement for passivation, inhibition, cathodic protection and 

barrier. However, hardly a primer protects the reinforcement steel, along all the time, through a 

single mechanism. In this study it was found that the majority of primers studied was exercising 

barrier effect more than reference mortar. The results obtained with the technique employed in this 

work, show that there are significant differences between the primers with regard to its 

characteristics of oxygen permeability, and those who represent barrier protection system are less 

permeable to oxygen under the conditions tested. The value of the oxygen diffusion coefficient 

obtained in this paper for reference cement mortar are in accordance with the results of other 

researchers, demonstrating the feasibility of the methodology used to measure the diffusion of 

oxygen. The electrochemical technique employed in this work allows to track the performance of 

the primer with the time, watching if there is damage to the primer or not through the monitoring 

of the effective area of oxygen reduction (Aprimer x) on the reinforcement steel. 
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