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influence of viscosity, thus including damping effects. A structural model which
applies these concepts to the analysis of beam structures is developed within the
frame of the finite element method. Tangent and secant damping and stiffness
matrices of the visco-damage constitutive law are deduced. Numerical examples
showing the applicability of the proposed procedure are included.

2 STRUCTURAL MODEL

The structure is modelled using C° one dimensional finite elements based
on Timoshenko’s beam theory, generalized to 3D. The finite elements have three
nodes and six degrees of freedom per node. Due to the fact that the constitutive
model requires information at any point of the element, a secondary discretization
of the cross section of the beam element is necessary. In the plane case, the
discretization consists of layers [see Figure 1(a)).

—
<

EEE
TS

T
N

t
oi

I

s

Layer j

Figure 1(a) Layered 2D Timoshenko beam Figure 1(b) 3D Timoshenko beam element
element. discretized with an orthogonal
mesh.

In the 3D case, the cross section of the beam is discretized by means of
an orthogonal non-homogeneous grid of cells [see Figure 1(b)]. This avoids the
formulation of constitutive laws using sectional forces, which is the traditional
way to solve the problem, but valid only in certain particular cases and having the
additional drawback of lacking precision. The sectional forces are decomposed
point by point, layer by layer, in stress tensors which are corrected by using the
viscous damage model. The corrected sectional forces are subsequently obtained
by integration over the section cells. These forces are then used to compute the
residual forces, in order to iterate for equilibrium if necessary.

The relationships between the sectional variables of the problem and the the
variables corresponding to a certain point belonging to the mentioned section
are described below. A local co-ordinate system is considered for the beam,
its longitudinal axis = forming a right triad with the other two axes. The sign
convention for translations and rotations is the usual in classical mechanics. The
displacement and strain fields are (Onate 1992)
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where the variables have the following meaning: u — displacement vector of a
point belonging to a beam section; &€ — strain vector of a point belonging to a beam
section; u, — displacement vector of the 3D beam finite element corresponding to
the central axis of the cross section; & — generalized strain vector corresponding
to the central axis of the beam; S — geometric transformation matrices relating
cross section variables with point variables.

The equilibrium equations are written now using the virtual work principle.
The internal virtual work L., corresponding to a virtual strain ¢ is expressed
as

Ly = /v &:Taiot dV = /v 5éTSTa£ot dV
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where V is the volume, A the surface of the cross section and ¢ the length of the
beam element. o,,, are the total stresses at the point level, which are defined

in detail later. The total sectional forces g,

(3)

have been also introduced in the
previous equation as
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A sectional density matrix p can be defined, relating the sectional inertia
forces with the acceleration vector %, which is calculated by deriving twice equa-
tion (1) with respect to time

5 :/ S pSdA (5)
A



where p is the material density. Equation (5) can be integrated for any distribu-
tion of material properties over the beam cross-section.

Following standard finite element procedures, the discrete vector of the in-
ternal forces F,; is obtained as

Fu = [B'g, d (6)
and the vector of the inertial forces E is deduced as
T .
F = /g N'pii, do (7)

where N and B are the shape function and strain matrices which allow to write
the following equations:

u,=Na; u,=Na; &= Ba (8)

in which a is the vector of nodal displacements. The internal forces F introduced
in equation (6) will be analyzed in detail in Section 4, after describing the damage
model. Using equations (8), the nodal inertial forces F; become

F;:(/KNTﬁNda;)&:M& (9)

where M is the elemental mass matrix. Using now the expressions of the inertia
and internal forces, the equation of motion is formulated as

Ma(t) + Fin(t) = F(t)

where F(t) is the vector of the dynamic action.

As stated before, the cross section of the beam is discretized using an or-
thogonal grid. Each rectangle of the grid may have different size and different
material. The rectangles are defined by their corners and it is assumed that
all the stresses have a linear variation over each cell of the grid. This implies
solving a system of four equations with three unknowns, defining the equation
of the plane which approximates by minimum squares the variation of each com-
ponent of the stress tensor. The same grid can be used to calculate all the other
characteristics of the cross section.

