1. ECN 605030

Proj. — ECN

2. ECN Category (mark ope)	 Originator's Name and Telephone No. 	, Organization, MSIN,	4. USQ Requi	red?	5. Date
Supplemental []	G. W. Ryan, 8M100, A3-37, 376-5114		[] Yes [X] No		9/13/96
Change ECN []	6. Project Title/No.	/Work Order No.	7. Bldg./Sys	./Fac. No.	8. Approval Designator
Temporary [] Standby []	TUDS FSAD	Dovelopment	Tank Farms		Ν/Δ
Supersedure []	WKS TSAR Development		10 Deleted ECH No(a)		11 Polated PD No
Cancel/Void []	(includes sheet n	no. and rev.)	io. ketated	ECH HO(S).	II. Ketated Po No.
	WHC-SD-WM-(CN-004, REV. 0	N/	A	N/A
12a. Modification Work	12b. Work Package No.	12c. Modification Work	Complete	12d. Restor tion (Temp.	ed to Original Condi- , or Standby ECN only)
[] Yes (fill out Blk. 12b)	N/A	N/A		N/A	
[X] No (NA Blks. 12b, 12c, 12d)		Design Authority/Cog. Signature & Da	Engineer ate	Design A S	uthority/Cog. Engineer ignature & Date
13a. Description of Change	;	13b. Design Baseline	Document? [] Yes [)	(] No
Full replacement o	f Revision O wit	h Revision 1 docum	ment.		
NOTE: ACCORDING TO SECTION WP-6.7, REV. 0 OF WHC-CM-6-32, SAFETY ANALYSIS AND NUCLEAR ENGINEERING WORK PROCEDURES, CALCULATION NOTES ARE USED TO DOCUMENT THE ORIGINATOR'S ANALYSIS BUT ARE NOT TO BE USED TO AUTHORIZE ACTIVITIES OR JUSTIFY FACILITY MODIFICATIONS, OR CHANGES TO AN AUTHORIZATION BASIS, SAFETY BASIS, OR DESIGN BASIS.					
14a. Justification (mark	one)				
Criteria Change [X]	Design Improvement	[] Environmental		Facili	ty Deactivation []
As-Found	Facilitate Const	[] Const. Error/C	Dmission []	Design	Error/Omission
Minor errors discovered in the Revision O document have been corrected in the Revision 1 issue.					
15. Distribution (include See attached distr	name, MSIN, and no. o ibution list.	f copies)	SE	19 19 date: sta: 15	HANFORD RELEASE
L			L	1	

A-7900-013-2 (05/96) GEF095

					[1. ECN (use r	o. from	pg. 1)	
ENGINEERING CHANGE NOTICE			Page 2 of 2		60	5030	-			
15. Design	16. Cost Imp	act					17	. Schedule Impa	act (days))
Verification Required	E	NGINEERING		со	NSTRUC	CTION				
[] Yes	Additional	[]	\$	Additional	i	[] \$	Im	provement	n	
[X] No	Savings	ĥ	\$	Savings		i ŝ	De	lay	ii –	
18. Change Impact R	eview: Indic	ate the re	lated docu	ments (other th	an the	e engineering d	ocum	ents identified	on Side	1)
SDD/DD	Tected by the	change de	Scribed in Seismic/S	Stress Analysis	er the	е аттестей фосца Г1	Tan	k Calibration Manua	k IY. M	C1
Functional Design Criteria	• []		Stress/D	esign Report		[]	Неа	Ith Physics Procedu	Ire	ii -
Operating Specification	[] []		Interface	Control Drawing		[]	Spa	res Multiple Unit Li	sting	11
Criticality Specification	LJ LJ		Calibratio	n Procedure		ri	Tes	t Procedures/Specif	lication	H
Conceptual Design Report	ری ۲۱ ۳		Installatio	on Procedure			Con	nponent Index		H
Equipment Spec.	ri I		Maintena	nce Procedure		ri .	ASI	ME Coded Item		Ы
Const. Spec.	ři		Engineeri	ng Procedure		ři –	Hur	nan Factor Conside	ration	ii –
Procurement Spec.	ĥ		Operating	Instruction		ři	Con	nputer Software		ñ
Vendor Information			Operating	Procedure		ri .	Elec	tric Circuit Schedu	le	ii –
OM Manual	ĥ		Operation	nal Safety Requirem	ent	ii	ICR	S Procedure		н
FSAR/SAR	ដ		IEFD Dra	wing		ĥ	Pro	cess Control Manua	ıl/Plan	ñ
Safety Equipment List	ii ii		Cell Arra	ngement Drawing		n	Pro	cess Flow Chart		ñ
Radiation Work Permit	ii		Essential	Material Specificati	on	ñ	Pur	chase Requisition		ñ
Environmental Impact St	atement []		Fac, Proc	. Samp. Schedule		ii –	Ticl	der File		й
Environmental Report	i i	[] Inspection Plan			ĥ	NO	NE		Îx]	
Environmental Permit	[]		Inventory	/ Adjustment Reque	st	ii -				้ก่
N/A	Documents: (he signing or nber/Revision	NOTE: Doc ganization	uments (): has been Doo	sted below will notified of oth :ument Number/Re	not b ner af evision	e revised by th fected document n	is Ei s li: D	CN.) Signature sted below. ocument Number	s below Revision	
20. Approvals										
	Signature			Date		Sign	atur	e	D	ate
OPERATIONS AND ENGI	NEERING	2			ARCH	ITECT-ENGINEER				
Cog. Eng. G. W. Ry	an / ll f	m 1	1	9/18/96	PE					
Cog. Mgr. D. S. Le	each NSO	Seach	,	9/18/96	QA					
QA.					Safe	ty				
Safety					Desi	gn				
Environ.		10			Envi	ron.				
Peer Reviewer. A.∨	Savino Al	Hano		9/18/96	Othe	r				
					DEPA	RTMENT OF ENERG	<u>iY</u>			
					Sign trac	ature or a Cont ks the Approval	rol Sig	Number that nature		
					ADD I	TIONAL				

Calculation Notes That Support Accident Scenario and Consequence Development for the Subsurface Leak Remaining Subsurface Accident

G. W. Ryan Westinghouse Hanford Company, Richland, WA 99352 U.S. Department of Energy Contract DE-ACO6-87RL10930

EDT/ECN:	605030	UC: 510	
Org Code:	8M100	Charge Code:	N1FC3
B&R Code:	EW3120071	Total Pages:	117

Key Words: transfer, pipe, pipeline, piping, tank farms, TWRS

Abstract: This document supports the development and presentation of the following accident scenario in the TWRS Final Safety Analysis Report:

Subsurface Leak Remaining Subsurface.

The calculations needed to quantify the risk associated with this accident scenario are included within.

TRADEMARK DISCLAIMER. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

Printed in the United States of America. To obtain copies of this document, contact: WHC/BCS Document Control Services, P.O. Box 1970, Mailstop H6-08, Richland WA 99352, Phone (509) 372-2420; Fax (509) 376-4989.

Approved for Public Release

(1) Document Number RECORD OF REVISION WHC-SD-WM-CN-004 Page 1 (2) Title Calculation Notes That Support Accident Scenario and Consequence Development for the Subsurface Leak Remaining Subsurface Accident CHANGE CONTROL RECORD Authorized for Release (3) Revision (4) Description of Change - Replace, Add, and Delete Pages (5) Cog. Engr. (6) Cog. Mgr. Date (7) New document released via EDT #602621 0 G. W. Ryan D. S. Leach on 7/12/96. 7/10/96 7/10/96 Full replacement of Revision 0 with G. W. Ryan 1 D. S. Leach 9/13/96 De Kae Revision 1 via ECN #605030. RS 9/23/96

CALCULATION NOTES THAT SUPPORT ACCIDENT SCENARIO AND CONSEQUENCE DEVELOPMENT FOR THE SUBSURFACE LEAK REMAINING SUBSURFACE ACCIDENT

REVISION 1

Tank Waste Remediation System Final Safety Analysis Report Project Safety Analysis & Nuclear Engineering

September 1996

This page intentionally left blank.

WHC-SD-WM-CN-004 REV 1

CONTENTS

1.0	INTRODUCTION AND PURPOSE	116 116 116 116 116 116 116 116 116 116
2.0	PEER REVIEW CHECKLIST	116
APPEN	NDICES	
A	BREMCALC DATA	116
В	MICROSHIELD OUTPUT FILES	116
	Case 1 (DOS File: CASE6SEN.MS4) Output File for Direct (Line-of-Sight Dose Rate @ Z = 0 m, 5 m - 20 m) 116) 116) 116)
	Case 2 (DOS File: CASE7.MS4) Output File for Direct (Line-of-Sight) I Rate @ Z = 0 m	ose 116 116) 116) 116) 116) 116) 116)

CONTENTS (cont.)

	Case 3 (DOS File: CS8100BR.MS4) Output File Bremsstrahlung Dose Rate @ Z = 100 m	for 	Direct (Line of Sight) 53 of 116
C	MICROSKYSHINE OUTPUT FILES	•••	
	Case 1 (DOS File: CASE6SEN.SKY) Output File @ X = 5 m - 20 m. Case 1 (DOS File: CS6BRSEN.SKY) Output File Bremsstrahlung Dose Rate @ X = 5 m - 20 m. Case 1 (DOS File: CASE6100.SKY) Output File @ X = 100 m. Case 1 (DOS File: CS6100BR.SKY) Output File Bremsstrahlung Dose Rate @ X = 100 m.	for for for for	Skyshine Dose Rate
	Case 2 (DOS File: CASE7SEN.SKY) Output File @ X = 5 m - 20 m	for for for for	Skyshine Dose Rate
D	INFORMATION VALIDATION FORMS		105 of 116

LIST OF TABLES

1.5-1. The Radionuclide Concentrations of a Mix of 67 vol% SST Liquids
and 33 vol% SST Solids are Calculated 10 of 116
1.6-1. Photon Production Rates (photons/sec) for ⁹⁰ Sr/ ⁹⁰ Y in Both Water
and Concrete Are Shown
1.6-2. Summary of Input Parameters for Case 1 - A Horizontal Cylinder
is Created From the Leak
1.6-3. Summary of Input Parameters for Case 2 - A Vertical Cylinder is
Created From the Leak
1.6-4. Summary of Input Parameters for Case 3 - A Sphere is Created
From the Leak
1.7-1. Summary of Dose Rates For the Three Geometries With the
Receptor Directly Above Leak Point
1.7-2. The 12 Hour Dose For the Cylindrical Geometries are Below the
Risk Guidelines When the Receptor is Located 16 m (52.5 ft) From
the Leak Point
1.7-3. The 12 Hour Dose For the Cylindrical Geometries are Well Below
the Risk Guidelines When the Receptor is Located 100 m (328 ft)
From the Leak Point

WHC-SD-WM-CN-004 REV 1

LIST OF TERMS

FSAR	final safety analysis report
HEDOP	Hanford Environmental Dose Overview Panel
rem	radiation effective man
SST	single-shell tanks
Sv	sievert
TWRS	Tank Waste Remediation System
WHC	Westinghouse Hanford Company

LIST OF TRADEMARKS

- BREMCALC BREMCALC a computer program for calculating electron and positron Bremsstrahlung
- MS-DOS MS-DOS is a trademark of Microsoft Corporation
- MICROSHIELD MICROSHIELD is a registered trademark of Grove Engineering, Inc., Rockville, MD
- MICROSKYSHINE MICROSKYSHINE is a registered trademark of Grove Engineering, Inc., Rockville, MD

WHC-SD-WM-CN-004 REV 1

CALCULATION NOTES THAT SUPPORT ACCIDENT SCENARIO AND CONSEQUENCE DEVELOPMENT FOR THE SUBSURFACE LEAK REMAINING SUBSURFACE ACCIDENT

1.0 INTRODUCTION AND PURPOSE

This document supports the development and presentation of the following accident scenario in the TWRS Final Safety Analysis Report (FSAR):

Subsurface Leak Remaining Subsurface.

The calculations needed to quantify the risk associated with this accident scenario are included in the following sections to aid in the understanding of this accident scenario.

Information validation forms citing assumptions that were approved for use specifically in this analysis are included in Appendix D. These forms are also on file with TWRS Project Files.

1.1 ACCIDENT SCENARIO DESCRIPTION

The hazard analysis performed for the tank farms identified causes that could result in a low energy subsurface leak that results in a subsurface plume that does not create a surface pool. Some of the causes considered included waste leaks from cracked or broken pump, valve, and related transfer pits, single-walled and encased line leaks during waste transfers (due to corrosion, structural fatigue, or other factors) or waste transfers from processing facilities to either DCRTs or diversion boxes. Also considered were the structural failures of either single-shell or double-shell tanks, DCRTs and associated containments.

Evaluation of the causes show that the radiological dose consequences associated with a subsurface plume created as a result of a low energy subsurface leak would be maximized if a leak developed during the transfer of waste slurry through single-walled, direct-buried transfer piping. This scenario is considered bounding since a leak in the transfer pipe will go directly into the soil (i.e., no encasement) and there is limited soil shielding provided due to the transfer line being direct-buried at only 1 m (3.3 ft).

In the scenario analyzed, waste slurry is transferred through a single-walled, direct-buried pipe at a maximum flow rate of ~379 L/min (100 gal/min) for 24 hours. The leak develops in the transfer pipe and releases 5% of the total volume transferred (i.e., 27,250 L [7,200 gal]). The leak volume of 5% and the assumed maximum flow rate are based on engineering judgement. Larger leak volumes may create a surface pool, which is analyzed separately (Hall 1996). The leaked waste in the scenario was assumed to create a subsurface plume and not a surface pool, thereby increasing the likelihood that the condition would remain undetectable to the facility worker.

Failure of the transfer pipe may be due to factors such as the age of the pipe, corrosion, abrasion, broken/cracked welds, etc.

1.2 ACCIDENT FREQUENCY DEVELOPMENT

The prior operational history of the tank farms and the age and condition of the transfer lines were the factors considered when a frequency of *anticipated* was qualitatively assigned to this accident scenario.

The consequences associated with this accident scenario are compared to the risk acceptance guidelines for *anticipated* accidents as provided in WHC-CM-4-46, Rev. 1.

1.3 ASSUMPTIONS

The following assumptions are considered in the analysis of this accident scenario:

- A. The subsurface leak/subsurface plume does not create a surface pool.
- B. The centerline of the single-walled buried transfer pipeline is located 1.0 m (3.3 ft) below the soil surface.
- C. The leak volume created is based on a leak of 5% of a 100 gal/min flow rate for a time period of 24 hours. Calculating produces:

(100 gal/min)(60 min/hr)(24 hr)(0.05) = 7,200 gal (27,250 L) over 24 hours.

This is equivalent to $(7,200 \text{ gal})/(7.48 \text{ gal/ft}^3) = 962.57 \text{ ft}^3 \text{ of}$ waste leaked. The metric equivalent volume is 27.25 m³.

- D. The source term used in this scenario is made up of 67 vol% SST Liquids and 33 vol% SST Solids (Cowley 1996 and Van Keuren 1996). The assumed density of this aqueous mixture is 1.4 g/cm³ (87.5 lb/ft³). This is a reasonably conservative source term for this accident scenario since only SST Liquids and Solids are transferred through single-walled buried transfer pipes.
- E. The total radiological dose to the onsite receptor from this accident scenario consists of the direct (line-of-sight), skyshine, and associated bremsstrahlung radiation components.

There is no inhalation dose since the surface soil is not wetted by leaked waste (i.e., no resuspension of waste particles).

The offsite receptor receives insignificant dose from this accident scenario.

- F. The receptor dose starts after the full subsurface plume has been created.
- G. There are no toxicological exposure consequences to either the onsite or offsite receptors from this accident scenario.
- H. The waste leak is assumed to contaminate the soil up to 15.24 cm (6 in) below the soil surface. Six inches of soil cover was

assumed since lesser soil cover would likely be detected or form a pool, which is analyzed separately, and greater soil cover would provide more shielding from the source and, therefore, reduce the direct, skyshine, and bremsstrahlung radiation dose consequences.

I. The density of the soil is assumed to be 1.6 g/cm³. This value is consistent with calculations and models used in WHC-SD-WM-SARR-016, Rev. 2.

Higher density soils can be found on the Hanford Site, however, the density assumed here is considered representative and will provide conservative radiological consequence results.

J. The soil porosity (void fraction) is assumed to be 0.40. These pores/voids are where the leaked waste resides.

A soil with a lower porosity (i.e., 0.30) was also investigated in the analysis of this accident scenario. It was found that developing the consequences with a lower void fraction would not result in conservative dose consequences since the volume of contaminated soil would be larger and therefore provide more self-shielding.

- K. No credit is taken for mass material balances during the waste transfer.
- L. The volume occupied by the transfer pipe is not subtracted from the total volume when calculating the total volume of soil contaminated by the waste leak.

1.4 METHODOLOGY

Line-of-sight and skyshine dose rate contributions were calculated using the MICROSHIELD (Grove 1992) and MICROSKYSHINE (Grove 1987) computer codes, respectively. WHC-SD-WM-SARR-016, Rev. 2 contains a description of the calculational methods used in the MICROSHIELD (line-of-sight contribution), MICROSKYSHINE (skyshine contribution), and BREMCALC (bremsstrahlung source term generation) computer codes.

1.5 RADIOLOGICAL SOURCE TERM

The source term used in this analysis is consistent with Assumption D. Evaluating the constituents of the SST Liquids/Solids source term (Cowley 1996) to develop radionuclide concentrations of 67 vol% SST Liquids and 33 vol% SST Solids produces the results presented in Table 1.5-1.

The results for specific radionuclides (i.e., Cs-137, Eu-154, Sr-90, and Y-90) from Table 1.5-1 are used (along with the total contaminated soil volume) to develop the dose consequences to the onsite receptor. Cs-137 is decayed by MICROSHIELD and MICROSKYSHINE to obtain the correct quantity of the Cs-137 daughter product, Ba-137m.

	SST LIQUIDS	SST LIQUIDS	SST SOLIDS	SST SOLIDS	COMBINED CONCENTRATION
NUCLIDE	CONC.	CONC. (67 vol%)	CONC.	CONC. (33 vol%)	67 vol% SST Liquids & 33 vol% SST Solids
	Bq/L	Bq/L	Bq/L	Bq/L	Bq/L
C-14	1.0 E+05	6.7 E+04	1.2 E+05	4.0 E+04	1.1 E+05
Co-60	9.5 E+06	6.4 E+06	4.2 E+08	1.4 E+08	1.4 E+08
Se-79	N/A	N/A	1.7 E+04	5.6 E+03	5.6 E+03
Sr-90	1.1 E+10	7.4 E+09	1.6 E+12	5.3 E+11	5.4 E+11
Y-90	1.1 <u>E</u> +10	7.4 E+09	1.6 E+12	5.3 E+11	5.4 E+11
Tc-99	1.7 E+07	1.1 E+07	1.2 E+10	4.0 E+09	4.0 E+09
Ru-106	9.9 E+02	6.6 E+02	7.2 E+04	2.4 E+04	2.5 E+04
Sb-125	3.4 E+04	2.3 E+04	1.8 E+08	5.9 E+07	5.9 E+07
I-129	1.0 E+04	6.7 E+03	6.4 E+06	2.1 E+06	2.1 E+06
Cs-134	1.2 E+05	8.0 E+04	1.4 E+06	4.6 E+05	5.4 E+05
Cs-137	2.2 E+10	1.5 E+10	1.0 E+11	3.3 E+10	4.8 E+10
Ce-144	9.1 E+00	6.1 E+00	3.4 E+02	1.1 E+02	1.2 E+02
Pm-147	N/A	N/A	N/A	N/A	N/A
Eu-154	2.4 E+09	1.6 E+09	5.8 E+09	1.9 E+09	3.5 E+09
Eu-155	5.9 E+07	4.0 E+07	5.0 E+06	1.7 E+06	4.2 E+07
Np-237	N/A	N/A	3.0 E+07	1.1 E+07	9.9 E+06
Pu-238	9.2 E+04	6.2 E+04	1.9 E+08	6.3 E+07	6.3 E+07
Pu-239/240	3.6 E+07	2.4 E+07	4.4 E+08	1.5 E+08	1.7 E+08
Pu-241	2.6 E+08	1.7 E+08	3.2 E+09	1.1 E+09	1.2 E+09
Am-241	4.2 E+07	2.8 E+07	2.3 E+08	7.6 E+07	1.0 E+08
Cm-242	N/A	N/A	N/A	N/A	N/A
Cm-244	4.2 F+05	2.8 F+05	2.3 F+06	7.6 F+05	1.0 E+06

Table 1.5-1. The Radionuclide Concentrations of a Mix of 67 vol% SST Liquids and 33 vol% SST Solids are Calculated.

Example calculation to show table entries for Cs-137:

(SST LIQUIDS CONC.)(0.67) + (SST SOLIDS CONC.)(0.33) = COMBINED CONCENTRATION $(2.2 \times 10^{10} \text{ Bq/L})(0.67) + (1.0 \times 10^{11} \text{ Bq/L})(0.33) = 4.8 \times 10^{10} \text{ Bq/L}$

An example calculation of the source term evaluation is included here for Cs-137:

(Amount of Total Leak) x (Concentration of Radionuclide) = Total Activity

 $(27.25 \text{ m}^3 \times 1000 \text{ L/m}^3) \times (4.8 \times 10^{10} \text{ Bg/L}) = 1.31 \times 10^{15} \text{ Bg of Cs}{-137}$

Assuming that the amount of waste leaked from the transfer pipe is 27.25 $\rm m^3$ (962.57 ft^3) and the soil has a void fraction of 0.40, the contaminated soil volume is calculated to be:

$$(27.25 \text{ m}^3)/(0.40) = 68.1 \text{ m}^3$$

Combining the information provided shows that there are 1.31×10^{15} Bq of Cs-137 contained in 68.1 m³ of contaminated soil.

1.6 CALCULATED RADIOLOGICAL DOSES

While it is difficult to predict the true shape of the contaminated underground soil plume that would be created as a result of the transfer line leak, it is necessary to fashion the contaminated soil volume into a common geometric shape for computer program analysis by MICROSHIELD and MICROSKYSHINE.

Along with the applicable assumptions from Section 1.3, the following three volumetric shapes are considered in this analysis as representative of the shape of the contaminated soil volume may occupy: (1) a horizontal cylinder (leaked waste preferentially moves along the transfer line), (2) a vertical cylinder (leaked waste spreads out in a vertical cylindrical shape), and (3) a sphere (leaked waste moves in all directions from a central point).

For each assumed geometry, the radiation dose rates are calculated for a receptor located directly above the leak, and for each 1 m (3.3 ft) incremental distance from 5 m to 20 m, and at 100 m.