3 VISCOUS DAMAGE CONSTITUTIVE MODEL

3.1 General concepts

The solution of beam structures subjected to seismic actions beyond the linear
behaviour has been usually treated using: (a) Theories based on plastic hinge
formation (Massonet and Save 1966). This approach has the drawback of ad-
miting that the damage of a structure point is dominated by bending criteria,
which is true only for some very particular structures. (b) Simulation of beam



structures based on the concept of plastification bending moment. This proce-
dure is based on formulating simplified curvature-bending moment constitutive
laws (Clough et al. 1965, Aoyama and Sugano 1968).

The last formulations started from representing the behaviour of materials in
an approximate form based mainly on experimental studies. Today, it is required
that these formulations be thermodynamically sustainable. Between those which
meet this latter requirement, the so-called continuous damage theory is gener-
ally accepted as an alternative in the most complex constitutive formulations
(DiPasquale and Cakmak 1989, Oliver et al. 1990). An application of this model
to the dynamic case can be seen in Mazars (1991) where a column discretized
in plane finite elements, subjected to seismic action, is calculated. The dam-
age models have a rigourous but relatively simple formulation strictly based on
thermodynamics. They deal with the non-linear behaviour by means of one or
more internal variables called damage variables which indicate the loss of secant
stiffness of the material and are normalized to a unit value which corresponds
to maximum damage. Figure 2 shows a unidimensional representation of the
behaviour of a point within a damaged material (Oliver et al. 1990).
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Figure 2 Local damage behaviour.

The model presented herein is a 3D damage constitutive model based on
solid mechanics and it has a single internal variable. Therefore it is a local
isotropic damage model and it is based on Kachanov’s theory (1958). Many
ideas innherent to the model have been taken from the work of Simé and Ju
(1987), Lubliner et al. (1989) and Oliver et al. (1990). This formulation is
a compromise between the complexity implied in modeling concrete behaviour
and the versatility needed when dealing with dynamic problems. This insures
accurate results and low cost solutions for the non-linear problems to be solved.

The numerical treatment of viscoelastic phenomena in materials can be fol-
lowed in detail in Lubliner (1990) and Simé6 and Hughes (1995). The damping
effect of the beam structure was simulatated in this paper by using a model
consisting of a damper placed in parallel with the structure.



3.2 Characteristics of the damage model

Free energy and constitutive law

The model is formulated in the material configuration, for thermodynam-
ically stable problems, with no temperature time variation. For this specific
case the following mathematical form for the free energy is assumed, where the
non-damaged elastic part is expressed as a scalar quadratic function of tensorial
arguments

(¢}
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2m,
In (10) the strain tensor € is the free variable of the problem, d (0 < d < 1) is
the internal damage variable, m, is the density in the material configuration and
C° is the stiffness tensor of the material in the initial undamaged state.

For stable thermical state problems the Clasius Planck dissipation inequality
is valid, whose local lagrangian form is

. 1 .
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This expression for the dissipation rate Zm allows the following two considera-
tions:

a) In order to guarantee the unconditional fulfilment of the Clasius Planck
inequation, the multiplier of & which represents an arbitrary temporal variation
of the free variable, must be null. This condition provides the constitutive law
of the damage problem:

1 . 0¥ _ o fou _ °
—_ —ae—Oéa—mo{ae}—(1—d)C€—C€ (13)

where C° is the secant stiffness tensor.
b) Inserting the last equation into (12), the dissipation is now given by
‘ OV . .
Em=—"—d=Vd>0 14
m ad o — ( )

As U is always positive, equation (14) states that the damage rate d cannot
be negative, i.e. the damage level can only stay constant or increase and never
decrease.

Damage yield criterion

The damage yield criterion is defined as a function of the free energy of the
undamaged material, expressed in terms of the undamaged principal stresses o7,
as



(15)

where the terms of the above equation have the following meaning:
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In these equations (\I/to) represent the part of the free energy developed when
;C L

the traction/compression limit is reached and (+z) = %(|1| + x) is the Mec-
Auley’s function. Taking into account that the traction/compression strengthes

o _o\!/? e
are f, = (‘I’tE )L and f. = <\IISEO>L , respectively, the damage yield function

can be written, according to Figure 3, as

(16)

Figure 3 Damage yield function in the principal plane o1 — o5.