For the receptor located directly above the leak, two sets of MICROSHIELD runs are made to calculate the total dose rate for a receptor located directly above the pipe leak point. The first set of runs is made to calculate the dose contribution from the important gamma emitters (15m Ba and 154 Eu) and the second set of runs is made to calculate the dose contribution from bremsstrahlung radiation produced during the decay of 90 Sr/ 90 Y. Note that other beta emitters are present in the source term, however 90 Sr/ 90 Y are the only beta emitters with a high enough activity to be a significant dose contributor.

Appendix A includes output generated by BREMCALC (Rittman 1992) of the photon production rates for I Ci (3.7×10^{10} Bq) of 90 Sr/ 90 Y, in both water and concrete. By simply ratioing the values provided in Appendix A, the photon production rates for 3.97 x 10⁵ Ci (1.47 x 10¹⁶ Bq) of 90 Sr/ 90 Y are tabulated in Table 1.6-1.

The 90 Sr/ 90 Y value is calculated by multiplying the concentration of 90 Sr/ 90 Y (Table 1.5-1) by the total volume leaked (Assumption C, Section 1.3):

 $(5.4 \times 10^{11} \text{ Bq/L}) \times (27,250 \text{ L}) = 1.47 \times 10^{16} \text{ Bq}.$

GROUP MIDPOINT ENERGY (Mev)	PRODUCTION RATE IN WATER 1 Ci Sr-90 (Appendix A)	PRODUCTION RATE IN CONCRETE 1 Ci Sr-90 (Appendix A)	PRODUCTION RATE OF 3.97 E+05 Ci Sr-90 IN WATER	PRODUCTION RATE OF 3.97 E+05 C1 Sr-90 IN CONCRETE
0.015	7.8 E+08	1.2 E+09	3.1 E+14	4.9 E+14
0.025	4.0 E+08	6.3 E+08	1.6 E+14	2.5 E+14
0.035	2.6 E+08	4.0 E+08	1.0 E+14	1.6 E+14
0.045	1.8 E+08	2.8 E+08	7.1 E+13	1.1 E+14
0.055	1.4 E+08	2.1 E+08	5.6 E+13	8.5 E+13
0.065	1.1 E+08	1.7 E+08	4.4 E+13	6.7 E+13
0.075	8.9 E+07	1.4 E+08	3.5 E+13	5.4 E+13
0.085	7.4 E+07	1.1 E+08	2.9 E+13	4.5 E+13
0.095	6.3 E+07	9.6 E+07	2.5 E+13	3.8 E+13
0.150	3.3 E+08	5.0 E+08	1.3 E+14	2.0 E+14
0.250	1.3 E+08	2.0 E+08	5.2 E+13	7.7 E+13
0.350	6.9 E+07	1.0 E+08	2.7 E+13	4.0 E+13
0.475	5.5 E+07	7.8 E+07	2.2 E+13	3.1 E+13
0.650	3.5 E+07	4.9 E+07	1.4 E+13	1.9 E+13
0.825	1.4 E+07	1.8 E+07	5.6 E+12	7.2 E+12
1.000	9.8 E+06	1.3 E+07	3.9 E+12	5.1 E+12
1.225	5.5 E+06	7.0 E+06	2.2 E+12	2.8 E+12
1.475	2.1 E+06	2.5 E+06	8.3 E+11	9.8 E+11
1.700	5.3 E+05	6.1 E+05	2.1 E+11	2.4 E+11
1.900	1.4 E+05	1.5 E+05	5.6 E+10	6.0 E+10
2.100	1.5 E+04	1.6 E+04	6.0 E+09	6.3 E+09
2.300	8.3 E+01	8.5 E+01	3.3 E+07	3.4 E+07
Totals	2.7 E+09	4.2 E+09	1.1 E+15	1.7 E+15

Table 1.6-1. Photon Production Rates (photons/sec) for ⁹⁰Sr/⁹⁰Y in Both Water and Concrete Are Shown.

Since the source in this scenario is made up of a mixture of concrete (approximated for soil) and water, it is most conservative to use the photon production rate values for concrete (shaded column, Table 1.6-1) since they are higher than those of water.

Skyshine dose rates are not calculated for this scenario since the receptor is directly above the leak point. This is because the dose rate is dominated by the direct (i.e., line-of-sight) dose rate component.

Similarly, for the receptor located at 1 m (3.3 ft) incremental distances from 5 m to 20 m and at 100 m, two sets of MICROSHIELD and MICROSKYSHINE runs are made. The first set of runs is made to calculate the dose contribution from the important gamma emitters (137m Ba and 154 Eu) and the second set of runs is made to calculate the dose contribution from bremsstrahlung radiation produced during the decay of 90 Sr/ 90 Y.

The calculated dimensions for each of the geometries are presented in the following sections.

1.6.1 Case 1 - A Horizontal Cylinder of Contaminated Soil is Created From the Leak

Given that the depth of the transfer pipeline is 1.0 m (3.3 ft) below the soil (Assumption B), the contaminated soil reaches a height of 15.24 cm (6 in) below the soil surface (Assumption C), and the volume of contaminated soil is 68.1 m^3 , the dimensions of a cylinder (on side) can be calculated.

The volume of a cylinder is calculated from the equation:

$$V = (\pi/4) d^2 h$$

Considering Assumption B and assuming the cylinder is symmetrical around the leaking pipe, the diameter is calculated to be:

d = 2 x (100 cm - 15.24 cm) = 169.52 cm (1.6952 m) The length (h) of the cylinder is calculated to be: h = $V/[(\pi/4)d^2] = 68.1 \text{ m}^3/[(\pi/4)(1.6952 \text{ m})^2]$ h = 30.17 m (98.96 ft)

The input parameters for this case are summarized in Table 1.6-2. Printed output files are included in Appendices B and C.

Table 1.6-2. Summary of Input Parameters for Case 1 - A Horizontal Cylinder is Created From the Leak.

Activity	Cs-137 activity in the contaminated soil = 1.31 E+15 Bq (4.8 E+10 Bq/L x 27,250 L), which results in an activity of 1.24 E+15 Bq Ba-137m (Ba-137m is the Cs-137 daughter product). Similarly, there are activities of 9.54 E+13 Bq Eu-154 and 1.47 E+16 Bq Sr-90/Y-90.
Geometry	A cylinder with a length of 30.17 m (98.96 ft) and radius of 0.8476 m (2.78 ft) is created from the leaked waste. This volume is symmetrically centered about the buried transfer line.
Source Material	Water with a 1.4 g/cc (87.5 lb/ft^3) density and concrete with a density of 1.6 g/cc (100 lb/ft^3) .
Shield Material	Concrete with a density of 1.6 g/cc (100 $1b/ft^3$).
Receptor Location	A 1.5 m (~5 ft) high individual located directly above the soil surface at the center of the midpoint of the horizontal cylinder, and at 1 m (3.3 ft) incremental distances from 5 m to 20 m, and at 100 m.
Integration Parameters	MICROSHIELD - The cylindrical source was divided into 16 radial, 16 circumferential, and 16 axial kernels or segments.
	MICROSKYSHINE - The cylindrical source was divided into 5 radial, 5 circumferential, and 5 axial kernels or segments.

1 Since MICROSHIELD and MICROSKYSHINE do not include "soil" in their material libraries, "soil" is modelled as concrete (which is included in both code libraries) with a density of 1.6 g/cc. This has been found to be a reasonable approximation since the elemental composition of concrete and soil are similar.

1.6.2 Case 2 - A Vertical Cylinder of Contaminated Soil is Created From the Leak

Using the same assumptions in CASE 1 with h = 1.6952 m (symmetry about the leaking pipe in the vertical direction) and V = 68.1 m³, the diameter, d, can be calculated from:

$$V = (\pi/4) d^{2}h$$

 $d = sqrt\{V/[(\pi/4)(h)]\}$

d = sqrt{68.1 $m^3/[(\pi/4)(1.6952 m)]$ }

d = 7.15 m

The input parameters for this case are summarized in Table 1.6-3. Printed output files are included in Appendices B and C.

is Created From the Leak. Cs-137 activity in the contaminated soil = 1.31 E+15 Ba Activity $(4.8 \text{ E}+10 \text{ Bq/L} \times 27,250 \text{ L})$, which results in an activity of 1.24 E+15 Bo Ba-137m (Ba-137m is the Cs-137 daughter product). Similarly, there are activities of 9.54 E+13 Bg Eu-154 and 1.47 E+16 Bg Sr-90/Y-90. Geometry A cylinder with a length of 1.6952 m (5.56 ft) and radius of 3.575 m (11.73 ft) is created from the leaked waste. This volume is centered about the buried transfer line. Water with a 1.4 g/cc (87.5 lb/ft^3) density and concrete Source with a density of 1.6 g/cc (100 $1b/ft^3$). Material Concrete with a density of 1.6 g/cc (100 lb/ft³). Shield Material A 1.5 m (~5 ft) high individual located directly above the Receptor location soil surface at the centerpoint of the vertical cylinder, and at 1 m (3.3 ft) incremental distances from 5 m to 20 m. and at 100 m. MICROSHIELD - The cylindrical source was divided into 16 Integration Parameters radial, 16 circumferential, and 16 axial kernels or seaments. MICROSKYSHINE - The cylindrical source was divided into 5 radial, 5 circumferential, and 5 axial kernels or

Table 1.6-3. Summary of Input Parameters for Case 2 - A Vertical Cylinder

1.6.3 Case 3 - A Sphere of Contaminated Soil is Created From the Leak

The top of the sphere is assumed to reach a level of 15.24 cm (6 in) below the soil surface. With $V = 68.1 \text{ m}^3$, the radius of the sphere can be determined from:

$V = 4 \ 189 er^{3}$

```
r = cube root \{V/4.189\}
```

```
r = cube root \{68.1 m^3/4.189\}
```

segments.

r = 2.53 m

The center of this sphere is assumed to be located at a level below the centerline of the transfer pipeline to support Assumption H. The center is located 2.6824 m (8.80 ft) below the soil surface and 1.6824 m (5.52 ft) below the centerline of the pipe.

The input parameters for this case are summarized in Table 1.6-4. Printed output files are included in Appendices B and C.

Activity	Cs-137 activity in the contaminated soil = $1.31 E+15$ Bq (4.8 E+10 Bq/L x 27,250 L), which results in an activity of 1.24 E+15 Bq Ba-137m (Ba-137m is the Cs-137 daughter product). Similarly, there are activities of 9.54 E+13 Bq Eu-154 and 1.47 E+16 Bq Sr-90/Y-90.
Geometry	A sphere with a radius of 2.53 m (8.30 ft) is created from the leaked waste. The center of the sphere is located 2.8624 m (8.80 ft) below the soil surface and 1.6824 m (5.52 ft) below the centerline of the pipe.
Source Material	Water with a 1.4 g/cc (87.5 lb/ft3) density and concrete with a density of 1.6 g/cc (100 lb/ft3).
Shield Material	Concrete with a density of 1.6 g/cc (100 lb/ft3).
Receptor Location	A 1.5 m (5 ft) high individual located directly above the soil surface at the center of the sphere, and at 1 m (3.3 ft) incremental distances from 5 m to 20 m, and at 100 m.
Integration Parameters	MICROSHIELD - The spherical source was divided into 16 radial and 16 angle segments.

Table 1.6-4. Summary of Input Parameters for Case 3 - A Sphere is Created From the Leak.

1.7 RESULTS

The tabulated results for each case are presented in Table 1.7-1 for the receptor located directly above the leak point.

Dose Rate Component	Horizontal Cylinder (rem/hr)	Vertical Cylinder (rem/hr)	Sphere (rem/hr)
Line-of-Sight	3.4	18.7	3.4
Line-of-Sight Bremsstrahlung	0.3	1.6	0.3
Skyshine	N/A ¹	N/A	N/A
Skyshine Bremsstrahlung	N/A	N/A	N/A
Totals (rem/hr)	3.7	20.3	3.7
Total Dose for 12 Hours (rem) ²	44.4	243.6	44.4

Table 1.7-1. Summary of Dose Rates^{*} For the Three Geometries With the Receptor Directly Above Leak Point.

The dose rates quoted in rem/hr from MICROSHIELD and MICROSKYSHINE are actually exposure rates in air (R/hr). However, it is conservative to use the R/hr values for dose in rem/hr because the exposure-to-dose rate factors are generally less than 1. Therefore, in this document, the exposure rates from the computer codes are assumed to be equal to the dose rates.

1 Skyshine dose rates are not calculated for this scenario since the receptor is directly above the leak point. This is because the dose rate is dominated by the direct (i.e., line-of-sight dose rate) radiation component.

2 While it is not expected that a receptor would be located directly over a leak point for 12 hours, the value is shown here for consistency with the accepted methodology (i.e., calculate doses for 12 hours). The rem/hr values for each geometry can be scaled for any desired time period.

Sv = 100 x rem

Comparing the total dose from 12 hours of exposure to the risk guidelines for an *anticipated* accident (0.5 rem) shows that for each geometry the dose to the receptor located directly above the leak point exceeds the risk guidelines.

It should be noted here that MICROSKYSHINE will not calculate the skyshine dose rate from a source in the shape of a sphere. The total dose rate for the sphere at distances greater than 0 m (0 ft) is expected to be less than the dose from the horizontal cylinder (based on a comparison of the direct dose rate output files in Appendix B). The remainder of the discussion here focuses on the horizontal and vertical cylinders.

The MICROSHIELD and MICROSKYSHINE output files in Appendices B and C are referenced to determine the distance at which the dose associated with 12 hours of exposure is below the risk guidelines for an *anticipated* accident (0.5 rem). A 12 hour dose below the risk guidelines is achievable with the receptor located at 16 m (52.5 ft) from the centerline of the horizontal pipe. Table 1.7-2 includes the pertinent information summarized from the Appendices.

Note that results presented here are conservative in that the MICROSHIELD "line-of-sight dose rate" includes a dose rate contribution from

WHC-SD-WM-CN-004 REV 1

air scatter through the buildup factors used, and the MICROSKYSHINE results also account for air scatter, although to a lesser extent for large angles of scatter. This "double counting" for the air scatter contribution to the direct dose rate was not easy to quantify, however, so the MICROSHIELD and MICROSKYSHINE results were considered to be additive.

	and the second se	
Dose Rate Component	Horizontal Cylinder (rem/hr)	Vertical Cylinder (rem/hr)
Line-of-Sight	1.3 E-07	4.8 E-06
Line-of-Sight Bremsstrahlung	9.0 E-09	3.6 E-07
Skyshine	3.4 E-02	4.8 E-03
Skyshine Bremsstrahlung	5.2 E-03	5.0 E-04
Totals (rem/hr)	3.9 E-02	5.3 E-03
Total Dose for 12 Hours (rem)	4.7 E-01	6.4 E-02

Table 1.7-2. The 12 Hour Dose For the Cylindrical Geometries are Below the Risk Guidelines When the Receptor is Located 16 m (52.5 ft) From the Leak Point.

The 12 hour dose to a receptor at 100 m (328 ft) is below the risk guidelines with the results tabulated in Table 1.7-3.

Table 1.7-3. The 12 Hour Dose For the Cylindrical Geometries are Well Below the Risk Guidelines When the Receptor is Located 100 m (328 ft) From the Leak Point.

Dose Rate Component	Horizontal Cylinder (rem/hr)	Vertical Cylinder (rem/hr)
Line-of-Sight	7.2 E-24	7.2 E-24
Line-of-Sight Bremsstrahlung	1.9 E-24	1.9 E-24
Skyshine	4.7 E-03	6.2 E-04
Skyshine Bremsstrahlung	5.9 E-04	5.5 E-05
Totals (rem/hr)	5.3 E-03	6.8 E-04
Total Dose for 12 Hours (rem)	6.4 E-02	8.2 E-03

1.8 CONCLUSIONS

The dose rate associated with this accident scenario is unacceptable when a receptor is located directly above the leak point for a period of time as little as 1 hour (for any of the assumed geometries). Investigating the output files shows that a 12 hour dose will be below the risk guidelines for a receptor located 16 m (52.5 ft) from the centerline of the midpoint of the horizontal cylinder.

Likewise, the 12 hour dose to a receptor located 100 m (328 ft) from the source is also below the risk guidelines.

1.9 REFERENCES

- Cowley, W. L., 1996, Development of Radiological Concentrations and Unit Liter Doses for TWRS FSAR Radiological Consequence Calculations, WHC-SD-WM-SARR-037, Rev. 0, Westinghouse Hanford Company, Richland, Washington.
- Grove, 1987, *MICROSKYSHINE*, Grove Engineering, Inc., 15125 Shady Grove Road, Rockville, Maryland.
- Grove, 1992, MICROSHIELD Version 4, Grove Engineering, Inc., 15125 Shady Grove Road, Rockville, Maryland.
- Hall, B. W., 1996, Calculation Notes for Surface Leak Resulting in a Pool, TWRS FSAR Accident Analysis, WHC-SD-WM-CN-049, Rev. 0, Westinghouse Hanford Company, Richland, Washington.
- Rittman, P. D., 1992, BREMCALC A Computer Program for Calculating Electron and Positron Bremsstrahlung, WHC-SA-1435-FP, Westinghouse Hanford Company, Richland, Washington.
- Van Keuren, J. C., 1996, WHC-SD-WM-SARR-016, Rev. 2, Tank Waste Compositions and Atmospheric Dispersion Coefficients for use in ASA Consequence Assessments, Westinghouse Hanford Company, Richland, Washington.
- WHC, 1991, Safety Analysis Manual, WHC-CM-4-46, Section 4.0, Rev. 1, November 15, 1991, Westinghouse Hanford Company, Richland, Washington.

This page intentionally left blank.

APPENDIX A

BREMCALC DATA

This page intentionally left blank.

Photon	Production	Rate	es for	Sr-90/	/Y-90	in	Mixtures	s using	BREMCALC	(photons
	F	er s	second	from]	l curi	еo	f each i	sotope))	

Midpoint Water Paper	Air Concrete	AlZr
Energy Z = 6.60 Z = 6.35 Z	Z = 7.36 Z = 10.99	Z = 33.38
0.015 7.83E+08 7.59E+08 8	B.56E+08 1.24E+09	3.72E+09
0.025 3.99E+08 3.87E+08 4	4.35E+08 6.26E+08	1.88E+09
0.035 2.56E+08 2.48E+08 2	2.79E+08 3.99E+08	1.19E+09
0.045 1.82E+08 1.77E+08 J	1.98E+08 2.83E+08	8.42E+08
0.055 1.38E+08 1.34E+08 J	1.50E+08 2.14E+08	6.34E+08
0.065 1.09E+08 1.06E+08 1	1.19E+08 1.69E+08	4.98E+08
0.075 8.91E+07 8.66E+07 9	9.67E+07 1.37E+08	4.03E+08
0.085 7.42E+07 7.21E+07 8	3.05E+07 1.14E+08	3.34E+08
0.095 6.29E+07 6.11E+07 6	5.82E+07 9.61E+07	2.81E+08
0.15 3.33E+08 3.24E+08 3	3.60E+08 5.03E+08	1.45E+09
0.25 1.32E+08 1.29E+08 1	1.42E+08 1.95E+08	5.50E+08
0.35 6.88E+07 6.71E+07 7	7.37E+07 9.98E+07	2.74E+08
0.475 5.50E+07 5.38E+07 5	5.87E+07 7.84E+07	2.10E+08
0.65 3.53E+07 3.46E+07 3	3.75E+07 4.89E+07	1.26E+08
0.825 1.36E+07 1.33E+07 1	1.43E+07 1.82E+07	4.49E+07
1 9.82E+06 9.66E+06 1	1.03E+07 1.28E+07	3.02E+07
1.225 5.54E+06 5.46E+06 5	5.75E+06 6.95E+06	1.53E+07
1.475 2.06E+06 2.03E+06 2	2.12E+06 2.46E+06	4.94E+06
1.7 5.34E+05 5.29E+05 5	5.45E+05 6.12E+05	I.IIE+06
1.9 1.36E+05 1.35E+05 1	1.38E+05 1.51E+05	2.46E+05
2.1 1.49E+04 1.48E+04 1	1.50E+04 1.59E+04	2.31E+04
2.3 B.25E+01 8.23E+01 8	3.28E+01 8.51E+01	1.05E+02

This page intentionally left blank.

APPENDIX B

MICROSHIELD OUTPUT FILES

This page intentionally left blank.

WHC-SD-WM-CN-004 REV 1

MicroShield 4.00 - Serial #4.00-00128

Westinghouse Hanford Company

Page :	1	File Ref:	
DOŠ File:	CASE6SEN.MS4	Date:	
Run Date:	May 30, 1996	By:	
Run Time:	7:18 p.m. Thursday	Checked:	
Duration:	0:18:16		

Case Title: Horizontal Cylinder - Receptor Directly Above Leak Point

GEOMETRY 7 - Cylinder Volume - Side Shields

	centimeters	feet and	l inches
Dose point coordinate X:	250.0	8.0	2.4
Dose point coordinate Y:	1508.5	49.0	5.9
Dose point coordinate Z:	0.0	0.0	.0
Cylinder height:	3017.0	98.0	11.8
Cylinder radius:	84.76	2.0	9.4
Transition:	15.24	0.0	6.0
Air Gap:	150.0	4.0	11.1

Source Volume: 6.80937e+7 cm^3 2404.71 cu ft. 4.15533e+6 cu in.

MATERIAL DENSITIES (g/cm^3)

Material	Source Shield	Transition Shield	Air Gap
Air	Sintera	Sintend	0.00122
Concrete	1.6	1.6	
Water	0.56		

BUILDUP

Method: Buildup Factor Tables The material reference is Transition

INTEGRATION PARAMETERS

	Quadrature	Order
Radial	16	
Circumferential	16	
Axial (along Z)	16	

SOURCE NUCLIDES

Nuclide	curies	μCi/cm^3	Nuclide	curies	µCi/cm^3
Ba-137m	3.3491e+004	4.9184e+002	Cs-137	3.5403e+004	5.1992e+002
Eu-154	2.5773e+003	3.7849e+001			

Page :	2				
DOS File:	CASE6SEN.MS4				
Run Date:	May 30 1996				
Run Time:	7.18 n m T	hursday			
Title .	Newigental C	ulindan Doc	onton Directly	Abovo Look	Doint
Title :	HUFIZUNIAI C	yrnider - Keci	eptor Directly	ADOVE LEAK	FUIIL
	DEOLU TO	FOR CENCITIVE			
=======	===== RESULIS	FOR SENSITIVE	IY REFERENCE C	ASE(Z = 0)	
Energy	Activity	Energy Flu	uence Rate	Exposure Ra	te In Air
(MeV)	(photons/sec) (MeV/sq	cm/sec)	(mR/h	r)
		No Buildup	With Buildup	No Buildup	With Buildup
0.1	3.859e+013	1.697e+001	2.792e+002	2.597e-002	4.271e-001
0.2	6.512e+012	3.809e+001	7.248e+002	6.722e-002	1.279e+000
0.4	6.803e+011	3.027e+001	3.729e+002	5.897e-002	7.266e-001
0.5	2.065e+011	1.725e+001	1.765e+002	3.387e-002	3.465e-001
0.6	1.123e+015	1.562e+005	1.366e+006	3.048e+002	2.666e+003
0.8	3.719e+013	1.148e+004	7.867e+004	2.183e+001	1.496e+002
1.0	2.934e+013	1.666e+004	9.507e+004	3.071e+001	1.752e+002
1.5	3.721e+013	6.242e+004	2.629e+005	1.050e+002	4.422e+002
TOTAL:	1.272e+015	2.468e+005	1.804e+006	4.625e+002	3.436e+003

SENSITIVITY RESULTS For: Z (cm)

Case	Sensitivity	Energy Flue	ence Rate	Exposure Ra	te In Air
Number	Variable	(MeV/sq d	cm/sec)	(mR/h	r)
	Value	No Buildup V	√ith Buildup	No Buildup	With Buildup
1	500.0	5.584e+002	7.589e+003	9.982e-001	1.404e+001
2	600.0	1.448e+002	2.126e+003	2.557e-001	3.892e+000
3	700.0	4.070e+001	6.326e+002	7.109e-002	1.145e+000
4	800.0	1.225e+001	1.993e+002	2.120e-002	3.565e-001
5	900.0	3.896e+000	6.609e+001	6.696e-003	1.169e-001
6	1000.0	1.296e+000	2.293e+001	2.216e-003	4.017e-002
7	1100.0	4.472e-001	8.272e+000	7.615e-004	1.437e-002
8	1200.0	1.589e-001	3.084e+000	2.698e-004	5.319e-003
9	1300.0	5.782e-002	1.182e+000	9.795e-005	2.027e-003
10	1400.0	2.146e-002	4.63le-001	3.629e-005	7.906e-004
11	1500.0	8.096e-003	1.847e-001	1.368e-005	3.143e-004
12	1600.0	3.097e-003	7.477e-002	5.227e-006	1.269e-004
13	1700.0	1.199e-003	3.062e-002	2.022e-006	5.186e-005
14	1800.0	4.688e-004	1.266e-002	7.903e-007	2.141e-005
15	1900.0	1.850e-004	5.277e-003	3.117e-007	8.915e-006
16	2000.0	7.358e-005	2.215e-003	1.240e-007	3.738e-006

WHC-SD-WM-CN-004 REV 1

MicroShield 4.00 - Serial #4.00-00128

Westinghouse Hanford Company

Page :	1	File Ref:	
DOŠ File:	CS6BRS20.MS4	Date:	11
Run Date:	May 24, 1996	By:	
Run Time:	1:31 p.m. Friday	Checked:	· · · · · · · · · · · · · · · · · · ·
Duration:	0:45:33	-	

Case Title: Horizontal Cylinder - Receptor Directly Above Leak Point

GEOMETRY 7 - Cylinder Volume - Side Shields

Dees noint secondinate V.	centimeters	feet and	d inches
Dose point coordinate X:	250.0	0.0	2.4
Dose point coordinate Y:	1508.5	49.0	5.9
Dose point coordinate Z:	0.0	0.0	.0
Cylinder height:	3017.0	98.0	11.8
Cylinder radius:	84.76	2.0	9.4
Transition:	15.24	0.0	6.0
Air Gap:	150.0	4.0	11.1

Source Volume: 6.80937e+7 cm^3 2404.71 cu ft. 4.15533e+6 cu in.

MATERIAL DENSITIES (g/cm^3)

Material	Source	Transition Shield	Air Gap
Air	Sintera	Silicia	0.00122
Concrete	1.6	1.6	
Water	0.56		

BUILDUP

Method: Buildup Factor Tables The material reference is Transition

INTEGRATION PARAMETERS

	Quadrature	Order
Radial	16	
Circumferential	16	
Axial (along Z)	16	

SOURCE WAS ENTERED AS ENERGIES ONLY

29 of 116

Page : 2 DOŠ File: CS6BRS20.MS4 Run Date: May 24, 1996 Run Time: 1:31 p.m. Friday : Horizontal Cylinder - Receptor Directly Above Leak Point Title Energy Fluence Rate Exposure Rate In Air Enerav Activity (MeV) (photons/sec) (MeV/sq cm/sec) (mR/hr) No Buildup No Buildup With Buildup With Buildup 0.015 4.900e+014 1.252e-114 2.123e-020 1.074e-115 1.821e-021 4.242e-022 0.025 2.500e+014 1.146e-024 2.459e-020 1.977e-026 0.035 1.600e+014 9.991e-009 2.557e-008 6.329e-011 1.620e-010 1.182e-005 0.045 1.100e+014 8.549e-004 3.553e-003 2.843e-006 0.055 8.500e+013 9.555e-002 6.166e-001 2.151e-004 1.388e-003 0.065 6.700e+013 9.579e-001 8.587e+000 1.739e-003 1.559e-002 0.075 3.429e+000 3.891e+001 5.589e-003 6.342e-002 5.400e+013 0.085 4.500e+013 7.552e+000 1.028e+002 1.173e-002 1.596e-001 0.095 3.800e+013 1.268e+001 1.979e+002 1.941e-002 3.029e-001 0.15 2.000e+014 9.205e+003 7.663e-001 1.516e+001 4.653e+002 0.25 7.700e+013 8.784e+002 1.510e+004 1.621e+000 2.787e+001 0.35 4.000e+013 1.214e+003 1.661e+004 2.342e+000 3.204e+001 2.243e+003 0.475 3.100e+013 2.397e+004 4.401e+000 4.703e+001 0.65 1.900e+013 3.302e+003 2.697e+004 6.411e+000 5.235e+001 0.825 7.200e+012 2.418e+003 1.616e+004 4.583e+000 3.062e+001 1.0 5.100e+012 2.896e+003 1.653e+004 5.338e+000 3.047e+001 1.225 2.800e+012 2.750e+003 1.340e+004 4.868e+000 2.371e+001 9.800e+011 1.475 1.574e+003 6.703e+003 1.133e+001 2.659e+000 1.7 2.400e+011 5.558e+002 2.157e+003 9.028e-001 3.504e+000 1.9 1.840e+002 6.671e+002 6.000e+010 2.891e-001 1.048e+000 2.1 6.300e+009 2.477e+001 8.465e+001 3.772e-002 1.289e-001 2.3 3.400e+007 1.669e-001 5.414e-001 2.468e-004 8.006e-004 TOTAL: 1.682e+015 1.853e+004 1.479e+005 3.426e+001 2.758e+002 SENSITIVITY RESULTS For: Z (cm) Case Sensitivity Energy Fluence Rate Exposure Rate In Air Number Variable (MeV/sg cm/sec) (mR/hr) Value No Buildup With Buildup No Buildup With Buildup 1 500.0 4.214e+001 5.506e+002 7.545e-002 1.010e+000 2 600.0 1.097e+001 1.560e+002 1.947e-002 2.839e-001 3 700.0 3.073e+000 4.709e+001 5.411e-003 8.503e-002 4 800.0 9.155e-001 1.501e+001 1.600e-003 2.689e-002 5 900.0 2.871e-001 5.010e+000 8.906e-003 4.984e-004 б 1000.0 9.404e-002 1.738e+000 1.622e-004 3.067e-003 7 1100.0 3.195e-002 6.229e-001 5.479e-005 1.092e-003 8 1200.0 1.120e-002 2.297e-001 1.911e-005 4.001e-004 9 4.036e-003 1300.0 8.681e-002 6.850e-006 1.503e-004 10 1400.0 1.489e-003 3.352e-002 2.516e-006 5.771e-005 11 1500.0 5.612e-004 1.319e-002 9.438e-007 2.258e-005 12 1600.0 2.154e-004 5.275e-003 3.608e-007 8.990e-006 13 1700.0 8.406e-005 2.141e-003 1.403e-007 3.633e-006 14 1800.0 3.330e-005 8.809e-004 5.536e-008 1.488e-006 15 1900.0 1.337e-005 3.667e-004 2.215e-008 6.170e-007 16 2000.0 5,433e-006 1.543e-004 8.973e-009 2.586e-007

MicroShield 4.00 - Serial #4.00-00128

Westinghouse Hanford Company

Page :	1	File Ref:	
DOS File:	CASE6100.MS4	Date:	
Run Date:	May 30, 1996	By:	
Run Time:	7:00 p.m. Thursday	Checked:	
Duration:	0:01:13		

Case Title: Horizontal Cylinder - Receptor 100 From Leak Point

GEOMETRY 7 - Cylinder Volume - Side Shields

	centimeters	feet and	inches
Dose point coordinate X:	250.0	8.0	2.4
Dose point coordinate Y:	1508.5	49.0	5.9
Dose point coordinate Z:	10000.0	328.0	1.0
Cylinder height:	3017.0	98.0	11.8
Cylinder radius:	84.76	2.0	9.4
Transition:	15.24	0.0	6.0
Air Gap:	150.0	4.0	11.1

Source Volume: 6.80937e+7 cm^3 2404.71 cu ft. 4.15533e+6 cu in.

MATERIAL DENSITIES (g/cm^3)

Material	Source Shield	Transition Shield	Air Gap
Air			0.00122
Concrete	1.6	1.6	
Water	0.56		

_

BUILDUP

Method: Buildup Factor Tables The material reference is Transition

INTEGRATION PARAMETERS

	Quadrature	Order
Radia1	. 16	
Circumferential	16	
Axial (along Z)	16	

SOURCE NUCLIDES

Nuclide	curies	μCi/cm^3	Nuclide	curies	μCi/cm^3
Ba-13/m	3.3491e+004	4.9184e+002	Cs-137	3.5403e+004	5.1992e+002
Eu-154	2.5773e+003	3.7849e+001			

31 of 116

Page : 2 DOS File: CASE6100.MS4 Run Date: May 30, 1996 Run Time: 7:00 p.m. Thursday Title : Horizontal Cylinder - Receptor 100 From Leak Point RESULTS Energy Activity Energy Fluence Rate Exposure Rate In Air (MeV) (photons/sec) (MeV/sq cm/sec) (mR/hr) No Buildup With Buildup No Buildup With Buildup 0.1 3.859e+013 4.569e-114 1.057e-020 6.989e-117 1.617e-023 4.013e-023 0.2 6.512e+012 2.113e-084 2.274e-020 3.729e-087 0.4 6.803e+011 1.489e-065 2.867e-021 2.902e-068 5.585e-024 0.5 2.065e+011 2.386e-060 7.268e-022 4.683e-063 1.427e-024 0.6 1.123e+015 3.825e-052 3.453e-018 7.467e-055 6.740e-021 3.719e+013 6.676e-047 8.888e-020 0.8 1.270e-049 1.691e-022 1.0 2.934e+013 4.028e-042 5.398e-020 7.424e-045 9.949e-023 1.5 3.721e+013 5.973e-034 5.240e-020 1.005e-036 8.816e-023 TOTAL: 1,272e+015 5,973e-034 3,685e-018 1,005e-036 7,160e-021
MicroShield 4.00 - Serial #4.00-00128

Westinghouse Hanford Company

Page :	1	File Ref:	
DOŠ File:	CS6BR100.MS4	Date:	17
Run Date:	May 24, 1996	By:	
Run Time:	7:05 p.m. Friday	Checked:	
Duration:	0:03:02		

Case Title: Horizontal Cylinder - Receptor 100 m From Leak Point - Brems

GEOMETRY 7 - Cylinder Volume - Side Shields

	centimeters	feet	and inches
Dose point coordinate X:	250.0	8.0	2.4
Dose point coordinate Y:	1508.5	49.0	5.9
Dose point coordinate Z:	10000.0	328.0	1.0
Cylinder height:	3017.0	98.0	11.8
Cylinder radius:	84.76	2.0	9.4
Transition:	15.24	0.0	6.0
Air Gap:	150.0	4.0	11.1

Source Volume: 6.80937e+7 cm^3 2404.71 cu ft. 4.15533e+6 cu in.

MATERIAL DENSITIES (g/cm^3)

Material	Source Shield	Transition Shield	Air Gap
Air		onrora	0.00122
Concrete	1.6	1.6	
Water	0.56		

BUILDUP

Method: Buildup Factor Tables The material reference is Transition

INTEGRATION PARAMETERS

	Quadrature	Order
Radial	16	
Circumferential	16	
Axial (along Z)	16	

SOURCE WAS ENTERED AS ENERGIES ONLY

Page :	2				
DOŠ File:	CS6BR100.MS4				
Run Date:	May 24, 1996				
Run Time:	7:05 p.m. Fr	iday			
[itle :	Horizontal Cy	linder – Rece	eptor 100 m Fr	om Leak Poin	t - Brems
			·		
		======= RI	ESULTS =====		
Energy	ACTIVITY	Energy FI	lence Rate	Exposure Ka	te in Air
(MeV)	(photons/sec)	(MeV/sq	cm/sec)	(mR/h	r)
		No Buildup	With Buildup	No Buildup	With Buildup
0.015	4.900e+014	0.000e+000	5.639e-023	0.000e+000	4.837e-024
0.025	2.500e+014	0.000e+000	6.532e-023	0.000e+000	1.127e-024
0.035	1.600e+014	0.000e+000	1.063e-022	0.000e+000	6.732e-025
0.045	1.100e+014	2.430e-295	1.832e-022	8.081e-298	6.094e-025
0.055	8.500e+013	1.086e-207	8.607e-022	2.444e-210	1.937e-024
0.065	6.700e+013	2.515e-165	2.569e-021	4.565e-168	4.664e-024
0.075	5.400e+013	6.901e-142	2.676e-021	1.125e-144	4.361e-024
0.085	4.500e+013	1.818e-127	3.688e-021	2.825e-130	5.729e-024
0.095	3.800e+013	7.907e-118	7.106e-021	1.210e-120	1.088e-023
0.15	2.000e+014	7.775e-093	3.003e-019	1.280e-095	4.945e-022
0.25	7.700e+013	1.485e-076	3.490e-019	2.741e-079	6.439e-022
0.35	4.000e+013	2.318e-067	1.792e-019	4.471e-070	3.457e-022
0.475	3.100e+013	1.842e-059	1.139e-019	3.614e-062	2.235e-022
0.65	1.900e+013	5.308e-052	5.504e-020	1.030e-054	1.068e-022
0.825	7.200e+012	6.342e-047	1.661e-020	1.202e-049	3.148e-023
1.0	5.100e+012	7.002e-043	9.384e-021	1.291e-045	1.730e-023
1.225	2.800e+012	5.973e-039	4.405e-021	1.057e-041	7.796e-024
1.475	9.800e+011	7.734e-036	1.393e-021	1.307e-038	2.355e-024
1.7	2.400e+011	6.366e-034	3.137e-022	1.034e-036	5.096e-025
1.9	6.000e+010	1.147e-032	7.402e-023	1.803e-035	1.163e-025
2.1	6.300e+009	4.623e-032	7.539e-024	7.040e-035	1.148e-026
2.3	3.400e+007	5.826e-033	4.021e-026	8.616e-036	5.946e-029
TOTAL:	1.682e+015	6.417e-032	1.047e-018	9.809e-035	1.909e-021

MicroShield 4.00 - Serial #4.00-00128

Westinghouse Hanford Company

Page :	1	File Ref:	
DOS File:	CASE7.MS4	Date:	<u> </u>
Run Date:	May 30, 1996	By:	
Run Time:	7:18 p.m. Thursday	Checked:	
Duration:	0:00:08		

Case Title: Vertical Cylinder - Receptor Directly Above Leak Point

		centimeters	feet and	d inches
Dose	point coordinate X:	0.0	0.0	.0
Dose	point coordinate Y:	334.76	10.0	11.8
Dose	point coordinate Z:	0.0	0.0	.0
	Cylinder height:	169.52	5.0	6.7
	Cylinder radius:	357.5	11.0	8.7
	Shield 1:	15.24	0.0	6.0
	Air Gap:	150.0	4.0	11.1

GEOMETRY 8 - Cylinder Volume - End Shields

Source Volume: 6.80649e+7 cm^3 2403.69 cu ft. 4.15357e+6 cu in.

MATERIAL DENSITIES (g/cm^3)

Material	Source Shield	Shield 1 Slab	Air Gap
Air			0.00122
Concrete	1.6	1.6	
Water	0.56		

BUILDUP

Method: Buildup Factor Tables The material reference is Shield 1

INTEGRATION PARAMETERS

	Quadrature	Orde
Radial	16	
Circumferential	16	
Axial (along Z)	16	

SOURCE NUCLIDES

Nuclide curies µCi/cm^3 Ba-137m 3.3491e+004 4.9205e+0 Eu-154 2.5773e+003 3.7865e+00	Nuclide curies 2 Cs-137 3.5403e+004 1	μCi/cm^3 5.2014e+002
---	---	-------------------------

Page : 2 DOS File: CASE7.MS4 Run Date: May 30, 1996 Run Time: 7:18 p.m. Thursday : Vertical Cylinder - Receptor Directly Above Leak Point Title Energy Activity Energy Fluence Rate Exposure Rate In Air (MeV) (photons/sec) (MeV/sq cm/sec) (mR/hr) No Buildup With Buildup No Buildup With Buildup 0.1 3.859e+013 2.000e+002 2.705e+003 3.060e-001 4.138e+000 0.2 6.512e+012 3.370e+002 5.137e+003 5.948e-001 9.066e+000 0.4 2.224e+002 2.250e+003 4.333e-001 4.384e+000 6.803e+011 0.5 2.065e+011 1.201e+002 1.021e+003 2.357e-001 2.004e+000 0.6 1.123e+015 1.041e+006 7.642e+006 2.031e+003 1.492e+004 4.185e+005 0.8 3.719e+013 7.155e+004 1.361e+002 7.960e+002 1.0 2.934e+013 9.872e+004 4.868e+005 1.820e+002 8.974e+002 1.5 3.721e+013 3.383e+005 1.256e+006 5.693e+002 2.113e+003 TOTAL: 1.272e+015 1.550e+006 9.814e+006 2.920e+003 1.874e+004

MicroShield 4.00 - Serial #4.00-00128

Westinghouse Hanford Company

Page :	1	File Ref:	
DOS File:	CASE7BR.MS4	Date:	
Run Date:	May 24, 1996	By:	
Run Time:	8:15 p.m. Friday	Checked:	
Duration:	0:00:19	-	

Case Title: Vertical Cylinder - Receptor Directly Above Leak Point

		centimeters	feet a	und inches
Dose	point coordinate X:	0.0	0.0	.0
Dose	point coordinate Y:	334.76	10.0	11.8
Dose	point coordinate Z:	0.0	0.0	.0
	Cylinder height:	169.52	5.0	6.7
	Cylinder radius:	357.5	11.0	8.7
	Shield 1:	15.24	0.0	6.0
	Air Gap:	150.0	4.0	11.1

GEOMETRY 8 - Cylinder Volume - End Shields

Source Volume: 6.80649e+7 cm^3 2403.69 cu ft. 4.15357e+6 cu in.

MATERIAL DENSITIES (g/cm^3)

Material	Source Shield	Shield 1 Slab	Air Gap
Air	ontorta	UT UD	0.00122
Concrete	1.6	1.6	
Water	0.56		

BUILDUP

Method: Buildup Factor Tables The material reference is Shield 1

INTEGRATION PARAMETERS

	Quadrature	Order
Radial	16	
Circumferential	16	
Axial (along Z)	16	

SOURCE WAS ENTERED AS ENERGIES ONLY

Page : DOS File: Run Date:	2 CASE7BR.MS4 May 24, 1996				
Run Time:	8:15 p.m. Fr	iday			
Title :	Vertical Cyli	nder – Recep	tor Directly A	bove Leak Po	int
	*	R			
Energy	Activity	Energy Fl	uence Rate	Exposure Ra	te In Air
(MeV)	(photons/sec)	(MeV/sa	cm/sec)	(mR/h	r)
((,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	No Buildup	With Buildup	No Buildup	With Buildup
0.015	4.900e+014	5.636e-089	5.160e-020	4.834e-090	4.426e-021
0.025	2.500e+014	1.795e-018	2.833e-018	3.096e-020	4.886e-020
0.035	1.600e+014	7.776e-006	1.887e-005	4.926e-008	1.195e-007
0.045	1.100e+014	6.397e-002	2.422e-001	2.128e-004	8.056e-004
0.055	8.500e+013	2.851e+000	1.622e+001	6.418e-003	3.651e-002
0.065	6.700e+013	1.863e+001	1.442e+002	3.381e-002	2.618e-001
0.075	5.400e+013	5.290e+001	5.101e+002	8.621e-002	8.313e-001
0.085	4.500e+013	1.012e+002	1.153e+003	1.573e-001	1.791e+000
0.095	3.800e+013	1.548e+002	1.997e+003	2.370e-001	3.056e+000
0.15	2.000e+014	4.517e+003	7.185e+004	7.438e+000	1.183e+002
0.25	7.700e+013	7.295e+003	1.008e+005	1.346e+001	1.860e+002
0.35	4.000e+013	9.225e+003	1.029e+005	1.780e+001	1.985e+002
0.475	3.100e+013	1.580e+004	1.400e+005	3.100e+001	2.746e+002
0.65	1.900e+013	2.160e+004	1.488e+005	4.192e+001	2.888e+002
0.825	7.200e+012	1.497e+004	8.549e+004	2.837e+001	1.620e+002
1.0	5.100e+012	1.716e+004	8.464e+004	3.164e+001	1.560e+002
1.225	2.800e+012	1.558e+004	6.624e+004	2.757e+001	1.172e+002
1.475	9.800e+011	8.560e+003	3.211e+004	1.447e+001	5.427e+001
1.7	2.400e+011	2.935e+003	1.009e+004	4.767e+000	1.639e+001
1.9	6.000e+010	9.497e+002	3.064e+003	1.492e+000	4.814e+000
2.1	6.300e+009	1.253e+002	3.826e+002	1.908e-001	5.825e-001
2.3	3.400e+007	8.292e-001	2.412e+000	1.226e-003	3.567e-003
TOTAL:	1.682e+015	1.190e+005	8.502e+005	2.206e+002	1.584e+003

MicroShield 4.00 - Serial #4.00-00128

Westinghouse Hanford Company

Page :	1	File Ref:	
DOŠ File:	CS7SEN20.MS4	Date:	1 1
Run Date:	May 30, 1996	By:	
Run Time:	7:55 p.m. Thursday	Checked:	
Duration:	0:16:16	·	

Case Title: Vertical Cylinder - Receptor 5 m Away From Source Center

centimeters feet and inches Dose point coordinate X: 0.0 0.0 .0 Dose point coordinate Y: 334.76 Dose point coordinate Z: 500.0 Cylinder height: 169.52 Cylinder radius: 357.5 Shield 1: 15.24 Air Gap: 150.0 10.0 11.8 16.0 4.9 5.0 6.7 11.0 8.7 0.0 6.0 4.0 11.1

GEOMETRY 8 - Cylinder Volume - End Shields

Source Volume: 6.80649e+7 cm^3 2403.69 cu ft. 4.15357e+6 cu in.