with n = f./f,. This damage yield function, expressed in the non-damaged
principal stresses space, allows a great number of choices. The advantage of the
yield criterium (16) is that any yield function F' can be used always as long as it
is homogenous and of first order in stresses (i.e. Mohr-Coulomb, Drucker-Prager,
Lubliner et al. (1989), etc). The form given by equation (16) fulfils the above
requirements; besides, it is simple and yields satisfactory results within the range
of assumptions made for this model and therefore will be used henceforward
as the scalar expression defining . An expression entirely equivalent to (16)



proposed by Simé (1987) with the aim of simplifying the mathematical deduction
of the damage variable of the model is the following:

F=G(5)-G(f)<0 (17)
where G(x) is a scalar monotonic function to be determined. Its shape will be
chosen conveniently for the subsequent development of the damage model.

Evolution of the damage variable

The following evolution law is used to deduce the damage internal variable
evolution rule:

OF  dG(5)
95 | da \15)

where 7 is a non-negative scalar denominated damage consistency parameter,
analogous to the plastic consistency parameter \ in standard plasticity theory.

Similarly to plasticity, a yielding rule F'=0 and a consistency rule F = 0
for a point subjected to a damaging process are defined. The yielding rule and
the properties of G(x) allow to write G(5)—G(f,) =0, what implies & = f, and
consequently

dG(s) _dG(f,)
ds  df. (19)

From the condition of consistency —that means percistency on the damage yield
surface— and from the properties of function G(y), the following equation is

deduced:

OF. OF, dG(o). dG(£)

95~ af."¢ do df, Jo=0

(20)

and the use of (19) allows to write & = fc. Equation (20) can be now rewritten
and leads to

dG(o). dG(f); _ dG(£) df, ;  dG(f,).dG(a)
dz ° = df. Jo = df, d(d)d_ dd) " ds (21)
Z_ df((df)c)n (22)

Conveniently choosing G(f,) as the function which describes the evolution of the
damage [d = G(f.)], the damage consistency parameter 7 can be expressed as

00 0.

- _ 99 Cé (23)
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Substituting this equation into (18) and (14), the following expressions which
formulate the temporal evolution of the damage and dissipation variables are
obtained:

. dG(o) .

d= 5 (24)
N < () P dG(c) 06 0. _
Em =V G(0) =Y, = °= \Ifo——da —aaoC € (25)

The loading/unloading condition is derivated from the relations of Kuhn-Tucker
formulated for problems with unilateral restrictions: (a) 7 > 0 ; (b) F <0 and
(¢) nF = 0. From these, if F < 0, then the third condition imposes 7 = 0 and,
if 7 > 0, then the same condition requires that F=0.

Definition of function G

From the different alternatives for defining function G(x), the following was
chosen

o =1~ (26)

where G(x) describes a function so that it gives for y = \* the compression initial
yield tension G* and for y — oo the final strength G — 0. Thus, by running
all the deformation path, the point will have dissipated an energy equivalent to
the specific fracture energy. In our work, the exponential function proposed by
Oliver et al. (1990), which is shown in Figure 4, was used

G(x) = x* eA(l_f*h) ; Gx)=1- X 6A<1_;’%> (27)
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Figure 4 Representation of the chosen G(x).

For a uniaxial traction process under monotonically increasing load, the temporal

= o 2
dissipation change is given by (14), with ¢ = no, and ¥ = %&;E & = ;jgo =



6.2

Integrating (14) in time we can calculate the total dissipated energy at

2n?E° Bl ,
the end of the uniaxial traction process as
(o] —2 - 0 —2
max o dG(O’) o
== ds = / ———dG(o 28
t /0'* 2m,n*E° do 7 5* 2m,n*E° ] 28]

and after operating we get
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= = o E 51 (#)
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1
A= mmax, ., le E° (30)
S 00 1
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where ¢* is the initial damage stress. Parameter A is never negative, as the
material must dissipate at least the energy accumulated when reaching the ini-
tial damage stress *. Making the same hypotheses for a uniaxial compression
process and postulating that parameter A must be the same in both cases, it is

deduced that

PP (31)

~Inax
= E°
Se ¥

= =n'Z (32)
The value of traction maximum dissipation Etnax is an input of the problem
and is equal to the fracture energy density g;, parameter derived from fracture

mechanics as g, = G/l , where G, is the fracture energy and [_ is the characteristic
length of the fractured domain (Lubliner et al. 1989).

Tangent constitutive law

From (13), the variation of the stress tensor and finally the unsymmetric
tangent constitutive tensor C* of the damage model can be deduced as

o =C e+ 6Ce; 6C = %&z = -C°6d (33)
— = dG(9) 10 97 | o 5e — :
b0 =C"b6e=|(1-d)I-——+0">—|Cé=(I-D)C"% (34)

where

10



C’=(I-DC’

In these equations, I is the identity matrix of the same order as C° and D is a
non-symetric matrix, depending only on the stress vector ¢° in the undamaged
material, as the damage variable is also implicitely related with the mentioned
stress vector through the equivalent stress 7.

3.3 Visco-elastic effects

The effect of damping on the beam structure is now considered by placing
a damper in parallel with the structure. Both the structure and the damper
undergo the same deformation €, so that the total stress g, of the system will

be the sum of a structural stress ¢ and a viscous stress a.

o 1.€.

G =0 + 0, =C e+ ne (35)

where the secant viscous constitutive matrix 5= is defined by

. n s _ s
"= g C =aC (36)
In this equation 7 is the onedimensional viscous parameter and « is the relaxation
time, defined as the time needed by the structure-damper system to reach a
stable configuration in the undamaged state.

With this assumptions, the behaviour of the system under virtual variations
in strains and strain velocities can be obtained as

60, =60+ 60, = C 6 + a(C 66+ 6C¢) = C"6e + o(C 66— C"¢ 6d)  (37)

Introducing g = aC’€& and using relation (34), the visco-elastic incremental
strain-stress relation is obtained as

sq,, = C., b€ +aC 6¢ = (I — D, )C" s + aC" 8¢ (38)

where D). takes the following value:

do

Jda°

ao—{—a?)@

Vvis

(39)

4 APPLICATION OF THE VISCO-DAMAGE CONSTITUTIVE
LAW TO THE STRUCTURAL MODEL

The secant and tangent form of the visco-damage constitutive model are
deduced in this section. The first one is required because it is used in the in-
tegration of the mentioned constitutive model; the second one allows to deduce
the constitutive tensor needed in establishing the tangent stiffness and damping
matrices.

11



4.1 Secant equilibrium law

Considering equation (35), the sectional forces —equation (4)— can be ex-
pressed as

&, = / S'o  dA = / S"CoedA + / S peedA (40)
A A A
where

o= [ §'Ceas, a, = | §"neaa (41)
A © A

Substituting now & from equation (2) and its derivative in (40), the sectional
forces become

G = ([ S'C'sd4)e+ (| s'wsaa)é (42)
A A
This equation can be written in the following compact form
6, =C&+1¢ (43)
where the definitions

o = /,4 S'Csdd, i = /A S'pSdA

have been used. Recalling now equation (8), the derivative of the generalized
strain vector is € = Ba and the sectional forces can be written in the following
form:

6., =C Ba+iBa (44)

Finally, the vector of the internal forces —equation (7)— can be rewritten as
T T a3 L .
Fim:/eB qotdx:(/gB Cde)a+(/€B #*Bde)a (45)

Introducing the notations

T 2.5 ' T A

Ko = [ B C'Bda, D.c= [ B'iBdo

equation (45) is rewritten as

Fint = KSEC a+ DSEC a (46)

12



4.2 Tangent equilibrium law

The variation of the sectional forces can be expressed starting from equation
(4) in the following form:

56, = / S g, dA (47)
A

Writing now the variation of the total stresses o of the system using the equations

(37) and (38)

§a,,, =60+ 8a, = (I — D, )C"be + aC" ¢ (48)
equation (47) becomes
64, = [ 8" [(I-D,)C"|seda+ [ §"aC e da (49)
A A

Substituting € given by (2) and its derivative in (49), the variation of the
sectional forces takes the form

66, = [[ §'I-D,)C"sdA] e+ [ §"aC saa]6é (50)
A A

which, using similar developments as those used in Section 4.1, can be written
as

6., = C°Béa + 7°Béa (51)

tot

where

~

CD:/ S"(I-D,)C°SdA, f,s:/ S"aC" S dA (52)
A Vi1s A

Using these equations, the variation of the internal forces vector is expressed in
the following form