MATERIAL DENSITIES (g/cm^3)

Material	Source Shield	Shield 1 Slab	Air Gap	Immersion Shield
Air			0.00122	
Concrete	1.6	1.6		1.6
Water	0.56			

BUILDUP

Method: Buildup Factor Tables The material reference is Shield 1

INTEGRATION PARAMETERS

	Quadrature	Order
Radial	16	
Circumferential	16	
Axial (along Z)	16	

SOURCE NUCLIDES

Nuclide Ba-137m Eu-15 4	curies 3.3491e+004 2.5773e+003	μCi/cm^3 4.9205e+002 3.7865e+001	Nuclide Cs−137	curies 3.5403e+004	μCi/cm^3 5.2014e+002
EG 104	L.J//JC/000	3.700364001			

Page :	2				
DOS File	CS7SEN20 MS4				
Dup Date:	May 20 1006				
Run Date.	. May 30, 1990				
Run Time:	/:55 p.m. in	ursday			
litle :	: Vertical Cyli	nder – Recept	tor 5 m Away F	rom Source C	enter
	==== RESULTS FO	R SENSITIVIT	Y REFERENCE CA	SE(Z = 500)	
Energy	Activity	Energy Flu	uence Rate	Exposure Ra	te In Air
(MeV)	(photons/sec)	(MeV/sa	cm/sec)	(mR/h	r)
()	· · · · · · · · · · · · · · · · · · ·	No Buildup	With Buildup	No Buildup	With Buildup
0.1	3.859e+013	5.297e+000	9.566e+001	8.104e-003	1.464e-001
0.2	6.512e+012	1.394e+001	3.016e+002	2.460e-002	5.323e-001
0.4	6.803e+011	1.247e+001	1.744e+002	2.431e-002	3.398e-001
0.5	2.065e+011	7.381e+000	8.520e+001	1.449e-002	1.672e-001
0.6	1.123e+015	6.884e+004	6.753e+005	1.344e+002	1.318e+003
0.8	3.719e+013	5.304e+003	4.034e+004	1.009e+001	7.673e+001
1.0	2.934e+013	7.977e+003	5.005e+004	1.470e+001	9.226e+001
1 5	3 721e+013	3 178e+004	1 446e+005	5 347e+001	2 433e+002
1.5	0.72101015	5.17561004	1.44001000	0.04/01001	2.40001
TOTAL:	1.272e+015	1.139e+005	9.109e+005	2.127e+002	1.732e+003

SENSITIVITY RESULTS For: Z (cm)

Case	Sensitivity	Energy Fl	uence Rate	Exposure Ra	te In Air
Number	Variable	(MeV/sq	cm/sec)	(mR/h	r)
	Value	No Buildup	With Buildup	No Buildup	With Buildup
1	600.0	2.418e+004	2.357e+005	4.465e+001	4.456e+002
2	700.0	5.298e+003	6.089e+004	9.656e+000	1.142e+002
3	800.0	1.272e+003	1.655e+004	2.287e+000	3.078e+001
4	900.0	3.338e+002	4.756e+003	5.923e-001	8.751e+000
5	1000.0	9.478e+001	1.441e+003	1.662e-001	2.622e+000
6	1100.0	2.877e+001	4.597e+002	4.996e-002	8.264e-001
7	1200.0	9.218e+000	1.537e+002	1.588e-002	2.732e-001
8	1300.0	3.088e+000	5.370e+001	5.289e-003	9.442e-002
9	1400.0	1.072e+000	1.947e+001	1.827e-003	3.392e-002
10	1500.0	3.823e-001	7.285e+000	6.496e-004	1.259e-002
11	1600.0	1.395e-001	2.799e+000	2.364e-004	4.807e-003
12	1700.0	5.181e-002	1.098e+000	8.765e-005	1.877e-003
13	1800.0	1.953e-002	4.384e-001	3.300e-005	7.464e-004
14	1900.0	7.453e-003	1.773e-001	1.258e-005	3.011e-004
15	2000.0	2.874e-003	7.250e-002	4.847e-006	1.228e-004

MicroShield 4.00 - Serial #4.00-00128

Westinghouse Hanford Company

Page :	1	File Ref:	
DOŠ File:	CS75BRSN.MS4	Date:	
Run Date:	May 24, 1996	By:	
Run Time:	2:16 p.m. Friday	Checked:	
Duration:	0:41:19		

Case Title: Vertical Cylinder - Receptor 5 m Away From Source Center

		centimeters	feet	and inches
Dose	point coordinate X:	0.0	0.0	.0
Dose	point coordinate Y:	334.76	10.0	11.8
Dose	point coordinate Z:	500.0	16.0	4.9
	Cylinder height:	169.52	5.0	6.7
	Cylinder radius:	357.5	11.0	8.7
	Shield 1:	15.24	0.0	6.0
	Air Gap:	150.0	4.0	11.1

GEOMETRY 8 - Cylinder Volume - End Shields

Source Volume: 6.80649e+7 cm³ 2403.69 cu ft. 4.15357e+6 cu in.

MATERIAL DENSITIES (g/cm^3)

Material	Source Shield	Shield 1 Slab	Air Gap	Immersion Shield
Air			0.00122	
Concrete	1.6	1.6		1.6
Water	0.56			

BUILDUP

Method: Buildup Factor Tables The material reference is Shield 1

INTEGRATION PARAMETERS

	Quadrature	Order
Radial	16	
Circumferential	16	
Axial (along Z)	16	

SOURCE WAS ENTERED AS ENERGIES ONLY

Page : DOS File: Run Date:	2 CS75BRSN.MS4 May 24, 1996				
Run Time:	2.16 n m Fr	vehi			
Titlo ·	Vortical (vli	nder - Recent	tor 5 m Away F	rom Source (enter
incre .	Tertical Cyrr	поет кесер	tor o in Anay i	Tom Source of	
	=== RESULTS FO	R SENSITIVIT	Y REFERENCE CA	SE $(Z = 500)$	
Energy	Activity	Energy Fl	uence Rate	Exposure Ra	te In Air
(MeV)	(photons/sec)	(MeV/sq	cm/sec)	(mR/h	r)
(,	(1	No Buildup	With Buildup	No Buildup	With Buildup
0.015	4.900e+014	1.482e-122	2.045e-020	1.272e-123	1.754e-021
0.025	2.500e+014	7.323e-027	2.369e-020	1.263e-028	4.086e-022
0.035	1.600e+014	7.982e-010	2.074e-009	5.057e-012	1.314e-011
0.045	1.100e+014	1.347e-004	5.741e-004	4.481e-007	1.909e-006
0.055	8.500e+013	2.016e-002	1.354e-001	4.538e-005	3.048e-004
0.065	6.700e+013	2.378e-001	2.252e+000	4.316e-004	4.088e-003
0.075	5.400e+013	9.401e-001	1.140e+001	1.532e-003	1.859e-002
0.085	4.500e+013	2.210e+000	3.253e+001	3.434e-003	5.053e-002
0.095	3.800e+013	3.885e+000	6.628e+001	5.946e-003	1.014e-001
0.15	2.000e+014	1.613e+002	3.590e+003	2.656e-001	5.911e+000
0.25	7.700e+013	3.343e+002	6.558e+003	6.167e-001	1.210e+001
0.35	4.000e+013	4.891e+002	7.617e+003	9.435e-001	1.469e+001
0.475	3.100e+013	9.514e+002	1.149e+004	1.867e+000	2.254e+001
0.65	1.900e+013	1.475e+003	1.347e+004	2.864e+000	2.615e+001
0.825	7.200e+012	1.123e+003	8.315e+003	2.128e+000	1.576e+001
1.0	5.100e+012	1.387e+003	8.701e+003	2.556e+000	1.604e+001
1.225	2.800e+012	1.359e+003	7.215e+003	2.406e+000	1.277e+001
1.475	9.800e+011	7.992e+002	3.682e+003	1.351e+000	6.223e+000
1.7	2.400e+011	2.879e+002	1.202e+003	4.676e-001	1.952e+000
1.9	6.000e+010	9.673e+001	3.755e+002	1.520e-001	5.899e-001
2.1	6.300e+009	1.318e+001	4.806e+001	2.008e-002	7.318e-002
2.3	3.400e+007	8.981e-002	3.097e-001	1.328e-004	4.580e-004
TOTAL:	1.682e+015	8.485e+003	7.238e+004	1.565e+001	1.350e+002

SENSITIVITY RESULTS For: Z (cm)

Case	Sensitivity	Energy Flu	uence Rate	Exposure Ra	te In Air
Number	Variable	(MeV/sq	cm/sec)	(mR/h	r)
	Value	No Buildup	With Buildup	No Buildup	With Buildup
1	600.0	1.786e+003	1.769e+004	3.270e+000	3.293e+001
2	700.0	3.941e+002	4.435e+003	7.152e-001	8.217e+000
3	800.0	9.568e+001	1.198e+003	1.720e-001	2.205e+000
4	900.0	2.529e+001	3.470e+002	4.505e-002	6.338e-001
5	1000.0	7.177e+000	1.067e+002	1.268e-002	1.934e-001
6	1100.0	2.162e+000	3.452e+001	3.789e-003	6.203e-002
7	1200.0	6.835e-001	1.165e+001	1.189e-003	2.077e-002
8	1300.0	2.254e-001	4.077e+000	3.896e-004	7.216e-003
9	1400.0	7.694e-002	1.472e+000	1.322e-004	2.586e-003
10	1500.0	2.705e-002	5.452e-001	4.621e-005	9.518e-004
11	1600.0	9.754e-003	2.066e-001	1.658e-005	3.584e-004
12	1700.0	3.596e-003	7.984e-002	6.082e-006	1.377e-004
13	1800.0	1.352e-003	3.139e-002	2.276e-006	5.385e-005
14	1900.0	5.169e-004	1.253e-002	8.666e-007	2.138e-005
15	2000.0	2.008e-004	5.072e-003	3.352e-007	8.613e-006

MicroShield 4.00 - Serial #4.00-00128

Westinghouse Hanford Company

Page :	1	File Ref:	
DOŠ File:	CASE7100.MS4	Date:	
Run Date:	May 30, 1996	By:	
Run Time:	7:20 p.m. Thursday	Checked:	
Duration:	0:01:13		

Case Title: Vertical Cylinder - Receptor 100 m From Leak Point

GEOMETRY 8 - Cylinder Volume - End Shields

	centimeters	feet	and inches
Dose point coordinate X:	0.0	0.0	.0
Dose point coordinate Y:	334.76	10.0	11.8
Dose point coordinate Z:	10000.0	328.0	1.0
Cylinder height:	169.52	5.0	6.7
Cylinder radius:	357.5	11.0	8.7
Shield 1:	15.24	0.0	6.0
Air Gap:	150.0	4.0	11.1

Source Volume: 6.80649e+7 cm³ 2403.69 cu ft. 4.15357e+6 cu in.

MATERIAL DENSITIES (g/cm^3)

Material	Source Shield	Shield 1 Slab	Air Gap	Immersion Shield
Air			0.00122	
Concrete	1.6	1.6		1.6
Water	0.56			

BUILDUP

Method: Buildup Factor Tables The material reference is Shield 1

INTEGRATION PARAMETERS

	Quadrature	Order
Radial	16	
Circumferential	16	
Axial (along Z)	16	

SOURCE NUCLIDES

Nuclide	curies	μCi/cm^3	Nuclide	curies	μCi/cm^3
Ba-137m	3.3491e+004	4.9205e+002	Cs-137	3.5403e+004	5.2014e+002
Eu-154	2.5773e+003	3.7865e+001		01010001001	0.201101002

Page :	2				
DOS File:	CASE7100.MS4				
Run Date:	May 30, 1996				
Run Time:	7:20 p.m. Th	ursday			
Title :	Vertical Cyli	nder – Recep	tor 100 m From	Leak Point	
	•	•			
		===== R	ESULTS =====		
Energy	Activity	Energy Fl	uence Rate	Exposure Ra	te In Air
(MeV)	(photons/sec)	(MeV/sq	cm/sec)	(mR/h	r)
		No Buildup	With Buildup	No Buildup	With Buildup
0.1	3.859e+013	7.115e-113	1.066e-020	1.089e-115	1.631e-023
0.2	6.512e+012	1.462e-083	2.292e-020	2.580e-086	4.046e-023
0.4	6.803e+011	6.787e-065	2.890e-021	1.322e-067	5.631e-024
0.5	2.065e+011	9.947e-060	7.327e-022	1.952e-062	1.438e-024
0.6	1.123e+015	1.509e-051	3.481e-018	2.946e-054	6.794e-021
0.8	3.719e+013	2.496e-046	8.960e-020	4.747e-049	1.704e-022
1.0	2.934e+013	1.486e-041	5.441e-020	2.740e-044	1.003e-022
1.5	3.721e+013	2.290e-033	5.282e-020	3.853e-036	8.888e-023
TOTAL:	1.272e+015	2.290e-033	3.715e-018	3.853e-036	7.218e-021

MicroShield 4.00 - Serial #4.00-00128

Westinghouse Hanford Company

Page :	1	File Ref:	
DOS File:	CS7100BR.MS4	Date:	
Run Date:	May 24, 1996	By:	
Run Time:	1:34 p.m. Friday	Checked:	
Duration:	0:03:04		

Case Title: Vertical Cylinder - Receptor 100 m From Leak Point - Bremss

centimeters 0.0 334.76 10000.0 169.52 357.5 15.24	feet a 0.0 10.0 328.0 5.0 11.0 0.0	and inches .0 11.8 1.0 6.7 8.7 6.0
150.0	4.0	11.1
	centimeters 0.0 334.76 10000.0 169.52 357.5 15.24 150.0	centimeters feet 3 0.0 0.0 334.76 10.0 10000.0 328.0 169.52 5.0 357.5 11.0 15.24 0.0 150.0 4.0

GEOMETRY 8 - Cylinder Volume - End Shields

Source Volume: 6.80649e+7 cm^3 2403.69 cu ft. 4.15357e+6 cu in.

MATERIAL DENSITIES (g/cm^3)

Material	Source Shield	Shield 1 Slab	Air Gap	Immersion Shield
Air			0.00122	
Concrete	1.6	1.6		1.6
Water	0.56			

BUILDUP

Method: Buildup Factor Tables The material reference is Shield 1

INTEGRATION PARAMETERS

	Quadrature	Order
Radial	16	
Circumferential	16	
Axial (along Z)	16	

SOURCE WAS ENTERED AS ENERGIES ONLY

Page :	: 2				
DOŠ File:	CS7100BR.MS4				
Run Date:	: May 24, 1996				
Run Time:	: 1:34 p.m. Fr	iday			
Title :	: Vertical Cylin	nder – Recep	tor 100 m From	ı Leak Point	- Bremss
		R	ESULTS =====		
Energy	Activity	Energy Fl	uence Rate	Exposure Ra	te In Air
(MeV)	(photons/sec)	(MeV/sq	cm/sec)	(mR/h	r)
		No Buildup	With Buildup	No Buildup	With Buildup
0.015	4.900e+014	0.000e+000	5.685e-023	0.000e+000	4.876e-024
0.025	2.500e+014	0.000e+000	6.585e-023	0.000e+000	1.136e-024
0.035	1.600e+014	0.000e+000	1.071e-022	0.000e+000	6.786e-025
0.045	1.100e+014	8.076e-292	1.847e-022	2.686e-294	6.144e-025
0.055	8.500e+013	2.639e-205	8.677e-022	5.939e-208	1.953e-024
0.065	6.700e+013	1.742e-163	2.590e-021	3.161e-166	4.701e-024
0.075	5.400e+013	2.400e-140	2.698e-021	3.912e-143	4.397e-024
0.085	4.500e+013	4.157e-126	3.718e-021	6.458e-129	5.776e-024
0.095	3.800e+013	1.370e-116	7.164e-021	2.096e-119	1.096e-023
0.15	2.000e+014	6.907e-092	3.027e-019	1.137e-094	4.985e-022
0.25	7.700e+013	8.777e-076	3.519e-019	1.619e-078	6.492e-022
0.35	4.000e+013	1.126e-066	1.807e-019	2.173e-069	3.485e-022
0.475	3.100e+013	7.822e-059	1.149e-019	1.535e-061	2.254e-022
0.65	1.900e+013	2.055e-051	5.548e-020	3.989e-054	1.077e-022
0.825	7.200e+012	2.363e-046	1.675e-020	4.478e-049	3.173e-023
1.0	5.100e+012	2.584e-042	9.460e-021	4.764e-045	1.744e-023
1.225	2.800e+012	2.226e-038	4.440e-021	3.940e-041	7.859e-024
1.475	9.800e+011	2.956e-035	1.405e-021	4.996e-038	2.374e-024
1.7	2.400e+011	2.504e-033	3.163e-022	4.067e-036	5.137e-025
1.9	6.000e+010	4.634e-032	7.462e-023	7.281e-035	1.172e-025
2.1	6.300e+009	1.917e-031	7.600e-024	2.920e-034	1.157e-026
2.3	3.400e+007	2.479e-032	4.053e-026	3.666e-035	5.994e-029
TOTAL	1.682e+015	2 654e-031	1.055e-018	4 0556-034	1 9240-021

MicroShield 4.00 - Serial #4.00-00128

Westinghouse Hanford Company

Page :	1	File Ref:	
DOŠ File:	CASE8SEN.MS4	Date: / /	
Run Date:	May 30, 1996	By:	
Run Time:	7:39 p.m. Thursday	Checked:	
Duration:	0:18:07		

Case Title: Sphere - Receptor Directly Above Leak Point

GEOMETRY 6 - Sphere Volume

	centimeters	feet and	linches
Dose point coordinate X:	418.24	13.0	8.7
Dose point coordinate Y:	0.0	0.0	.0
Dose point coordinate Z:	0.0	0.0	.0
Sphere radius:	253.0	8.0	3.6
Transition:	15.24	0.0	6.0
Air Gap:	150.0	4.0	11.1

Source Volume: 6.78344e+7 cm^3 2395.55 cu ft. 4.13951e+6 cu in.

MATERIAL DENSITIES (g/cm^3)

Material	Source Shield	Transition Shield	Air Gap
Air	onrord	onreru	0.00122
Concrete	1.6	1.6	
Water	0.56		

BUILDUP

Method: Buildup Factor Tables The material reference is Transition

INTEGRATION PARAMETERS

	Quadrature Order
Radial	16
Angle	16

SOURCE NUCLIDES

Nuclide	curies	μCi/cm^3	Nuclide	curies	μCi/cm^3
Ba-137m	3.3491e+004	4.9372e+002	Cs-137	3:5403e+004	
Eu-154	2.5773e+003	3.7993e+001	05 107	3.340301004	5.21510+002

	ILLOULIO I	OUL OFHOILINI	IT REFERENCE O		
Energy	Activity	Energy Fl	uence Rate	Exposure Ra	te In Air
(MeV)	(photons/sec) (MeV/sq	cm/sec)	(mR/h	r)
		No Buildup	With Buildup	No Buildup	With Buildup
0.1	3.859e+013	2.903e+001	4.085e+002	4.441e-002	6.249e-001
0.2	6.512e+012	5.169e+001	8.288e+002	9.123e-002	1.463e+000
0.4	6.803e+011	3.564e+001	3.845e+002	6.944e-002	7.492e-001
0.5	2.065e+011	1.956e+001	1.780e+002	3.839e-002	3.494e-001
0.6	1.123e+015	1.720e+005	1.356e+006	3.357e+002	2.646e+003
0.8	3.719e+013	1.213e+004	7.646e+004	2.308e+001	1.454e+002
1.0	2.934e+013	1.713e+004	9.114e+004	3.157e+001	1.680e+002
1.5	3.721e+013	6.155e+004	2.472e+005	1.036e+002	4.158e+002
TOTAL:	1.272e+015	2.629e+005	1.772e+006	4.941e+002	3.379e+003

SENSITIVITY RESULTS For: Z (cm)

Case	Sensitivity	Energy Flu	ence Rate	Exposure Ra	te In Air
Number	Variable	(MeV/sq	cm/sec)	(mR/h	r)
	Value	No Buildup	With Buildup	No Buildup	With Buildup
1	500.0	1.571e+002	2.244e+003	2.787e-001	4.128e+000
2	600.0	3.107e+001	4.764e+002	5.443e-002	8.655e-001
3	700.0	6.868e+000	1.110e+002	1.190e-002	1.990e-001
4	800.0	1.658e+000	2.807e+001	2.849e-003	4.968e-002
5	900.0	4.288e-001	7.611e+000	7.324e-004	1.332e-002
6	1000.0	1.170e-001	2.188e+000	1.989e-004	3.791e-003
7	1100.0	3.329e-002	6.599e-001	5.643e-005	1.135e-003
8	1200.0	9.794e-003	2.068e-001	1.657e-005	3.535e-004
9	1300.0	2.961e-003	6.678e-002	5.001e-006	1.137e-004
10	1400.0	9.152e-004	2.208e-002	1.544e-006	3.747e-005
11	1500.0	2.883e-004	7.440e-003	4.861e-007	1.260e-005
12	1600.0	9.225e-005	2.545e-003	1.555e-007	4.301e-006
13	1700.0	2.993e-005	8.812e-004	5.042e-008	1.488e-006
14	1800.0	9.826e-006	3.082e-004	1.655e-008	5.199e-007
15	1900.0	3.260e-006	1.087e-004	5.489e-009	1.833e-007
16	2000.0	1.092e-006	3.864e-005	1.838e-009	6.511e-008

MicroShield 4.00 - Serial #4.00-00128

Westinghouse Hanford Company

Page :	1	File Ref:	
DOS File:	CS8BRSEN.MS4	Date:	
Run Date:	May 24, 1996	By:	
Run Time:	3:23 p.m. Friday	Checked:	
Duration:	0:47:18		

Case Title: Sphere - Receptor Directly Above Leak Point

GEOMETRY 6 - Sphere Volume

	centimeters	feet a	nd inches
Dose point coordinate X:	418.24	13.0	8.7
Dose point coordinate Y:	0.0	0.0	.0
Dose point coordinate Z:	0.0	0.0	.0
Sphere radius:	253.0	8.0	3.6
Transition:	15.24	0.0	6.0
Air Gap:	150.0	4.0	11.1

Source Volume: 6.78344e+7 cm^3 2395.55 cu ft. 4.13951e+6 cu in.