T T ~ D T .
6Fint:/eB 66, dz = (/gB C°Bde) ba+ (/BB #°Bde)sa  (53)
Introducing the notations

Ko :/KBTC'DBd:c, Do :/ﬁBTr}SBd:c

equation (53) is finally written as

6Fint — KTAN ba =} DTAN oa (54)



5 GLOBAL DAMAGE INDICES

The starting point for deducing a global structural damage index is equation
(10), which relates the damaged part of the free energy ¥ with the non- damaged
elastic free energy W . In order to find a global index, a similar expression is
deduced by integr atlng (10) over the entire volume of the structure as follows:

U= (1-d)¥, =W, = /\Ide: / (1-d)¥,dV=(1-D)W’ (55)
\% \%

where D is the global damage index, TV =/, ¥,dV is the total potential energy
of the structure considered as undamaged and TV is the total potential energy
corresponding to the actual damaged state. Solving equation (55) for D, the
following final relation is obtained:

W, [,%,dV-[,(1-d)¥ dV [ d¥, dV

D=1-—2= =
W J, ¥, dV J, ¥,dV

(56)

If a damage index for a part or member of the structure is needed (such as floors,
columns, etc) the integration will be performed only over that specific part.

In a finite element scheme, the damage index D, of a beam cross-section is
given by a similar e*cplessmn obtalned by 1ntegrat1ng (10) over the cross-section

of the beam, with U = 76 a’ and € = S¢, i.e.

€ &0 A T L o
DP_]‘ - éTafot ) T ot :/.AS Tt dA:/‘A(]'—d)S oiotdA (57)
tot

where & and g, are the generalized strains and stresses in that beam cross-
section, respectively.
In general, the global damage index will take the following form:

€ ©T .
(Z)a()Tfe(e) BY"5%ds
D=1--

(z)a@ fe)B g0 9 ds
€

(58)

where the sum is performed over the beam elements for which the global damage
index is calculated. This damage index is similar to that proposed by DiPasquale
and Cakmak (1989).

6 NUMERICAL IMPLEMENTATION

The implementation process of the visco-damage model in a finite element
computer program is explained in Tables 1, 2 and 3. The block scheme of Table
3 is called within Table 2 for evaluating the constitutive characteristics of the
model. Table 2 is called in Table 1, within the point B.III, to compute the
sectional forces and the tangent and secant constitutive tensors.

14



Table 1 Nonlinear time integration scheme (Newmark).

» A. First iteration (passage from time instant i to time instant i + 1)
> Update relevant matrices

Keco = [, B"C°Bdz; Keyw = [, B C°Bde; Dge = [, B i° Bdz; Drax = [, B 4°Bd

> Compute

K:‘/j&_ﬁM+5J/EDTAN+KTAN

-~ (1) [ 1 ; 1 %
By =F(i,) + M| 57 i+ (ﬁ = l)a‘}

— (Drax = Dssc) &, — Dran [(1 ~g)act (1-55)a a] —Kszoa,

> Calculate the first aproximations for the time instant 7 + 1:

a2 =1 _pa® -4 - i—l)a
gA T AL 28 "
(1) 21 B(1)
Aa_ =K F, A | # AW e
a ., i1 a. . = BAL Aa‘+‘+<1_,8) a,+(1-— 25) At a
atrl = Aaf:)l + a,

» B. Second and subsequent iterations (seeking the equilibrium for the time instant i 4 1)
Loop over global convergence interations: j"* iteration
> |. Update relevant matrices

Keso = [, B"C°Bdz; Koux = [, B C°Bdz; Depc = [, B' 9°Bde; Dyun = [, B °Bda

KIﬁTItQ M+ﬁ_’YEDTAN+K:TAN

£ (i+1) .. (3) . () (7)
F.‘+1 = E, (t1+1) -M Cigr — Depo Cezi — Ksee A

> IL. If the residual forces norm ||f4‘(:l>|| < ¢, end of iteretions and beginning of the computations in

the next time step. If not, proceed calculating:

. (G41) 1 (7+1) o (3)
a = ba +a
i+1 ﬁAt2 i+1 i+1
j+1 ~ 1 ~ G+
5ot = kT FUTY .G+ v G+ L)
i1 i41 a = ——9%a +a
1+1 ﬂ At i+1 i+1
(7+1) (7+1) (1)
a. . = 5al+1 +a.,

> lll. Compute the sectional forces and the tangent and secant constitutive tensors

Cross sectional forces decomposition at each Gauss point (see Table 2)

> IV. Back to step |




Table 2 Cross-sectional forces decomposition for each Gauss point.
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7 NUMERICAL EXAMPLES

Example 1

The simulation of the evolution of the damage process in a reinforced concrete
plane frame (Figure 5) subjected to dynamic loading is first analyzed.

The frame 1s 9 meters high and 6 meters wide and has three levels. The
columns have a 30 cmx 30 cm cross-section of reinforced concrete with a 4.35%
steel ratio. The horizontal beams are 40 cm thick and 30 cm wide, with a steel
ratio of 5.3%. The structure was discretized in 45 quadratic three-noded beam
finite elements having two Gauss points each. Thus, the resulting dynamic
model has 87 nodes with three degrees of freedom per node. Each element is
one meter long and has the cross-section divided in 20 layers of equal thickness.

16



Table 3 Visco-damage constitutive model at layer level n.

1. Input: strains and strain velocities

(1) . (7)
—— €. €

2. Compute the predicted non-damaged stresses for the load step ¢ and the global conver-
gence iteration j

3. General form to integrate the damage constitutive equation (Euler Backward Scheme)
Loop over inner convergence iterations: k' iteration

7,0 ()
for: k=1 —= (Tf ' = (¢°)

@x) (3,k)

€3 o, =(1-d,

_(3.%) ( (j»k)>
g, = g,

If F(o,d) <0 [equation (17)] = no damage —> GOTO 4
Y

else

(,k=1)

),

Qi

damage

(7,k)

@a)" = @0 ()

@) = @] +(@aa)”
. (%)

(D), = [d1+

(c),

k=k+1 Gobackto ®

dG(7)
7
(3,k) (3,k)

= |- D,)C°]

vis

0&]

o o
(U +Uvis) ® aa,o ?

4. Compute the visco-elastic part of the stresses and the total stresses

(3,%)
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Figure 5 Geometry of the studied frame.  Figure 6 Synthetic seismic accelerogram
corresponding to case (a).

The 2nd and 19th layer are made of steel and the rest of concrete. The steel
ratio was controlled by modifing the width of the steel layers. The state of the
material is checked at the interface between layers and afterwards interpolated
linearly across each layer. This gives 40 check points per cross-section in each
Gauss point. The materials have the following properties: (a) steel E =
2.1 x 10° daN/em?®, 0° = 4,200daN/cm?, v = 0.25, p = 8g/cms3; (b) concrete
E = 2.0 x 10° daN/cm?, ¢° = 300 daN/cm?, v = 0.17, p = 2.5 g/cm3.

The equations of motion governing the dynamic behaviour of the structure
have been solved using the Newmark algorithm with # = 0.25 and v = 0.5.
The initial stiffness method was chosen as nonlinear solution scheme due to
the negative definition of the tangent stiffness matrix when softening effects
occur. The time step used was a thirtieth of the fundamental period of the
structure. As the integration of the constitutive law can be done analytically,
an explicit formula [equation (20)] was used for the local damage index thus
reducing remarkably the solution cost.

The structure was calculated in two load cases: (a) subjected to a synthetic
earthquake accelerogram (Figure 6) having a predominant frequency of 4 Hz and
a maximum amplitude of 0.175g and (b) subjected to the same accelerogram
with doubled amplitudes. This allows the simulation of the structural behaviour
firstly in a less damaged state [Figure 7(a)] and finally in a generally collapsed
state [Figures 7(b) and 8].

Figures 7(a) and 7(b) show the distribution of the sectional damage as given
by equation (53). The damage is located at the joints of the columns with the
floors, this being precisely the expected damage localization for this type of
structure and load. As the frame is to fail mainly by damage of the columns
at their joint with the base floor, the damage plots confirm this prognosed be-
haviour too. The results of Figure 9(a) correspond to the undamped case, while
in those of Figure 9(b) the damping effects are included through a value for the
relaxation time « = 0.001s.