MATERIAL DENSITIES (g/cm^3)

Material	Source Shield	Transition Shield	Air Gap
Air	Shrena	Shrend	0.00122
Concrete	1.6	1.6	
Water	0.56		

BUILDUP

Method: Buildup Factor Tables The material reference is Transition

INTEGRATION PARAMETERS

	Quadrature	Order
Radial	16	
Angle	16	

SOURCE WAS ENTERED AS ENERGIES ONLY

Page :	2 COODSEN MSA				
DUS File:	May 2/ 1006				
Dun Timo	- 3.22 n m E	ridav			
Title	Sobere - Rec	entor Directly	Above leak	Point	
11010 .	ophere keek	cptor briceen	Above ceak i	ome	
	===== RESULTS	FOR SENSITIVI	TY REFERENCE (CASE $(Z = 0)$	
Energy	Activity	Energy Flu	ience Rate	Exposure Ra	te In Air
(MeV)	(photons/sec) (MeV/sa	cm/sec)	(mR/h	r)
()	(p, tet)	No Buildup	With Buildup	No Buildup	With Buildup
0.015	4.900e+014	4.835e-100	3.535e-020	4.147e-101	3.032e-021
0.025	2.500e+014	2.288e-021	4.437e-020	3.947e-023	7.653e-022
0.035	1.600e+014	2.645e-007	6.581e-007	1.676e-009	4.169e-009
0.045	1.100e+014	5.481e-003	2.158e-002	1.823e-005	7.178e-005
0.055	8.500e+013	3.309e-001	1.967e+000	7.447e-004	4.426e-003
0.065	6.700e+013	2.427e+000	1.959e+001	4.405e-003	3.556e-002
0.075	5.400e+013	7.270e+000	7.300e+001	1.185e-002	1.190e-001
0.085	4.500e+013	1.433e+001	1.698e+002	2.226e-002	2.637e-001
0.095	3.800e+013	2.232e+001	2.995e+002	3.416e-002	4.584e-001
0.15	2.000e+014	6.802e+002	1.132e+004	1.120e+000	1.864e+001
0.25	7.700e+013	1.134e+003	1.656e+004	2.093e+000	3.055e+001
0.35	4.000e+013	1.465e+003	1.739e+004	2.826e+000	3.354e+001
0.475	3.100e+013	2.564e+003	2.428e+004	5.030e+000	4.765e+001
0.65	1.900e+013	3.593e+003	2.660e+004	6.976e+000	5.165e+001
0.825	7.200e+012	2.546e+003	1.567e+004	4.825e+000	2.970e+001
1.0	5.100e+012	2.977e+003	1.584e+004	5.488e+000	2.921e+001
1.225	2.800e+012	2.765e+003	1.271e+004	4.894e+000	2.249e+001
1.475	9.800e+011	1.554e+003	6.307e+003	2.626e+000	1.066e+001
1.7	2.400e+011	5.424e+002	2.019e+003	8.809e-001	3.279e+000
1.9	6.000e+010	1.781e+002	6.219e+002	2.798e-001	9.771e-001
2.1	6.300e+009	2.381e+001	7.867e+001	3.625e-002	1.198e-001
2.3	3.400e+007	1.595e-001	5.019e-001	2.359e-004	7.423e-D04
TOTAL:	1.682e+015	2.007e+004	1.500e+005	3.715e+001	2,793e+002
	:	SENSITIVITY R	ESULTS For: Z	(cm)	
Case	Sensitivity	Energy Flu	Jence Rate	Exposure Ra	te In Air
Number	Variable	(MeV/sa	cm/sec)	(mR/h	r)
	Value	No Buildup	With Buildup	No Buildup	With Buildup
1	500.0	1.189e+001	1.636e+002	2.119e-002	2.987e-001
2	600.0	2.353e+000	3.529e+001	4.152e-003	6.388e-002
3	700.0	5.151e-001	8.353e+000	9.013e-004	1.499e-002
4	800.0	1.223e-001	2.131e+000	2.124e-004	3.790e-003
5	900.0	3.104e-002	5.777e-001	5.348e-005	1.019e-003
6	1000.0	8.314e-003	1.646e-001	1.423e-005	2.880e-004
7	1100.0	2.331e-003	4.890e-002	3.965e-006	8.494e-005
8	1200.0	6.794e-004	1.505e-002	1.149e-006	2.597e-005
9	1300.0	2.047e-004	4.776e-003	3.445e-007	8.188e-006
10	1400.0	6.351e-005	1.556e-003	1.064e-007	2.652e-006
11	1500.0	2.021e-005	5.187e-004	3.369e-008	8.793e-007
12	1600.0	6.577e-006	1.765e-004	1.092e-008	2.977e-007
13	1700.0	2.184e-006	6.114e-005	3.612e-009	1.026e-007
14	1800.0	/.383e-007	2.153e-005	1.216e-009	3.597e-008
15	1900.0	2.536e-007	7.689e-006	4.165e-010	1.280e-008
16	2000.0	8.844e-008	2.783e-006	1.447e-010	4.614e-009

MicroShield 4.00 - Serial #4.00-00128

Westinghouse Hanford Company

Page :	1	File Ref:	
DOS File:	CASE8100.MS4	Date:	
Run Date:	May 30, 1996	By:	
Run Time:	7:21 p.m. Thursday	Checked:	
Duration:	0:01:12		

Case Title: Sphere - Receptor 100 m From Leak Point

GEOMETRY 6 - Sphere Volume

	centimeters	feet a	nd inches
Dose point coordinate X:	418.24	13.0	8.7
Dose point coordinate Y:	0.0	0.0	.0
Dose point coordinate Z:	10000.0	328.0	1.0
Sphere radius:	253.0	8.0	3.6
Transition:	15.24	0.0	6.0
Air Gap:	150.0	4.0	11.1

Source Volume: 6.78344e+7 cm^3 2395.55 cu ft. 4.13951e+6 cu in.

MATERIAL DENSITIES (g/cm^3)

Material	Source Shield	Transition Shield	Air Gap
Air			0.00122
Concrete	1.6	1.6	
Water	0.56		

BUILDUP

Method: Buildup Factor Tables The material reference is Transition

INTEGRATION PARAMETERS

	Quadrature Orde	1
Radial	16	
Angle	16	

SOURCE NUCLIDES

Nuclide Ba-137m Eu-154	curies 3.3491e+004 2.5773e+003	μCi/cm^3 4.9372e+002 3.7993e+001	Nuclide Cs-137	curies 3.5403e+004	µCi/cm^3 5.2191e+002
------------------------------	--------------------------------------	--	-------------------	-----------------------	-------------------------

Page : 2 DOŠ File: CASE8100.MS4 Run Date: May 30, 1996 Run Time: 7:21 p.m. Thursday Title : Sphere - Receptor 100 m From Leak Point Energy Activity Energy Fluence Rate Exposure Rate In Air (MeV) (photons/sec) (MeV/sq cm/sec) (mR/hr) No Buildup With Buildup No Buildup With Buildup 0.1 3.859e+013 1.711e-138 1.064e-020 2.618e-141 1.628e-023 0.2 6.512e+012 1.829e-102 2.289e-020 3.228e-105 4.039e-023 0.4 6.803e+011 1.763e-079 2.885e-021 3.435e-082 5.622e-024 0.5 2.065e+011 4.395e-073 7.316e-022 8.627e-076 1.436e-024 6.005e-064 2.620e-057 0.6 1.123e+015 3.475e-018 1.172e-066 6.784e-021 8.946e-020 0.8 3.719e+013 4.983e-060 1.702e-022 1.0 2.934e+013 1.632e-051 5.433e-020 3.009e-054 1.00le-022 1.5 3.721e+013 1.132e-041 5.274e-020 1.905e-044 8.873e-023 TOTAL: 1.272e+015 1.132e-041 3.709e-018 1.905e-044 7.206e-021

MicroShield 4.00 - Serial #4.00-00128

Westinghouse Hanford Company

Page :	1	File Ref:	
DOS File:	CS8100BR.MS4	Date:	11
Run Date:	May 24, 1996	By:	
Run Time:	2:36 p.m. Friday	Checked:	
Duration:	0:03:02		

Case Title: Sphere - Receptor 100 m From Leak Point - Bremss

GEOMETRY 6 - Sphere Volume

	centimeters	feet an	d inches
Dose point coordinate X:	418.24	13.0	8.7
Dose point coordinate Y:	0.0	0.0	.0
Dose point coordinate Z:	10000.0	328.0	1.0
Sphere radius:	253.0	8.0	3.6
Transition:	15.24	0.0	6.0
Air Gap:	150.0	4.0	11.1

Source Volume: 6.78344e+7 cm^3 2395.55 cu ft. 4.13951e+6 cu in.

MATERIAL DENSITIES (g/cm^3)

Material	Source Shield	Transition Shield	Air Gap
Air	onrera	Unicita	0.00122
Concrete	1.6	1.6	
Water	0.56		

BUILDUP

Method: Buildup Factor Tables The material reference is Transition

INTEGRATION PARAMETERS

	Quadrature	Order
Radial	16	
Angle	16	

SOURCE WAS ENTERED AS ENERGIES ONLY

Page DOS File Run Date Run Time Title	: 2 : CS8100BR.MS4 : May 24, 1996 : 2:36 p.m. Fr : Sphere - Rece	iday ptor 100 m F	rom Leak Point	- Bremss	
		R	ESULTS =====		
Energy	Activity	Energy Fl	uence Rate	Exposure Ra	te In Air
(MeV)	(photons/sec)	(MeV/sq	cm/sec)	(mR/h	r)
		No Buildup	With Buildup	No Buildup	With Buildup
0.015	4.900e+014	0.000e+000	5.676e-023	0.000e+000	4.868e-024
0.025	2.500e+014	0.000e+000	6.574e-023	0.000e+000	1.134e-024
0.035	1.600e+014	0.000e+000	1.070e-022	0.000e+000	6.//5e-025
0.045	1.100e+014	0.000e+000	1.844e-022	0.000e+000	6.134e-025
0.055	8.500e+013	7.209e-252	8.663e-022	1.622e-254	1.950e-024
0.065	6.700e+013	1.452e-200	2.586e-021	2.635e-203	4.694e-024
0.075	5.400e+013	3.515e-172	2.693e-021	5.729e-175	4.389e-024
0.085	4.500e+013	1.024e-154	3.712e-021	1.590e-157	5.766e-024
0.095	3.800e+013	4.839e-143	7.153e-021	7.405e-146	1.095e-023
0.15	2.000e+014	5.704e-113	3.022e-019	9.394e-116	4.977e-022
0.25	7.700e+013	3.332e-093	3.513e-019	6.147e-096	6.481e-022
0.35	4.000e+013	4.928e-082	1.804e-019	9.506e-085	3.479e-022
0.475	3.100e+013	1.829e-072	1.147e-019	3.589e-075	2.250e-022
0.65	1.900e+013	2.084e-063	5.539e-020	4.046e-066	1.075e-022
0.825	7.200e+012	3.463e-057	1.672e-020	6.563e-060	3.168e-023
1.0	5.100e+012	2.838e-052	9.445e-021	5.23le-055	1.741e-023
1.225	2.800e+012	1.789e-047	4.433e-021	3.167e-050	7.847e-024
1.475	9.800e+011	1.266e-043	1.402e-021	2.140e-046	2.370e-024
1.7	2.400e+011	3.456e-041	3.157e-022	5.614e-044	5.129e-025
1.9	6.000e+010	1.500e-039	7.450e-023	2.357e-042	1.171e-025
2.1	6.300e+009	1.276e-038	7.588e-024	1.943e-041	1.155e-026
2.3	3.400e+007	3.059e-039	4.047e-026	4.524e-042	5.985e-029
TOTAL:	1.682e+015	1.735e-038	1.054e-018	2.636e-041	1.921e-021

APPENDIX C

MICROSKYSHINE OUTPUT FILES

This page intentionally left blank.

MicroSkyshine

CASE: SKYSHINE @ 5M FROM MIDPOINT OF PIPE CENTERLINE

GEOMETRY: Horizontal cylinder source behind a wall

DIMENSIONS (meters):

Distance between wall and detectorX	5.
Depth of source behind wall Y	1.01
Offset of detector Z	-15.085
Depth of dose point H	-0.5
Distance between source and wall	0.01
Distance between near source edge and wall R2	1.6952
Thickness of cover slab	0.
Thickness of second shield	0.1524
Radius of sourceW	0.8476
Length of source L	30.17

INTEGRATION PARAMETERS:

Number of Radial SegmentsM	5
Number of Circumferential SegmentsN	5
Number of Length SegmentsC	5
Quadrature Order	16

MATERIAL DENSITIES (g/cc):

Ambient air: .0012

Material	Cover Slab	Lower Shield	Volume Source
Air			
Water			0.56
Concrete		1.6	1.6
Iron			
Lead			
Zirconium			
Urania			

Buildup factor based on: AIR.

CASE: SKYSHINE @ 5M FROM MIDPOINT OF PIPE CENTERLINE

SOURCE NUCLIDES:

Nuclide	Curies	Nuclide	Curies
Ba-137m Eu-154	3.3491e+04 2.5773e+03	Cs-137	3.5403e+04

RESULTS OF SENSITIVITY STUDY ON DIMENSION X - REFERENCE CASE:

Reference case value: 5

Group #	Energy (mev)	Activity (photons/sec)	Dose point rads/photon	Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	1.30 1.01 .84 .66 .48 .40 .24 .20 .12	3.819e+13 2.757e+13 1.751e+13 1.143e+15 9.308e+11 1.997e+11 6.296e+12 2.166e+11 3.859e+13	1.684e-20 1.494e-20 1.269e-20 1.190e-20 1.019e-20 8.429e-21 6.850e-21 5.577e-21 1.748e-21	2.651e+00 1.699e+00 9.161e-01 3.912e-02 6.941e-03 1.778e-01 4.981e-03 2.781e-01
	TOTALS:	1.272e+15		6.185e+01

RESULTS Group #	S FOR SEN Energy (mev)	SITIVITY ITERATI Activity (photons/sec)	ON 1 OF 15 (DIM Dose point rads/photon	ENSION X = 6): Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	1.30 1.01 .84 .66 .48 .40 .24 .20 .12	3.819e+13 2.757e+13 1.751e+13 1.143e+15 9.308e+11 1.997e+11 6.296e+12 2.166e+11 3.859e+13	1.547e-20 1.378e-20 1.172e-20 1.103e-20 9.488e-21 7.855e-21 6.387e-21 5.199e-21 1.629e-21	2.435e+00 1.566e+00 8.459e-01 3.642e-02 6.468e-03 1.658e-01 4.644e-03 2.593e-01
	TOTALS:	1.272e+15		5.731e+01
RESULT: Group #	S FOR SEN Energy (mev)	SITIVITY ITERATI Activity (photons/sec)	ON 2 OF 15 (DIM Dose point rads/photon	IENSION X = 7): Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	1.30 1.01 .84 .66 .48 .40 .24 .20 .12	3.819e+13 2.757e+13 1.751e+13 1.143e+15 9.308e+11 1.997e+11 6.296e+12 2.166e+11 3.859e+13	1.434e-20 1.281e-20 1.090e-20 8.885e-21 7.361e-21 5.981e-21 4.868e-21 1.525e-21	2.258e+00 1.456e+00 7.873e-01 4.855e+01 3.410e-02 6.062e-03 1.553e-01 4.348e-03 2.427e-01

TOTALS: 1.272e+15

5.349e+01

raye 4				
RESULTS Group #	FOR SEN Energy (mev)	SITIVITY ITERATI(Activity (photons/sec)	DN 3 OF 15 (DIM Dose point rads/photon	IENSION X = 8): Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	1.30 1.01 .84 .66 .48 .40 .24 .20 .12	3.819e+13 2.757e+13 1.751e+13 1.143e+15 9.308e+11 1.997e+11 6.296e+12 2.166e+11 3.859e+13	1.337e-20 1.198e-20 1.021e-20 9.666e-21 8.357e-21 6.928e-21 5.622e-21 4.573e-21 1.432e-21	2.106e+00 1.362e+00 7.369e-01 4.555e+01 3.207e-02 5.705e-03 1.459e-01 4.085e-03 2.279e-01
-	TOTALS:	1.272e+15		5.017e+01
RESULT: Group #	5 FOR SEN Energy (mev)	ISITIVITY ITERATI Activity (photons/sec)	ON 4 OF 15 (DIN Dose point rads/photon	MENSION X = 9) Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	1.30 1.01 .84 .66 .48 .40 .24 .20 .12	3.819e+13 2.757e+13 1.751e+13 1.143e+15 9.308e+11 1.997e+11 6.296e+12 2.166e+11 3.859e+13	1.254e-20 1.126e-20 9.598e-21 9.108e-21 7.889e-21 6.543e-21 5.299e-21 4.308e-21 1.349e-21	1.975+00 1.279e+00 6.930e-01 4.292e+01 3.028e-02 5.388e-03 1.376e-01 3.848e-03 2.146e-01

TOTALS:

1.272e+15

4.726e+01

RESULTS	FOR SENSI	TIVITY ITERATION	5 OF 15 (DIMENS	SION X = 10)
Group	Energy	Activity	Dose point	Dose rate
#	(mev)	(photons/sec)	rads/photon	(mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	1.30 1.01 .84 .66 .48 .40 .24 .20 .12	3.819e+13 2.757e+13 1.751e+13 1.143e+15 9.308e+11 1.997e+11 6.296e+12 2.166e+11 3.859e+13	1.181e-20 1.062e-20 9.062e-21 8.612e-21 7.470e-21 6.198e-21 5.008e-21 4.069e-21 1.273e-21	1.860e+00 1.207e+00 6.542e-01 4.059e+01 2.867e-02 5.104e-03 1.300e-01 3.635e-03 2.025e-01
	TOTALS:	1.272e+15		4.468e+01
RESULTS	FOR SENSI	TIVITY ITERATION	6 OF 15 (DIMEN	SION X = 11)
Group	Energy	Activity	Dose point	Dose rate

Group #	(mev)	(photons/sec)	Dose point rads/photon	Uose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	1.30 1.01 .84 .66 .48 .40 .24 .20 .12	3.819e+13 2.757e+13 1.751e+13 1.143e+15 9.308e+11 1.997e+11 6.296e+12 2.166e+11 3.859e+13	1.117e-20 1.005e-20 8.583e-21 8.168e-21 7.092e-21 5.887e-21 4.744e-21 3.852e-21 1.204e-21	1.759e+00 1.143e+00 6.197e-01 3.849e+01 2.722e-02 4.848e-03 1.232e-01 3.440e-03 1.916e-01
	TOTALS:	1.272e+15		4.236e+01

RESULTS	FOR SENSI	TIVITY ITERATION	7 OF 15 (DIMEN	SION X = 12):
Group	Energy	Activity	Dose point	Dose rate
#	(mev)	(photons/sec)	rads/photon	(mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	1.30 1.01 .84 .66 .40 .24 .20 .12	3.819e+13 2.757e+13 1.751e+13 1.143e+15 9.308e+11 1.997e+11 6.296e+12 2.166e+11 3.859e+13	1.059e-20 9.546e-21 8.154e-21 7.767e-21 6.750e-21 5.604e-21 4.503e-21 3.653e-21 1.141e-21	1.668e+00 1.085e+00 5.887e-01 3.660e+01 2.591e-02 4.615e-03 1.169e-01 3.263e-03 1.815e-01
	TOTALS:	1.272e+15		4.028e+01
RESULTS	FOR SENS	ITIVITY ITERATION	8 OF 15 (DIME	NSION X = 13):
Group	Energy	Activity	Dose point	Dose rate
#	(mey)	(photons/sec)	rads/photon	(mr/br)

aroup #	(mev)	(photons/sec)	rads/photon	(mr/hr)	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	1.30 1.01 .84 .66 .48 .40 .24 .20 .12	3.819e+13 2.757e+13 1.751e+13 1.143e+15 9.308e+11 1.997e+11 6.296e+12 2.166e+11 3.859e+13	1.007e-20 9.088e-21 7.765e-21 7.402e-21 6.437e-21 5.345e-21 4.283e-21 3.471e-21 1.083e-21	1.586e+00 1.033e+00 5.606e-01 3.489e+01 2.471e-02 4.402e-03 1.112e-01 3.101e-03 1.724e-01	
	TOTALS:	1.272e+15		3.838e+01	

RESULTS Group #	FOR SENS Energy (mev)	ITIVITY ITERATION Activity (photons/sec)	9 OF 15 (DIME Dose point rads/photon	NSION X = 14): Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	1.30 1.01 .84 .66 .48 .40 .24 .20 .12	3.819e+13 2.757e+13 1.751e+13 1.143e+15 9.308e+11 1.997e+11 6.296e+12 2.166e+11 3.859e+13	9.605e-21 8.671e-21 7.412e-21 7.070e-21 6.151e-21 5.108e-21 4.080e-21 3.304e-21 1.030e-21	1.512e+00 9.858e-01 5.351e-01 3.332e+01 2.361e-02 4.206e-03 1.059e-01 2.951e-03 1.639e-01
	TOTALS:	1.272e+15		3.665e+01
RESULTS Group #	FOR SENS Energy (mev)	ITIVITY ITERATION Activity (photons/sec)	10 OF 15 (DIM Dose point rads/photon	ENSION X = 15): Dose rate (mr/hr)
1 2 3 4 5 6 7	1.30 1.01 .84 .66 .48 .40 .24	3.819e+13 2.757e+13 1.751e+13 1.143e+15 9.308e+11 1.997e+11 6.296e+12	9.177e-21 8.292e-21 7.090e-21 6.765e-21 5.887e-21 4.890e-21 3.892e-21	1.445e+00 9.426e-01 5.119e-01 3.188e+01 2.260e-02 4.026e-03

8 9 .20 2.166e+11 .12 3.859e+13 3.149e-21 9.809e-22 2.813e-03 1.561e-01 10 11 12 13 14 15 16 17 18 19 20 ----------1.272e+15 TOTALS:

63 of 116

3.507e+01

RESULTS Group #	FOR SENS Energy (mev)	ITIVITY ITERATION Activity (photons/sec)	11 OF 15 (DIME Dose point rads/photon	NSION X = 16): Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	1.30 1.01 .84 .66 .48 .40 .24 .20 .12	3.819e+13 2.757e+13 1.751e+13 1.143e+15 9.308e+11 1.997e+11 6.296e+12 2.166e+11 3.859e+13	8.786e-21 7.943e-21 6.793e-21 6.484e-21 5.644e-21 4.688e-21 3.719e-21 3.006e-21 9.354e-22	1.384e+00 9.029e-01 4.904e-01 3.056e+01 2.166e-02 3.860e-03 9.654e-02 2.685e-03 1.488e-01
-	TOTALS:	1.272e+15		3.361e+01

RESULTS FOR SENSITIVITY ITERATION 12 OF 15 (DIMENSION X = 17):

Group #	Energy (mev)	Activity (photons/sec)	Dose point rads/photon	Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	1.30 1.01 .84 .66 .48 .40 .24 .20 .12	3.819e+13 2.757e+13 1.751e+13 1.143e+15 9.308e+11 1.997e+11 6.296e+12 2.166e+11 3.859e+13	8.425e-21 7.621e-21 6.519e-21 6.223e-21 5.417e-21 4.500e-21 3.557e-21 2.873e-21 8.930e-22	1.327e+00 8.663e-01 4.706e-01 2.039e+01 2.079e-02 3.705e-03 9.235e-02 2.566e-03 1.421e-01
	TOTALS:	1.272e+15		3.225e+01

RESULTS Group #	FOR SENSI Energy (mev)	TIVITY ITERATION Activity (photons/sec)	13 OF 15 (DIME Dose point rads/photon	NSION X = 18): Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	1.30 1.01 .84 .66 .48 .40 .24 .20 .12	3.819e+13 2.757e+13 1.751e+13 1.143e+15 9.308e+11 1.997e+11 6.296e+12 2.166e+11 3.859e+13	8.091e-21 7.322e-21 6.265e-21 5.981e-21 5.207e-21 4.325e-21 3.407e-21 2.749e-21 8.536e-22	1.274e+00 8.324e-01 4.523e-01 2.819e+01 1.998e-02 3.561e-03 8.845e-02 2.455e-03 1.358e-01
ſ	TOTALS:	1.272e+15		3.100e+01
	EOD SENSI	TIVITY ITEDATION		

Group #	Energy (mev)	Activity (photons/sec)	Dose point rads/photon	Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	1.30 1.01 .84 .66 .48 .40 .24 .20 .12	3.819e+13 2.757e+13 1.751e+13 1.143e+15 9.308e+11 1.997e+11 6.296e+12 2.166e+11 3.859e+13	7.782e-21 7.045e-21 6.028e-21 5.756e-21 5.010e-21 4.162e-21 3.267e-21 2.633e-21 8.168e-22	1.225e+00 8.009e-01 4.352e-01 2.713e+01 1.923e-02 3.427e-03 8.480e-02 2.352e-03 1.300e-01
	TOTALS:	1.272e+15		2.983e+01

RESULTS Group #	FOR SENSI Energy (mev)	TIVITY ITERATION Activity (photons/sec)	15 OF 15 (DIME Dose point rads/photon	NSION X = 20): Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	1.30 1.01 .84 .66 .48 .40 .24 .20 .12	3.819e+13 2.757e+13 1.751e+13 1.143e+15 9.308e+11 1.997e+11 6.296e+12 2.166e+11 3.859e+13	7.494e-21 6.787e-21 5.808e-21 5.545e-21 4.826e-21 4.008e-21 3.135e-21 2.524e-21 7.823e-22	1.180e+00 7.715e-01 4.193e-01 2.613e+01 1.852e-02 3.301e-03 8.139e-02 2.255e-03 1.245e-01
-	FOTALS:	1.272e+15		2.873e+01

MicroSkyshine						
(Nuclear & Radiological Safety Analysis	- 1.16-007)					
Page: 1	File Ref:					
File: CS6SENBR.SKY	Date:					
Run: 10:12 a.m.	By:					
: May 25, 1996	Checked:					

CASE: SKYSHINE @ 5M FROM MIDPOINT OF PIPE CENTERLINE - BREMSSTRA

GEOMETRY: Horizontal cylinder source behind a wall

DIMENSIONS (meters):

Distance between wall and detector X	5.
Depth of source behind wall Y	1.01
Offset of detector Z	-15.085
Depth of dose point H	-0.5
Distance between source and wall R1	0.01
Distance between near source edge and wall R2	1.6952
Thickness of cover slab T1	0.
Thickness of second shield	0.1524
Radius of source W	0.8476
Length of source L	30.17

INTEGRATION PARAMETERS:

Number of Radial SegmentsM	5
Number of Circumferential SegmentsN	5
Number of Length SegmentsC	5
Quadrature Order	16

MATERIAL DENSITIES (g/cc):

Ambient air: .0012

Material	Cover Slab	Lower Shield	Volume Source
Air			
Water			0.56
Concrete		1.6	1.6
Iron			-
Lead			
Zirconium			
Urania			

Buildup factor based on: AIR.

CASE: SKYSHINE @ 5M FROM MIDPOINT OF PIPE CENTERLINE - BREMSSTRA

SOURCE NUCLIDES:

Nuclide	Curies	Nuclide	Curies
Ba-137m Eu-154	2.7100e+04 2.5778e+03	Cs-137	2.8647e+04

RESULTS OF SENSITIVITY STUDY ON DIMENSION X - REFERENCE CASE:

Reference case value: 5

Group #	Energy (mev)	Activity (photons/sec)	Dose point rads/photon	Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20	2.30 2.10 1.90 1.70 1.48 1.23 1.00 .82 .65 .47 .35 .25 .15	3.400e+07 6.300e+09 6.000e+10 2.400e+11 9.800e+12 5.100e+12 7.200e+12 1.900e+13 3.100e+13 4.000e+13 7.700e+13 2.000e+14	1.981e-20 1.966e-20 1.885e-20 1.579e-20 1.676e-20 1.488e-20 1.241e-20 1.190e-20 1.009e-20 7.261e-21 6.972e-21 3.652e-21	2.777e-06 5.106e-04 4.665e-03 1.729e-02 6.381e-02 1.935e-01 3.683e-01 9.326e-01 1.290e+00 1.198e+00 2.214e+00 3.012e+00
	TOTALS:	3.834e+14		9.607e+00
RESULTS Group #	FOR SEN Energy (mev)	SITIVITY ITERATI Activity (photons/sec)	ON 1 OF 16 (DIM Dose point rads/photon	IENSION X = 5): Dose rate (mr/hr)
---	--	--	---	---
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	2.30 2.10 1.90 1.70 1.48 1.23 1.00 .82 .65 .47 .35 .25 .15	3.400e+07 6.300e+09 6.000e+10 2.400e+11 9.800e+12 5.100e+12 7.200e+12 1.900e+13 3.100e+13 4.000e+13 7.700e+13 2.000e+14	1.981e-20 1.966e-20 1.885e-20 1.747e-20 1.579e-20 1.676e-20 1.488e-20 1.241e-20 1.241e-20 1.009e-20 7.261e-21 6.972e-21 3.652e-21	2.777e-06 5.106e-04 4.665e-03 1.729e-02 6.381e-02 1.935e-01 3.128e-01 3.683e-01 9.326e-01 1.290e+00 1.198e+00 2.214e+00 3.012e+00
٦	OTALS:	3.834e+14		9.607e+00
RESULTS Group #	5 FOR SEN Energy (mev)	SITIVITY ITERATI Activity (photons/sec)	ION 2 OF 16 (DIM Dose point rads/photon	IENSION X = 6): Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12	2.30 2.10 1.90 1.70 1.48 1.23 1.00 .82 .65 .47 .35	3.400e+07 6.300e+09 6.000e+10 2.400e+11 9.800e+12 5.100e+12 7.200e+12 1.900e+13 3.100e+13 4.000e+13	1.800e-20 1.790e-20 1.720e-20 1.595e-20 1.445e-20 1.542e-20 1.372e-20 1.146e-20 1.104e-20 9.392e-21 6.771e-21	2.523e-06 4.649e-04 4.254e-03 1.579e-02 5.839e-02 1.780e-01 2.884e-01 3.402e-01 8.651e-01 1.201e+00 1.117e+00
13 14 15 16 17 18 19 20	.25 .15	7.700e+13 2.000e+14	6.501e-21 3.405e-21	2.064e+00 2.808e+00

RESULT Group #	TS FOR SEN Energy (mev)	SITIVITY ITERATI Activity (photons/sec)	ON 3 OF 16 (DI Dose point rads/photon	MENSION X = 7): Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	2.30 2.10 1.90 1.70 1.48 1.23 1.00 .82 .65 .47 .35 .25 .15	3.400e+07 6.300e+09 6.000e+10 2.400e+11 9.800e+11 7.200e+12 5.100e+12 3.100e+13 4.000e+13 7.700e+13 2.000e+14	1.654e-20 1.648e-20 1.585e-20 1.472e-20 1.430e-20 1.275e-20 1.067e-20 1.067e-20 8.796e-21 6.348e-21 6.088e-21 3.188e-21	2.319e-06 4.280e-04 3.921e-03 1.457e-02 5.397e-02 1.651e-01 2.682e-01 3.166e-01 8.080e-01 1.124e+00 1.047e+00 1.933e+00 2.629e+00
	TOTALS:	3.834e+14		8.364e+00
RESULT Group #	S FOR SEN Energy (mev)	SITIVITY ITERATI Activity (photons/sec)	ON 4 OF 16 (DII Dose point rads/photon	MENSION X = 8): Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	2.30 2.10 1.90 1.70 1.48 1.23 1.00 .82 .65 .47 .35 .25 .15	3.400e+07 6.300e+09 6.000e+10 2.400e+11 9.800e+11 2.800e+12 5.100e+12 7.200e+12 1.900e+13 3.100e+13 4.000e+13 7.700e+13 2.000e+14	1.532e-20 1.528e-20 1.472e-20 1.368e-20 1.243e-20 1.335e-20 1.193e-20 9.984e-21 9.680e-21 8.273e-21 5.976e-21 5.723e-21 2.993e-21	2.148e-06 3.970e-04 3.641e-03 1.354e-02 5.023e-02 1.542e-01 2.508e-01 2.964e-01 7.584e-01 1.058e+00 9.857e-01 1.817e+00 2.469e+00
18 19 20				

RESULTS Group #	FOR SENS Energy (mev)	ITIVITY ITERATION Activity (photons/sec)	N 5 OF 16 (DIME Dose point rads/photon	NSION X = 9): Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	2.30 2.10 1.90 1.70 1.48 1.23 1.00 .82 .65 .47 .35 .25 .15	3.400e+07 6.300e+09 6.000e+10 2.400e+11 9.800e+11 2.800e+12 7.200e+12 7.200e+12 3.100e+13 4.000e+13 7.700e+13 2.000e+14	1.429e-20 1.426e-20 1.375e-20 1.279e-20 1.163e-20 1.253e-20 1.121e-20 9.389e-21 9.123e-21 7.810e-21 5.646e-21 5.395e-21 2.819e-21	2.003e-06 3.705e-04 3.401e-03 1.266e-02 4.701e-02 1.447e-01 2.357e-01 2.788e-01 7.148e-01 9.983e-01 9.312e-01 1.713e+00 2.325e+00
Ţ	OTALS:	3.834e+14		7.405e+00

RESULTS FOR SENSITIVITY ITERATION 6 OF 16 (DIMENSION X = 10):

Group #	Energy (mev)	Activity (photons/sec)	Dose point rads/photon	Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	2.30 2.10 1.90 1.70 1.48 1.23 1.00 .82 .65 .47 .35 .25 .15	3.400e+07 6.300e+09 6.000e+10 2.400e+11 9.800e+12 7.200e+12 7.200e+12 3.100e+13 3.100e+13 7.700e+13 2.000e+14	1.339e-20 1.338e-20 1.291e-20 1.202e-20 1.094e-20 1.181e-20 1.057e-20 8.865e-21 8.628e-21 7.396e-21 5.349e-21 5.100e-21 2.662e-21	1.877e-06 3.476e-04 3.193e-03 1.189e-02 4.421e-02 1.363e-01 2.223e-01 2.632e-01 6.760e-01 9.454e-01 8.823e-01 1.619e+00 2.195e+00
	TOTALS:	3.834e+14		6.999e+00

RESULTS Group #	FOR SENS Energy (mev)	ITIVITY ITERATION Activity (photons/sec)	7 OF 16 (DIMEN Dose point rads/photon	SION X = 11); Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	2.30 2.10 1.90 1.70 1.48 1.23 1.00 .82 .65 .47 .35 .25 .15	3.400e+07 6.300e+09 6.000e+10 2.400e+11 9.800e+11 2.800e+12 7.200e+12 1.900e+13 3.100e+13 4.000e+13 7.700e+13 2.000e+14	1.261e-20 1.217e-20 1.134e-20 1.033e-20 1.117e-20 1.001e-20 8.397e-21 8.184e-21 7.022e-21 5.081e-21 4.832e-21 2.518e-21	1.768e-06 3.275e-04 3.011e-03 1.122e-02 4.173e-02 1.289e-01 2.493e-01 6.411e-01 8.976e-01 8.381e-01 1.534e+00 2.077e+00
	TOTALS:	3.834e+14		6.633e+00
RESULTS Group #	FOR SENS Energy (mev)	ITIVITY ITERATION Activity (photons/sec)	8 OF 16 (DIMEN Dose point rads/photon	SION X = 12): Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	2.30 2.10 1.90 1.70 1.48 1.23 1.00 .82 .65 .47 .35 .25 .15	3.400e+07 6.300e+09 6.000e+10 2.400e+11 9.800e+11 2.800e+12 7.200e+12 7.200e+12 1.900e+13 3.100e+13 4.000e+13 7.700e+13 2.000e+14	1.192e-20 1.192e-20 1.073e-20 9.783e-21 1.060e-20 9.505e-21 7.977e-21 6.683e-21 4.838e-21 4.587e-21 2.387e-21	1.671e-06 3.098e-04 2.849e-03 1.062e-02 3.953e-02 1.223e-01 1.999e-01 2.368e-01 6.097e-01 8.543e-01 7.979e-01 1.456e+00 1.969e+00
	12 IATOT	3 8340+14		6 2000+00

RESULTS Group # 1 2 3 4 5 6 7	FOR SENSI Energy (mev) 2.30 2.10 1.90 1.70 1.48 1.23 1.00	ITIVITY ITERATION Activity (photons/sec) 3.400e+07 6.300e+09 6.000e+10 2.400e+11 9.800e+11 2.800e+12 5.100e+12 5.000e+12	9 OF 16 (DIMEN Dose point rads/photon 1.130e-20 1.032e-20 1.019e-20 9.295e-21 1.008e-20 9.049e-21	SION X = 13): Dose rate (mr/hr) 1.584e-06 2.939e-04 2.704e-03 1.009e-02 3.756e-02 1.164e-01 1.903e-01 2.956e-01
9 10 11 12 13 14 15 16 17 18 19 20	.65 .47 .35 .25 .15	1.900e+13 3.100e+13 4.000e+13 7.700e+13 2.000e+14	7.418e-21 6.374e-21 4.615e-21 4.363e-21 2.267e-21	5.812e-01 8.147e-01 7.612e-01 1.385e+00 1.870e+00
	TOTALS:	3.834e+14		5.995e+00
RESULTS Group #	FOR SENS Energy (mev)	ITIVITY ITERATION Activity (photons/sec)	10 OF 16 (DIME Dose point rads/photon	NSION X = 14) Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	2.30 2.10 1.90 1.70 1.48 1.23 1.00 .82 .65 .47 .35 .25 .15	3.400e+07 6.300e+09 6.000e+10 2.400e+11 9.800e+11 2.800e+12 5.100e+12 7.200e+12 1.900e+13 3.100e+13 4.000e+13 7.700e+13 2.000e+14	1.075e-20 1.076e-20 9.703e-21 8.855e-21 9.613e-21 8.634e-21 7.252e-21 7.085e-21 6.090e-21 4.410e-21 4.157e-21 2.156e-21	1.507e-06 2.796e-04 2.574e-03 9.603e-03 3.578e-02 1.110e-01 1.816e-01 2.153e-01 5.551e-01 7.785e-01 7.274e-01 1.320e+00 1.778e+00
	TOTALS:	3.834e+14		5.715e+00

:

RESULTS Group #	FOR SENSI Energy (mev)	TIVITY ITERATION Activity (photons/sec)	11 OF 16 (DIMEN Dose point rads/photon	NSION X = 15): Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	2.30 2.10 1.90 1.70 1.48 1.23 1.00 .82 .65 .47 .35 .25 .15	3.400e+07 6.300e+09 6.000e+10 2.400e+11 9.800e+11 2.800e+12 5.100e+12 7.200e+12 1.900e+13 3.100e+13 4.000e+13 7.700e+13 2.000e+14	1.024e-20 1.027e-20 9.926e-21 9.261e-21 8.454e-21 9.187e-21 8.256e-21 6.937e-21 6.937e-21 5.829e-21 4.222e-21 3.967e-21 2.054e-21	1.436e-06 2.667e-04 2.456e-03 9.165e-03 3.416e-02 1.061e-01 1.736e-01 2.059e-01 5.312e-01 7.451e-01 6.964e-01 1.260e+00 1.694e+00
	TOTALS:	3.834e+14		5.458e+00
RESULTS Group #	FOR SENS Energy (mev)	ITIVITY ITERATION Activity (photons/sec)	12 OF 16 (DIME) Dose point rads/photon	NSION X = 16): Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	2.30 2.10 1.90 1.70 1.48 1.23 1.00 .82 .65 .47 .35 .25 .15	3.400e+07 6.300e+09 6.000e+10 2.400e+11 9.800e+12 5.100e+12 7.200e+12 1.900e+13 3.100e+13 4.000e+13 7.700e+13 2.000e+14	9.789e-21 9.812e-21 9.812e-21 8.856e-21 8.088e-21 8.797e-21 7.909e-21 6.647e-21 6.647e-21 5.588e-21 4.048e-21 3.791e-21 1.960e-21	1.372e-06 2.549e-04 2.348e-03 8.765e-03 3.268e-02 1.016e-01 1.663e-01 1.973e-01 5.091e-01 7.143e-01 6.676e-01 1.204e+00 1.616e+00

TOTALS:

3.834e+14

:

FOR SENS)	TIVITY ITERATION	13 OF 16 (DIMEN	NSION X = 17):
Energy	Activity	Dose point	Dose rate
(mev)	(photons/sec)	rads/photon	(mr/hr)
2.30	3.400e+07	9.371e-21	1.314e-06
2.10	6.300e+09	9.396e-21	2.441e-04
1.90	6.000e+10	9.090e-21	2.249e-03
1.70	2.400e+11	8.485e-21	8.397e-03
1.48	9.800e+11	7.752e-21	3.133e-02
1.23	2.800e+12	8.437e-21	9.741e-02
1.00	5.100e+12	7.588e-21	1.596e-01
.82	7.200e+12	6.379e-21	1.894e-01
.65	1.900e+13	6.379e-21	4.886e-01
.47	3.100e+13	5.364e-21	6.857e-01
.35	4.000e+13	3.885e-21	6.409e-01
.25	7.700e+13	3.627e-21	1.152e+00
.15	2.000e+14	1.872e-21	1.543e+00
TOTALS:	3.834e+14		4.999e+00
FOR SENS	ITIVITY ITERATION	14 OF 16 (DIME)	NSION X = 18):
Energy	Activity	Dose point	Dose rate
(mev)	(photons/sec)	rads/photon	(mr/hr)
2.30 2.10 1.90 1.70 1.48 1.23 1.00 .82 .65 .47 .35 .25 .15	3.400e+07 6.300e+09 6.000e+10 2.400e+11 9.800e+11 2.800e+12 5.100e+12 7.200e+12 1.900e+13 3.100e+13 7.700e+13 2.000e+14	8.986e-21 9.013e-21 8.722e-21 8.143e-21 7.441e-21 7.291e-21 6.130e-21 5.994e-21 5.156e-21 3.475e-21 1.790e-21	1.260e-06 2.341e-04 2.158e-03 8.058e-03 3.007e-02 9.356e-02 1.533e-01 1.820e-01 4.696e-01 6.590e-01 6.159e-01 1.103e+00 1.476e+00
	FOR SENS) Energy (mev) 2.30 2.10 1.90 1.70 1.48 1.23 1.00 .82 .65 .47 .35 .25 .15 FOR SENS Energy (mev) 2.30 2.10 1.90 1.70 1.48 1.23 1.00 .82 .65 .47 .35 .25 .15	FOR SENSITIVITY ITERATION Energy Activity (mev) (photons/sec) 	FOR SENSITIVITY ITERATION 13 OF 16 (DIMEN Energy Activity Dose point (mev) (photons/sec) rads/photon

TOTALS:

3.834e+14

4.793e+00

RESULTS Group #	FOR SENS Energy (mev)	ITIVITY ITERATION Activity (photons/sec)	15 OF 16 (Dose point rads/photon	DIMENSION X = 19): Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	2.30 2.10 1.90 1.70 1.48 1.23 1.00 .82 .65 .47 .35 .25 .15	3.400e+07 6.300e+09 6.000e+10 2.400e+11 9.800e+11 2.800e+12 7.200e+12 7.200e+12 1.900e+13 3.100e+13 4.000e+13 7.700e+13 2.000e+14	8.631e-21 8.660e-21 8.381e-21 7.826e-21 7.154e-21 7.015e-21 5.899e-21 4.961e-21 3.593e-21 3.332e-21 1.713e-21	1.210e-06 2.250e-04 2.074e-03 7.745e-03 2.891e-02 8.999e-02 1.475e-01 1.751e-01 4.519e-01 6.341e-01 5.927e-01 1.058e+00 1.413e+00
	TOTALS:	3.834e+14		4.601e+00

RESULTS FOR SENSITIVITY ITERATION 16 OF 16 (DIMENSION X = 20):

Group #	Energy (mev)	Activity (photons/sec)	Dose point rads/photon	Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9	2.30 2.10 1.90 1.70 1.48 1.23 1.00 .82 .65 .47 .35 .25 .15	3.400e+07 6.300e+09 6.000e+10 2.400e+11 9.800e+11 2.800e+12 7.200e+12 1.900e+13 3.100e+13 4.000e+13 7.700e+13 2.000e+14	8.303e-21 8.332e-21 8.065e-21 7.533e-21 6.887e-21 7.507e-21 6.758e-21 5.683e-21 5.683e-21 5.683e-21 3.461e-21 3.199e-21 1.641e-21	1.164e-06 2.164e-04 1.995e-03 7.454e-03 2.783e-02 8.667e-02 1.421e-01 1.687e-01 4.354e-01 6.108e-01 5.708e-01 1.016e+00 1.354e+00
20	TOTALS:	3.834e+14		4.421e+00

76 of 116

WHC-SD-WM-CN-004 REV 1

MicroSkyshine

(Nuclear & Radiological	Safety Analysis -	1.16-007)				
Page: 1		File Ref:				
File: CASE6100.SKY		Date: / /				
Run: 6:23 a.m.		By:				
: May 31, 1996		Checked:				

CASE: SKYSHINE @ 100M FROM MIDPOINT OF PIPE CENTERLINE

GEOMETRY: Horizontal cylinder source behind a wall

DIMENSIONS (meters):

Distance between wall and detectorX	100.
Depth of source behind wallY	1.01
Offset of detector Z	-15.085
Depth of dose point H	~0.5
Distance between source and wall R1	0.01
Distance between near source edge and wall R2	1.6952
Thickness of cover slab	0.
Thickness of second shield T2	0.1524
Radius of sourceW	0.8476
Length of sourceL	30.17

INTEGRATION PARAMETERS:

Number of Radial Segments	5
Number of Circumferential Segments	5
Number of Length Segments	5
Quadrature Order	16

MATERIAL DENSITIES (g/cc):

Ambient air: .0012

Material	Cover Slab	Lower Shield	Volume Source
Air			
Water			0.56
Concrete		1.6	1.6
Iron			1.0
Lead			
Zirconium			
Urania			

Buildup factor based on: AIR.