The results of Figure 9 show that the maximum sectional damage D, at
the base of the columns is practically equal to the global damage of the entire
structure. This fact ratifies the choice of the global damage index as the ratio
between the potential energy which the structure cannot undertake in the dam-
aged state and the potential energy that the structure should undertake if it were
undamaged. The first floor damage is slightly higher than the global damage
of the structure as this floor is the most affected, while the second and third
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Figure 7 Distribution of sectional damage D, all over the structure. Case (a)
celerogram with an amplitude of 0.175g. Case (b), accelerogram with an

amplitude of 0.35g.
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Figure 8 Deformed configuration at collapse.
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floor;—-—third floor. Case (a), damping not considered. Case (b), damping
considered, relaxation time o = 0.001s.

19



L2 3 4
T
|

-1

Displacement (cm)
0.

-2,

-3,
T
L

Figure 10 3rd floor displacements, with and without damping.

floors follow in decreasing order as the damage reduces with height. The effect
of viscous damping is reducing amplitudes and damage levels (Figures 9(b) and
10). This is in agreement with the real behaviour of structures in a dynamic en-
vironment, where the materials display increased strengths and nonconservative
energy dissipation.

Example 2

The described methodology has been also used to simulate the behaviour of
a 3D frame subjected to the same synthetic accelerogram of Figure 6, acting in
the a direction.

Figure 11 Deformed shapes of the frame at different time instants during the earth-
quake.

The frame has two floors, is 6 m high and has a squared base of 6m. The
columns have a 30 cmx30cm squared reinforced concrete cross-section. The
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Figure 13 Evolution of the global and floor damage indices. global;—-—columns
of the first floor;-——-beams of the first floor;--——- second floor.

horizontal beams are 30 cm thick and 15 cm wide. All the bars have an 8% of
steel, located symetrically at the corners, with a concrete cover of 3cm. The
density of the concrete has been increased, to take into account the effect of
the inertia of the entire floor. The beams placed at one of the sides of the
structure (vertical plane y = 6m) have double density, thus the effect of the
global structural torsion being simulated.

The structure was discretized in 48 quadratic three-noded beam finite ele-
ments with two Gauss points each and the resulted dynamic model has 92 nodes
with six degrees of freedom per node. The elements corresponding to the columns
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are one meter long and those corresponding to the beams are two meters long.
All the cross-sections are discretized by means of a 10 x 10 grid, appearing thus
400 grid corners per Gauss point at which the state of the material is checked.
The materials have the same properties as in Example 1.

The equations of motion have been solved using Newmark’s step by step
algorithm for 8 = 0.25 and v = 0.5. Four deformed shapes of the structure
during the earthquake can be seen in Figure 11. Figure 12 shows the distribution
of the sectional damage in the structural elements. The beams are damaged first,
due to their higher inertia and smaller stiffness. The columns are highly damaged
at their lower part, as expected. It can be observed in Figure 13 that both floors
are damaged almost simultaneously and that the three compared damage indices
have a similar time evolution.

8 CONCLUSIONS

The visco-damage constitutive model developed has proved to have good
performance in describing the nonlinear behaviour of reinforced concrete building
structures under dynamic load. The model has been incorporated in a finite
element scheme using 2D and 3D Timoshenko beam elements discretized in a
grid of rectangles of concrete and steel in order to approximate the nonlinear
behaviour of reinforced concrete beams. A global damage index was deduced
from the local damage index supplied by the constitutive model.

A reinforced concrete building structure, under both non viscous and vis-
cous regimes, subjected to seismic actions, has been solved and satisfactory
results were obtained. It is shown that the effect of considering the viscosity
is of great importance. An interesting property of the global damage index is
that of allowing the decision of the state of the structure in what regards its
failure mechanisms. The model permits the identification of the mechanism of
collapse by observing the local damage indices and continuous comparison with
the global one. When, during a damaging process, the global index gets close
to the maximum local damage and the rest of the points of the structure stop
degradating, the critical points of the structure has been indentified. The failure
of these points leads to the formation of a failure mechanism, i.e. collapse of the
structure. This is important from an engineering structural retrofitting point of
view.

The model, in its present form, has two major drawbacks: first, it does not
provide information about remanent deformation, which is a well-known feature
of non-linear materials and second, it does not discriminate between traction and
compression damage, thus being unable the simulate “crack closure”. These two
problems are currently under study and solutions are already in sight.
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