77 of 116

CASE: SKYSHINE @ 100M FROM MIDPOINT OF PIPE CENTERLINE

SOURCE NUCLIDES:

Nuclide	Curies	Nuclide	Curies
			~~~~~~~~
Ba-137m Eu-154	3.3491e+04 2.5773e+03	Cs-137	3.5403e+04

### **RESULTS:**

Group #	Energy (mev)	Activity (photons/sec)	Dose point rads/photon	Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	1.30 1.01 .84 .66 .48 .40 .24 .20 .12	3.819e+13 2.757e+13 1.751e+13 1.143e+15 9.308e+11 1.997e+11 6.296e+12 2.166e+11 3.859e+13	1.338e-21 1.186e-21 1.007e-21 9.118e-22 7.496e-22 6.129e-22 3.686e-22 2.737e-22 7.719e-23	2.107e-01 1.348e-01 7.271e-02 4.297e+00 2.877e-03 5.047e-04 9.569e-03 2.445e-04 1.228e-02
	TOTALS:	1.272e+15		4.741e+00

#### WHC-SD-WM-CN-004 REV 1

MicroSkyshine	
===========	
(Nuclear & Radiological Safety Analysis - 1.16-007)	
Page: 1 File Ref:	
File: CS6100BR.SKY Date:	
Run: 10:12 a.m. By:	
: May 25, 1996 Checked:	

#### CASE: SKYSHINE @ 100M FROM MIDPOINT OF PIPE CENTERLINE - BREMSSTRA

GEOMETRY: Horizontal cylinder source behind a wall

#### DIMENSIONS (meters):

Distance between wall and detectorX	100.
Depth of source behind wall	1.01
Offset of detector Z	-15.085
Depth of dose point H	-0.5
Distance between source and wall R1	0.01
Distance between near source edge and wall R2	1.6952
Thickness of cover slab	0.
Thickness of second shield	0.1524
Radius of sourceW	0.8476
Length of sourceL	30.17

#### INTEGRATION PARAMETERS:

Number of Radial SegmentsM	5
Number of Circumferential SegmentsN	5
Number of Length SegmentsC	5
Quadrature Order	16

# MATERIAL DENSITIES (g/cc):

#### Ambient air: .0012

Material	Cover Slab	Lower Shield	Volume Source
Air			
Water			0.56
Concrete		1.6	1.6
Iron			1.0
Lead			
Zirconium			
Ilrania			

Buildup factor based on: AIR.

CASE: SKYSHINE @ 100M FROM MIDPOINT OF PIPE CENTERLINE - BREMSSTRA

## SOURCE NUCLIDES:

Nuclide	Curies	Nuclide	Curies
Ba-137m Fu-154	2.7100e+04 2.5778e+03	Cs-137	2.8647e+04

### **RESULTS:**

Group #	Energy (mev)	Activity (photons/sec)	Dose point rads/photon	Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	2.30 2.10 1.90 1.70 1.48 1.23 1.00 .82 .65 .47 .35 .25 .15	3.400e+07 6.300e+09 6.000e+10 2.400e+11 9.800e+11 2.800e+12 5.100e+12 7.200e+12 1.900e+13 3.100e+13 7.700e+13 2.000e+14	1.550e-21 1.546e-21 1.489e-21 1.386e-21 1.258e-21 1.331e-21 1.181e-21 9.848e-22 9.079e-22 7.413e-22 5.251e-22 3.823e-22 1.678e-22	2.172e-07 4.015e-05 3.685e-04 1.372e-03 5.084e-03 1.537e-02 2.483e-02 2.924e-02 7.113e-02 9.475e-02 8.661e-02 1.214e-01 1.384e-01
20	TOTALS:	3.834e+14		5.886e-01

#### WHC-SD-WM-CN-004 REV 1

### MicroSkyshine

(Nuclear & Radiological Safety Analysis - 1.16-007)	
Page: 1 File Ref:	
File: CASE7SEN.SKY Date: //	_
Run: 6:23 a.m. By:	
: May 31, 1996 Checked:	_

CASE: Vertical Cylinder - Skyshine 0 5 m

GEOMETRY: Vertical cylinder area source behind a wall

### DIMENSIONS (meters):

Distance between wall and detector	Х	5.
Depth of source behind wall	Y	0.16
Offset of detector	Ζ	0.
Depth of dose point	н	~0.1
Distance between center of source and wall	R1	0.01
Thickness of cover slab	Τ1	0.
Thickness of second shield	T2	0.1524
Radius of source	W	3.575
Height of source	L	1.6952

#### INTEGRATION PARAMETERS:

Number of Radial SegmentsM	5
Number of Circumferential SegmentsN	5
Number of Vertical SegmentsC	5
Quadrature Order	16

### MATERIAL DENSITIES (g/cc):

#### Ambient air: .0012

Material	Cover Slab	Lower Shield	Volume Source
Air			
Water			0.56
Concrete		1.6	1.6
Iron			
Lead			
Zirconium			
Urania			

Buildup factor based on: AIR.

CASE: Vertical Cylinder - Skyshine 0 5 m

### SOURCE NUCLIDES:

Nuclide	Curies	Nuclide	Curies
Ba-137m 3 Fu-154 2	.3491e+04 .5773e+03	Cs-137	3.5403e+04

## RESULTS OF SENSITIVITY STUDY ON DIMENSION X - REFERENCE CASE:

### Reference case value: 5

Group #	Energy (mev)	Activity (photons/sec)	Dose point rads/photon	Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	1.30 1.01 .84 .66 .48 .40 .24 .20 .12	3.819e+13 2.757e+13 1.751e+13 1.143e+15 9.308e+11 1.997e+11 6.296e+12 2.166e+11 3.859e+13	4.083e-21 3.250e-21 2.544e-21 2.167e-21 1.593e-21 1.192e-21 7.730e-22 5.516e-22 1.026e-22	6.430e-01 3.694e-01 1.837e-01 6.115e-03 9.815e-04 2.007e-02 4.927e-04 1.632e-02
	TOTALS:	1.272e+15		1.145e+01

RESULTS Group #	S FOR SEN Energy (mev)	SITIVITY ITERATI Activity (photons/sec)	ON 1 OF 15 (DIM Dose point rads/photon	ENSION X = 6): Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20	1.30 1.01 .84 .66 .48 .40 .24 .20 .12	3.819e+13 2.757e+13 1.751e+13 1.143e+15 9.308e+11 1.997e+11 6.296e+12 2.166e+11 3.859e+13	3.513e-21 2.809e-21 2.203e-21 1.886e-21 1.393e-21 1.043e-21 6.733e-22 4.798e-22 8.911e-23	5.533e-01 3.194e-01 1.591e-01 8.887e+00 5.345e-03 8.587e-04 1.748e-02 4.286e-04 1.418e-02
	TOTALS:	1.272e+15		9.956e+00
RESULT: Group #	S FOR SEN Energy (mev)	SITIVITY ITERATI Activity (photons/sec)	ON 2 OF 15 (DIM Dose point rads/photon	IENSION X = 7): Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	1.30 1.01 .84 .66 .48 .40 .24 .20 .12	3.819e+13 2.757e+13 1.751e+13 1.143e+15 9.308e+11 1.997e+11 6.296e+12 2.166e+11 3.859e+13	3.107e-21 2.492e-21 1.957e-21 1.680e-21 1.243e-21 9.317e-22 5.981e-22 4.255e-22 7.890e-23	4.892e-01 2.833e-01 1.413e-01 7.915e+00 4.772e-03 7.672e-04 1.553e-02 3.801e-04 1.255e-02

TOTALS:

---

1.272e+15

_____

8.863e+00

. ....

---

RESULT Group #	S FOR SEN Energy (mev)	SITIVITY ITERATI Activity (photons/sec)	ON 3 OF 15 (DIM Dose point rads/photon	IENSION X = 8): Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	1.30 1.01 .84 .66 .48 .40 .24 .20 .12	3.819e+13 2.757e+13 1.751e+13 1.143e+15 9.308e+11 1.997e+11 6.296e+12 2.166e+11 3.859e+13	2.799e-21 2.251e-21 1.769e-21 1.521e-21 1.128e-21 8.452e-22 5.391e-22 3.830e-22 7.089e-23	4.408e-01 2.559e-01 1.277e-01 7.168e+00 4.328e-03 6.959e-04 1.400e-02 3.421e-04 1.128e-02
	TOTALS:	1.272e+15		8.023e+00
RESULT Group #	S FOR SEN Energy (mev)	SITIVITY ITERATI Activity (photons/sec)	ON 4 OF 15 (DIN Dose point rads/photon	(ENSION X = 9) Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	1.30 1.01 .84 .66 .48 .40 .24 .20 .12	3.819e+13 2.757e+13 1.751e+13 1.143e+15 9.308e+11 1.997e+11 6.296e+12 2.166e+11 3.859e+13	2.557e-21 2.060e-21 1.619e-21 1.394e-21 1.034e-21 7.753e-22 4.915e-22 3.486e-22 6.440e-23	4.027e-01 2.341e-01 1.169e-01 6.570e+00 3.969e-03 6.384e-04 1.276e-02 3.114e-04 1.025e-02

TOTALS:

1.272e+15

7.351e+00

RESULTS Group #	FOR SENSI Energy (mev)	ITIVITY ITERATION Activity (photons/sec)	5 OF 15 (DIMEN Dose point rads/photon	ISION X = 10) Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 920	1.30 1.01 .84 .66 .48 .40 .24 .20 .12	3.819e+13 2.757e+13 1.751e+13 1.143e+15 9.308e+11 1.997e+11 6.296e+12 2.166e+11 3.859e+13	2.360e-21 1.903e-21 1.497e-21 1.289e-21 9.569e-22 7.174e-22 4.519e-22 3.200e-22 5.903e-23	3.716e-01 2.163e-01 1.081e-01 6.077e+00 3.673e-03 5.908e-04 1.173e-02 2.859e-04 9.392e-03
	TOTALS:	1.272e+15		6.798e+00
RESULTS Group #	FOR SENSI Energy (mev)	TIVITY ITERATION Activity (photons/sec)	6 OF 15 (DIMEN Dose point rads/photon	ISION X = 11): Dose rate (mr/hr)
1	1.30	3.819e+13	2.194e-21	3.456e-01

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20	1.30 1.01 .84 .66 .48 .40 .24 .20 .12	3.819e+13 2.757e+13 1.751e+13 1.143e+15 9.308e+11 1.997e+11 6.296e+12 2.166e+11 3.859e+13	2.194e-21 1.772e-21 1.394e-21 8.916e-22 6.684e-22 4.185e-22 2.959e-22 5.448e-23	3.456e-01 2.014e-01 1.006e-01 5.661e+00 3.422e-03 5.504e-04 1.086e-02 2.643e-04 8.668e-03
	TOTALS:	1.272e+15		6.332e+00

RESULTS	FOR SENS	ITIVITY ITERATION	7 OF 15 (DIMI	ENSION X = 12):
Group	Energy	Activity	Dose point	Dose rate
#	(mev)	(photons/sec)	rads/photon	(mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	1.30 1.01 .84 .66 .48 .40 .24 .20 .12	3.819e+13 2.757e+13 1.751e+13 1.143e+15 9.308e+11 1.997e+11 6.296e+12 2.166e+11 3.859e+13	2.054e-21 1.659e-21 1.306e-21 1.125e-21 8.352e-22 6.261e-22 3.897e-22 2.751e-22 5.057e-23	3.234e-01 1.886e-01 9.429e-02 5.304e+00 3.206e-03 5.156e-04 1.012e-02 2.457e-04 8.046e-03
	TOTALS:	1.272e+15		5.932e+00
RESULTS	FOR SENS	ITIVITY ITERATION	8 OF 15 (DIME	ENSION X = 13):
Group	Energy	Activity	Dose point	Dose rate
#	(mev)	(photons/sec)	rads/photon	(mr/hr)
1	1.30	3.819e+13	1.932e-21	3.042e-01
2	1.01	2.757e+13	1.562e-21	1.775e-01
3	.84	1.751e+13	1.230e-21	8.877e-02
4	.66	1.143e+15	1.059e-21	4.993e+00
5	.48	9.308e+11	7.861e-22	3.017e-03
6	.40	1.997e+11	5.892e-22	4.852e-04
7	.24	6.296e+12	3.646e-22	9.4642.02

RESULTS Group #	FOR SENSI Energy (mev)	TIVITY ITERATION Activity (photons/sec)	9 OF 15 (DIMEN Dose point rads/photon	SION X = 14): Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	1.30 1.01 .84 .66 .40 .24 .20 .12	3.819e+13 2.757e+13 1.751e+13 1.143e+15 9.308e+11 1.997e+11 6.296e+12 2.166e+11 3.859e+13	1.825e-21 1.476e-21 1.162e-21 1.001e-21 5.566e-22 3.424e-22 2.411e-22 4.417e-23	2.873e-01 1.678e-01 8.391e-02 4.719e+00 2.850e-03 4.583e-04 8.890e-03 2.153e-04 7.028e-03
-	TOTALS:	1.272e+15		5.277e+00

RESULTS FOR SENSITIVITY IT	FERATION 10	OF 15	(DIMENSION X =	15):
----------------------------	-------------	-------	----------------	------

Group #	Energy (mev)	Activity (photons/sec)	Dose poinṫ rads/photon	Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	1.30 1.01 .84 .66 .48 .40 .24 .20 .12	3.819e+13 2.757e+13 1.751e+13 1.143e+15 9.308e+11 1.997e+11 6.296e+12 2.166e+11 3.859e+13	1.730e-21 1.400e-21 1.102e-21 9.494e-22 7.039e-22 5.275e-22 3.227e-22 2.269e-22 4.151e-23	2.724e-01 1.591e-01 7.959e-02 4.474e+00 2.702e-03 4.344e-04 8.378e-03 2.026e-04 6.604e-03
٦	TOTALS:	1.272e+15		 5.004e+00

RESULTS Group #	FOR SENSI Energy (mev)	TIVITY ITERATION Activity (photons/sec)	11 OF 15 (DIME Dose point rads/photon	NSION X = 16): Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	1.30 1.01 .84 .66 .48 .40 .24 .20 .12	3.819e+13 2.757e+13 1.751e+13 1.143e+15 9.308e+11 1.997e+11 6.296e+12 2.166e+11 3.859e+13	1.645e-21 1.331e-21 1.049e-21 9.029e-22 6.691e-22 5.013e-22 3.051e-22 2.141e-22 3.912e-23	2.590e-01 1.514e-01 7.571e-02 4.255e+00 2.568e-03 4.128e-04 7.919e-03 1.913e-04 6.225e-03
	TOTALS:	1.272e+15		4.758e+00

RESULIS FOR SENSITIVITY I	TERATION	12 OF 1	5 (DIMENSION	X = 12	7١،
---------------------------	----------	---------	--------------	--------	-----

Group #	Energy (mev)	Activity (photons/sec)	Dose point rads/photon	Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	1.30 1.01 .84 .66 .48 .40 .24 .20 .12	3.819e+13 2.757e+13 1.751e+13 1.143e+15 9.308e+11 1.997e+11 6.296e+12 2.166e+11 3.859e+13	1.568e-21 1.270e-21 1.000e-21 8.607e-22 6.375e-22 4.776e-22 2.891e-22 2.027e-22 3.697e-23	2.469e-01 1.443e-01 7.221e-02 4.056e+00 2.447e-03 3.333e-04 7.505e-03 1.810e-04 5.882e-03
	TOTALS:	1.272e+15		4.536e+00

18 19 20

RESULTS	FOR SENS	ITIVITY ITERATION	13 OF 15 (DIM	ENSION $X = 18$ :
Group #	Energy (mev)	Activity (photons/sec)	Dose point rads/photon	Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	1.30 1.01 .84 .66 .48 .40 .24 .20 .12	3.819e+13 2.757e+13 1.751e+13 1.143e+15 9.308e+11 1.997e+11 6.296e+12 2.166e+11 3.859e+13	1.498e-21 1.214e-21 9.561e-22 8.224e-22 6.088e-22 2.746e-22 1.922e-22 3.502e-23	2.360e-01 1.380e-01 6.902e-02 3.876e+00 2.337e-03 3.755e-04 7.128e-03 1.717e-04 5.571e-03
	TOTALS:	1.272e+15		4.334e+00
RESULTS Group #  1 2 3	FOR SENS Energy (mev)  1.30 1.01 .84	ITIVITY ITERATION Activity (photons/sec)  3.819e+13 2.757e+13 1.751e+13	14 OF 15 (DIM Dose point rads/photon  1.435e-21 1.162e-21 9.157e-22	ENSION X = 19): Dose rate (mr/hr)  2.259e-01 1.321e-01 6.611e-02
4 5 6 7 9 10 11 12 13 14 15 16 17	.66 .48 .40 .24 .20 .12	1.143e+15 9.308e+11 1.997e+11 6.296e+12 2.166e+11 3.859e+13	7.872e-22 5.824e-22 4.362e-22 2.613e-22 1.827e-22 3.323e-23	3.710e+00 2.235e-03 3.592e-04 6.784e-03 1.632e-04 5.288e-03

.24 .20 .12	6.296e+12 2.166e+11 3.859e+13	2.613e-22 1.827e-22 3.323e-23
TOTALS:	1.272e+15	

-----4.149e+00

RESULTS Group #	FOR SENSI Energy (mev)	TIVITY ITERATION Activity (photons/sec)	15 OF 15 (DI Dose point rads/photon	MENSION X = 20): Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	1.30 1.01 .84 .66 .48 .40 .24 .20 .12	3.819e+13 2.757e+13 1.751e+13 1.143e+15 9.308e+11 1.997e+11 6.296e+12 2.166e+11 3.859e+13	1.376e-21 1.115e-21 8.786e-22 7.549e-22 5.582e-22 4.179e-22 2.491e-22 1.740e-22 3.160e-23	2.168e-01 1.268e-01 6.343e-02 3.558e+00 2.142e-03 3.442e-04 6.467e-03 1.554e-04 5.028e-03
1	FOTALS:	1.272e+15		3.979e+00

WHC-SD-WM-CN-004 REV 1

#### MicroSkyshine

2===:		
(Nuclear & Radiological	Safety Analysis - 1.16-007)	
Page: 1	File Ref:	
File: CS7SENBR.SKY	Date:	
Run: 7:25 a.m.	By:	
: May 28, 1996	Checked:	

CASE: Vertical Cylinder - Skyshine @ 5 m - Bremsstrahlung

GEOMETRY: Vertical cylinder area source behind a wall

## DIMENSIONS (meters):

Distance between wall and detector	Х	5.
Depth of source behind wall	Y	0.16
Offset of detector	Ζ	0.
Depth of dose point	Н	-0.1
Distance between center of source and wall	R1	0.01
Thickness of cover slab	T1	0.
Thickness of second shield	T2	0.1524
Radius of source	W	3.575
Height of source	L	1.6952

### **INTEGRATION PARAMETERS:**

Number of Radial SegmentsM	5
Number of Circumferential SegmentsN	5
Number of Vertical SegmentsC	5
Quadrature Order	16

# MATERIAL DENSITIES (g/cc):

### Ambient air: .0012

Material	Cover Slab	Lower Shield	Volume Source
Air			
Water			0.56
Concrete		1.6	1.6
Iron			
Lead			
Zirconium	1		
Urania			

Buildup factor based on: AIR.

CASE: Vertical Cylinder - Skyshine @ 5 m - Bremsstrahlung

SOURCE NUCLIDES:

Source was entered by energy groups.

RESULTS OF SENSITIVITY STUDY ON DIMENSION X - REFERENCE CASE:

Reference case value: 5

Group #	Energy (mev)	Activity (photons/sec)	Dose point rads/photon	Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	2.30 2.10 1.90 1.70 1.48 1.23 1.00 .82 .65 .47 .35 .25 .15	3.400e+07 6.300e+09 6.000e+10 2.400e+11 9.800e+12 5.100e+12 7.200e+12 1.900e+13 3.100e+13 4.000e+13 7.700e+13 2.000e+14	5.910e-21 5.685e-21 5.260e-21 4.672e-21 3.995e-21 3.974e-21 3.227e-21 2.463e-21 2.463e-21 1.567e-21 9.553e-22 8.002e-22 2.934e-22	8.286e-07 1.477e-04 1.301e-03 4.624e-03 1.614e-02 4.589e-02 6.787e-02 7.313e-02 1.682e-01 2.003e-01 1.576e-01 2.541e-01 2.420e-01
	TOTALS:	3.834e+14		1.231e+00

RESULTS Group #	FOR SENS Energy (mev)	ITIVITY ITERATI Activity (photons/sec)	ON 1 OF 16 (DIM Dose point rads/photon	ENSION X = 5): Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	2.30 2.10 1.90 1.70 1.48 1.23 1.00 .82 .65 .47 .35 .25 .15	3.400e+07 6.300e+09 6.000e+10 2.400e+11 9.800e+11 2.800e+12 7.200e+12 7.200e+12 3.100e+13 3.100e+13 7.700e+13 2.000e+14	5.910e-21 5.685e-21 5.260e-21 4.672e-21 3.974e-21 3.227e-21 2.463e-21 2.147e-21 1.567e-21 9.553e-22 8.002e-22 2.934e-22	8.286e-07 1.477e-04 1.301e-03 4.624e-03 1.614e-02 4.589e-02 6.787e-02 7.313e-02 1.682e-01 2.003e-01 1.576e-01 2.541e-01 2.420e-01
T	OTALS:	3.834e+14		1.231e+00
RESULTS Group #	FOR SENS Energy (mev)	SITIVITY ITERATI Activity (photons/sec)	ON 2 OF 16 (DIM Dose point rads/photon	ENSION X = 6): Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	2.30 2.10 1.90 1.70 1.48 1.23 1.00 .82 .65 .47 .35 .25 .15	3.400e+07 6.300e+09 6.000e+10 2.400e+11 9.800e+12 7.200e+12 7.200e+12 1.900e+13 3.100e+13 4.000e+13 2.000e+14	4.999e-21 4.825e-21 4.478e-21 3.987e-21 3.421e-21 3.425e-21 2.790e-21 2.134e-21 1.870e-21 1.370e-21 8.363e-22 6.972e-22 2.550e-22	7.008e-07 1.253e-04 1.108e-03 3.946e-03 1.382e-02 3.954e-02 5.868e-02 6.334e-02 1.465e-01 1.751e-01 1.379e-01 2.214e-01 2.103e-01

TOTALS:

3.834e+14

---1.072e+00

RESULTS Group #	FOR SENS Energy (mev)	ITIVITY ITERATI Activity (photons/sec)	ON 3 OF 16 (DIM Dose point rads/photon	ENSION X = 7): Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	2.30 2.10 1.90 1.70 1.48 1.23 1.00 .82 .65 .47 .35 .25 .15	3.400e+07 6.300e+09 6.000e+10 2.400e+11 9.800e+11 2.800e+12 7.200e+12 1.900e+13 3.100e+13 4.000e+13 7.700e+13 2.000e+14	4.369e-21 4.227e-21 3.931e-21 3.014e-21 3.031e-21 2.475e-21 1.895e-21 1.223e-21 7.473e-22 6.195e-22 2.259e-22	6.126e-07 1.098e-04 9.725e-04 3.470e-03 1.218e-02 3.500e-02 5.205e-02 5.626e-02 1.305e-01 1.564e-01 1.233e-01 1.967e-01 1.863e-01
Т	OTALS:	3.834e+14		9.532e-01
RESULTS Group #	FOR SENS Energy (mev)	SITIVITY ITERATI Activity (photons/sec)	ON 4 OF 16 (DIM Dose point rads/photon	ENSION X = 8): Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	2.30 2.10 1.90 1.70 1.48 1.23 1.00 .82 .65 .47 .35 .25 .15	3.400e+07 6.300e+09 6.000e+10 2.400e+11 9.800e+11 2.800e+12 7.200e+12 7.200e+12 1.900e+13 3.100e+13 4.000e+13 7.700e+13 2.000e+14	3.905e-21 3.784e-21 3.524e-21 3.147e-21 2.710e-21 2.236e-21 1.713e-21 1.509e-21 1.109e-21 6.780e-22 5.586e-22 2.031e-22	5.475e-07 9.831e-05 8.718e-04 3.114e-03 1.095e-02 3.156e-02 4.701e-02 5.086e-02 1.182e-01 1.418e-01 1.118e-01 1.774e-01 1.675e-01

TOTALS:

3.834e+14

8.612e-01

RESULTS Group #	FOR SENS Energy (mev)	SITIVITY ITERATION Activity (photons/sec)	5 OF 16 (DIME) Dose point rads/photon	NSION X = 9): Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	2.30 2.10 1.90 1.70 1.48 1.23 1.00 .82 .65 .47 .35 .25 .15	3.400e+07 6.300e+09 6.000e+10 2.400e+11 9.800e+11 2.800e+12 7.200e+12 7.200e+12 3.100e+13 4.000e+13 7.700e+13 2.000e+14	3.545e-21 3.440e-21 3.206e-21 2.866e-21 2.471e-21 2.498e-21 2.046e-21 1.569e-21 1.383e-21 1.018e-21 6.220e-22 5.094e-22 1.847e-22	4.970e-07 8.936e-05 7.932e-04 2.836e-03 9.984e-03 2.884e-02 4.302e-02 4.657e-02 1.084e-01 1.301e-01 1.026e-01 1.617e-01 1.523e-01
T	OTALS:	3.834e+14		7.872e-01
RESULTS Group #	FOR SENS Energy (mev)	ITIVITY ITERATION Activity (photons/sec)	6 OF 16 (DIMEN Dose point rads/photon	SION X = 10): Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	2.30 2.10 1.90 1.70 1.48 1.23 1.00 .82 .65 .47 .35 .25 .15	3.400e+07 6.300e+09 6.000e+10 2.400e+11 9.800e+12 5.100e+12 7.200e+12 1.900e+13 3.100e+13 4.000e+13 7.700e+13 2.000e+14	3.255e-21 3.162e-21 2.949e-21 2.638e-21 2.277e-21 2.306e-21 1.450e-21 1.450e-21 9.415e-22 5.756e-22 4.686e-22 1.694e-22	4.5640-07 8.214e-05 7.297e-04 2.611e-03 9.200e-03 2.663e-02 3.975e-02 4.305e-02 1.002e-01 1.204e-01 9.493e-02 1.488e-01 1.397e-01

TOTALS:

3.834e+14

-

_

7.260e-01

___

RESULTS Group #	FOR SENSI Energy (mev)	TIVITY ITERATION Activity (photons/sec)	7 OF 16 (DIMEN Dose point rads/photon	SION X = 11): Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	2.30 2.10 1.90 1.70 1.48 1.23 1.00 .82 .65 .47 .35 .25 .15	3.400e+07 6.300e+09 6.000e+10 2.400e+11 9.800e+11 2.800e+12 7.200e+12 1.900e+13 3.100e+13 4.000e+13 7.700e+13 2.000e+14	3.016e-21 2.931e-21 2.736e-21 2.149e-21 2.145e-21 1.760e-21 1.350e-21 1.192e-21 8.772e-22 5.362e-22 4.340e-22 1.564e-22	4.228e-07 7.615e-05 6.770e-04 2.424e-03 8.546e-03 2.477e-02 3.701e-02 4.009e-02 9.338e-02 1.121e-01 8.844e-02 1.378e-01 1.290e-01
	TOTALS:	3.834e+14		6.743e-01
RESULTS Group #	FOR SENSI Energy (mev)	TIVITY ITERATION Activity (photons/sec)	8 OF 16 (DIMEN Dose point rads/photon	SION X = 12): Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	2.30 2.10 1.90 1.70 1.48 1.23 1.00 .82 .65 .47 .35 .25 .15	3.400e+07 6.300e+09 6.000e+10 2.400e+11 9.800e+11 2.800e+12 5.100e+12 7.200e+12 1.900e+13 3.100e+13 4.000e+13 2.000e+14	2.814e-21 2.737e-21 2.556e-21 2.288e-21 1.977e-21 2.008e-21 1.648e-21 1.265e-21 1.117e-21 8.218e-22 5.023e-22 4.043e-22 1.453e-22	3.944e-07 7.109e-05 6.323e-04 2.265e-03 7.990e-03 2.319e-02 3.466e-02 3.756e-02 8.749e-02 1.050e-01 8.285e-02 1.284e-01 1.198e-01
١	TOTALS:	3.834e+14		6.299e-01

RESULTS Group #	FOR SENS Energy (mev)	ITIVITY ITERATION Activity (photons/sec)	9 OF 16 (DIMENS Dose point rads/photon	SION X = 13): Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	2.30 2.10 1.90 1.70 1.48 1.23 1.00 .82 .65 .47 .35 .25 .15	3.400e+07 6.300e+09 6.000e+10 2.400e+11 9.800e+11 2.800e+12 7.200e+12 7.200e+12 1.900e+13 3.100e+13 4.000e+13 7.700e+13 2.000e+14	2.640e-21 2.569e-21 2.400e-21 2.150e-21 1.858e-21 1.551e-21 1.191e-21 7.734e-22 4.727e-22 3.784e-22 1.356e-22	3.701e-07 6.673e-05 5.937e-04 2.127e-03 7.510e-03 2.181e-02 3.262e-02 3.236e-02 8.236e-02 9.886e-02 7.796e-02 1.201e-01 1.118e-01
	TOTALS:	3.834e+14		5.912e-01
RESULTS Group #	5 FOR SENS Energy (mev)	ITIVITY ITERATION Activity (photons/sec)	10 OF 16 (DIME Dose point rads/photon	NSION X = 14): Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	2.30 2.10 1.90 1.70 1.48 1.23 1.00 .82 .65 .65 .25 .15	3.400e+07 6.300e+09 6.000e+10 2.400e+11 9.800e+12 5.100e+12 7.200e+12 1.900e+13 3.100e+13 4.000e+13 7.700e+13 2.000e+14	2.488e-21 2.422e-21 2.264e-21 2.029e-21 1.754e-21 1.466e-21 1.126e-21 9.934e-22 7.307e-22 4.465e-22 3.555e-22 1.270e-22	3.488-07 6.292e-05 5.601e-04 2.007e-03 7.089e-03 2.061e-02 3.083e-02 3.343e-02 7.783e-02 7.783e-02 7.364e-02 1.129e-01 1.048e-01
	TOTALS:	3.834e+14		5.571e-01

-				
RESULTS Group #	FOR SENS Energy (mev)	ITIVITY ITERATION Activity (photons/sec)	11 OF 16 (DIME Dose point rads/photon	NSION X = 15): Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	2.30 2.10 1.90 1.70 1.48 1.23 1.00 .82 .65 .47 .35 .25 .15	3.400e+07 6.300e+09 6.000e+10 2.400e+11 9.800e+12 5.100e+12 7.200e+12 1.900e+13 3.100e+13 4.000e+13 7.700e+13 2.000e+14	2.354e-21 2.293e-21 2.144e-21 1.921e-21 1.662e-21 1.390e-21 1.068e-21 9.419e-22 6.925e-22 4.231e-22 3.352e-22 1.195e-22	3.301e-07 5.956e-05 5.303e-04 1.901e-03 6.717e-03 1.954e-02 2.924e-02 3.171e-02 7.380e-02 8.853e-02 6.979e-02 1.064e-01 9.851e-02
	TOTALS:	3.834e+14		5.267e-01
RESULTS Group #	FOR SENS: Energy (mev)	ITIVITY ITERATION Activity (photons/sec)	12 OF 16 (DIME Dose point rads/photon	NSION X = 16): Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	2.30 2.10 1.90 1.70 1.48 1.23 1.00 .82 .65 .47 .35 .25 .15	3.400e+07 6.300e+09 6.000e+10 2.400e+11 9.800e+11 2.800e+12 7.200e+12 1.900e+13 3.100e+13 4.000e+13 7.700e+13 2.000e+14	2.235e-21 2.178e-21 2.036e-21 1.826e-21 1.580e-21 1.323e-21 1.016e-21 8.957e-22 6.583e-22 4.021e-22 3.169e-22 1.127e-22	3.134e-07 5.657e-05 5.038e-04 1.807e-03 6.385e-03 1.858e-02 2.781e-02 3.016e-02 7.018e-02 8.414e-02 6.632e-02 1.006e-01 9.290e-02
	TOTALS:	3.834e+14		4.995e-01

RESULTS Group #	FOR SENSI Energy (mev)	TIVITY ITERATION Activity (photons/sec)	13 OF 16 (DIME Dose point rads/photon	NSION X = 17): Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	2.30 2.10 1.90 1.70 1.48 1.23 1.00 .82 .65 .47 .35 .25 .15	3.400e+07 6.300e+09 6.000e+10 2.400e+11 9.800e+11 2.800e+12 5.100e+12 1.900e+13 3.100e+13 4.000e+13 7.700e+13 2.000e+14	2.128e-21 2.074e-21 1.940e-21 1.506e-21 1.534e-21 1.261e-21 9.690e-22 8.539e-22 6.272e-22 3.830e-22 3.004e-22 1.065e-22	2.984e-07 5.388e-05 4.800e-04 1.722e-03 6.085e-03 1.772e-02 2.652e-02 2.877e-02 6.690e-02 8.018e-02 6.318e-02 9.538e-02 8.784e-02
	TOTALS:	3.834e+14		4.748e-01
RESULTS Group #	FOR SENSI Energy (mev)	TIVITY ITERATION Activity (photons/sec)	14 OF 16 (DIME Dose point rads/photon	NSION X = 18): Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	2.30 2.10 1.90 1.70 1.48 1.23 1.00 .82 .65 .47 .35 .25 .15	3.400e+07 6.300e+09 6.000e+10 2.400e+11 9.800e+11 2.800e+12 7.200e+12 7.200e+13 3.100e+13 4.000e+13 7.700e+13 2.000e+14	2.032e-21 1.980e-21 1.853e-21 1.662e-21 1.439e-21 1.467e-21 1.206e-21 9.263e-22 8.158e-22 8.158e-22 3.657e-22 2.854e-22 1.009e-22	2.848e-07 5.144e-05 4.584e-04 1.644e-03 5.814e-03 1.693e-02 2.535e-02 2.750e-02 6.391e-02 9.061e-02 8.324e-02
1	TOTALS:	3.834e+14		4.524e-01

RESULTS Group #	5 FOR SENS Energy (mev)	ITIVITY ITERATION Activity (photons/sec)	15 OF 16 (DIME Dose point rads/photon	NSION X = 19): Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	2.30 2.10 1.90 1.70 1.48 1.23 1.00 .82 .65 .47 .35 .25 .15	3.400e+07 6.300e+09 6.000e+10 2.400e+11 9.800e+11 2.800e+12 7.200e+12 1.900e+13 3.100e+13 4.000e+13 7.700e+13 2.000e+14	1.944e-21 1.895e-21 1.773e-21 1.590e-21 1.377e-21 1.404e-21 1.155e-21 8.872e-22 7.809e-22 5.730e-22 3.497e-22 2.717e-22 9.585e-23	2.725e-07 4.923e-05 4.387e-04 1.574e-03 5.566e-03 1.621e-02 2.428e-02 2.634e-02 6.118e-02 7.324e-02 5.769e-02 8.626e-02 7.905e-02
	TOTALS:	3.834e+14		4.319e-01
RESULTS Group #	5 FOR SENS Energy (mev)	ITIVITY ITERATION Activity (photons/sec)	16 OF 16 (DIME Dose point rads/photon	NSION X = 20): Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	2.30 2.10 1.90 1.70 1.48 1.23 1.00 .82 .65 .47 .35 .25 .15	3.400e+07 6.300e+09 6.000e+10 2.400e+11 9.800e+11 2.800e+12 7.200e+12 1.900e+13 3.100e+13 4.000e+13 2.000e+14	1.863e-21 1.817e-21 1.700e-21 1.525e-21 1.321e-21 1.347e-21 8.512e-22 7.488e-22 5.491e-22 3.351e-22 2.591e-22 9.119e-23	2.612e-07 4.720e-05 4.207e-04 1.510e-03 5.339e-03 1.556e-02 2.330e-02 2.527e-02 5.866e-02 7.019e-02 5.527e-02 8.226e-02 7.520e-02
	TOTALS:	3.834e+14		4.130e-01

#### WHC-SD-WM-CN-004 REV 1

MicroSkyshine	
(Nuclear & Radiological Safety Anal	lysis - 1.16-007)
Page: 1	File Ref:
File: CASE7100.SKY	Date: / /
Run: 1:43 p.m.	By:
: September 12, 1996	Checked:

CASE: Vertical Cylinder - Skyshine @ 100 m

GEOMETRY: Vertical cylinder area source behind a wall

### DIMENSIONS (meters):

Distance between wall and detector	Х	100.
Depth of source behind wall	Y	0.16
Offset of detector	Ζ	0.
Depth of dose point	Н	-0.1
Distance between center of source and wall	R1	0.01
Thickness of cover slab	Τ1	0.
Thickness of second shield	Τ2	0.1524
Radius of source	W	3.575
Height of source	L	1.6952

#### INTEGRATION PARAMETERS:

Number of Radial SegmentsM	5
Number of Circumferential SegmentsN	5
Number of Vertical Segments	5
Quadrature Order	16

### MATERIAL DENSITIES (g/cc):

## Ambient air: .0012

Material	Cover Slab	Lower Shield	Volume Source
Air			
Water			0.56
Concrete		1.6	1.6
Iron			
Lead			
Zirconium			
Urania			

Buildup factor based on: AIR.

CASE: Vertical Cylinder - Skyshine @ 100 m

# SOURCE NUCLIDES:

Nuclide	Curies	Nuclide	Curies
Ba-137m	3.3491e+04	Cs-137	3.5043e+04
Eu-154	2.5773e+03		

## **RESULTS:**

Group #	Energy (mev)	Activity (photons/sec)	Dose point rads/photon	Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	1.30 1.01 .84 .66 .48 .40 .24 .20 .12	3.819e+13 2.757e+13 1.751e+13 1.143e+15 9.308e+11 1.997e+11 6.296e+12 2.166e+11 3.859e+13	2.345e-22 1.851e-22 1.444e-22 1.167e-22 8.087e-23 5.948e-23 2.663e-23 1.707e-23 2.810e-24	3.692e-02 2.104e-02 1.043e-02 5.499e-01 3.104e-04 4.898e-05 6.913e-04 1.525e-05 4.471e-04
	TOTALS:	1.272e+15		6.198e-01

#### WHC-SD-WM-CN-004 REV 1

#### MicroSkyshine

(Nuclear & Radiological Safety Analy	ysis - 1.16-007)		
Page: 1	File Ref:		
File: CS7100BR.SKY	Date: / /		
Run: 10:12 a.m.	By:		
: May 25, 1996	Checked:		

CASE: Vertical Cylinder - Skyshine @ 100 m - Bremsstrahlung

GEOMETRY: Vertical cylinder area source behind a wall

#### DIMENSIONS (meters):

Distance between wall and detector	Х	100.
Depth of source behind wall	Y	0.16
Offset of detector	Z	0.
Depth of dose point	Н	-0.1
Distance between center of source and wall	R1	0.01
Thickness of cover slab	T1	0.
Thickness of second shield	Τ2	0.1524
Radius of source	W	3.575
Height of source	L	1.6952

#### INTEGRATION PARAMETERS:

Number of Radial SegmentsM	5
Number of Circumferential SegmentsN	5
Number of Vertical Segments	5
Quadrature Order	16

### MATERIAL DENSITIES (g/cc):

#### Ambient air: .0012

Material	Cover Slab	Lower Shield	Volume Source
Air			
Water			0.56
Concrete		1.6	1.6
Iron			
Lead			
Zirconium			
Urania			

Buildup factor based on: AIR.

CASE: Vertical Cylinder - Skyshine @ 100 m - Bremsstrahlung

## SOURCE NUCLIDES:

Source was entered by energy groups.

#### RESULTS:

Group #	Energy (mev)	Activity (photons/sec)	Dose point rads/photon	Dose rate (mr/hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	2.30 2.10 1.90 1.70 1.48 1.23 1.00 .82 .65 .47 .35 .25 .15	3.400e+07 6.300e+09 6.000e+10 2.400e+11 9.800e+11 7.200e+12 7.200e+12 3.100e+13 4.000e+13 7.700e+13 2.000e+14	3.346e-22 3.240e-22 3.016e-22 2.694e-22 2.312e-22 2.276e-22 1.398e-22 1.398e-22 1.149e-22 7.945e-23 4.727e-23 2.818e-23 8.415e-24	4.691e-08 8.418e-06 7.463e-05 2.666e-04 9.345e-04 2.628e-03 3.865e-03 4.150e-03 1.016e-02 7.796e-03 8.948e-03 6.940e-03
20	TOTALS:	 3.834e+14		 5.477e-02
# APPENDIX D

### INFORMATION VALIDATION FORMS

### Information Validation Form

Tracking # <u>IVF-Chapter 3-05</u>

Name of Originator 1	Organization	or Team 🛛 🕯	2	Date		3	
Grant W. Ryan (376-5114)	Chapter 3- Acc Analysis- Sub Leak/Subsurfac	cident surface ce_Plume		April 25,	1996		
Statement of Problem	Statement of Problem						
The depth of transfer piping is an important factor in the analysis of a subsurface leak and subsequent subsurface plume. In this scenario is it assumed that a pool does not develop on the surface.							
Drawing H-2-71912, Structural Central Pump Pits $241$ -AN-OIA Thru -O7A, shows the centerline of a transfer pipe to be approximately 1.1 m (3.7 ft) below the soil surface. For simplicity it is recommended, and will be assumed, that the subject accident scenario consider a transfer line at a depth of 1.0 m (3.3 ft).							
EXPLICITLY concur with or den made above.	ıy (by including	g appropriate	e doo	cumentation	) the assum	ption	
REFERENCE							
Orawing H-2-71912, Structural	Central Pump A	its 241-AN-C	)1A 7	Thru -07A			
4							
Alternatives		Consequences to Alternatives					
5 N/A		6 N/A					
Decision Reached		Basis for Decision					
7	7		8				
Date Requested Sent To 9 April 25, 1996 10 J. Blackwe L. Ruffin, C. Project Files		Date Requested By Il May 2, 1996 (ear) Carro, response would be appreciated)			ier		
Response #1 Agree with the assumption made above. I would reference drawing $H-2-7991$ instead, although it's not critical. I would also like to mention that it is possible that a transfer line in AW farm is only buried approx. 2 ft. below the soil surface. I have not been able to confirm this as of yet. In any event, if this is $+\infty$ only line buried 2 ft., I would hope that you will use the 3.3 ft. as a bounding case anyway.							
Response #2 13							
Attachments (List)		References (List) 15					
•							
14							

Responder #1 Name and Signature 16 Lankford Ruffin Llf- 5/	Responder #2 Name and Signature
POC: Filed:	Routed:
Further Action Required (i.e., RM	L, Senior Management Attention, etc.)
18	

### Information Validation Form

Tracking # <u>IVF-Chapter 3-06</u>

Name of Originator	1	Organization or Team 2	Date	3
Grant W. Ryan (376-5114)		Chapter 3- Accident Analysis- Subsurface Leak/Subsurface Plume	June 6, 1996	

Statement of Problem The analysis of the Subsurface Leak and Resulting Subsurface Plume That Does Not Create a Surface Pool considers the following assumptions: 1. The subsurface leak/subsurface plume does not create a surface pool. The leak volume created is based on a leak of 5% of a 100 gal/min flow rate 2. for a time period of 24 hours. Calculating produces: (100 ga)/min(60 min/hr)(24 hr)(0.05) = 7.200 ga(27.250 L) over 24 hours.This is equivalent to  $(7,200 \text{ gal})/(7.48 \text{ gal/ft}^3) = 962.57 \text{ ft}^3$  of waste leaked. The metric equivalent volume is 27,25 m³. Higher leak rates/volumes are likely to create a surface pool which is separately analyzed. The source term used in this scenario is made up of 67 vol% SST Liquids and 3. as volk SST Solids (Cowley 1996). The assumed density of this aqueous mixture is  $1.4 \text{ g/cm}^3$  (87.5 lb/ft³). This is a reasonably conservative source term for this accident scenario since only SST Liquids and Solids are transferred through single-walled buried transfer pipes. The waste leak is assumed to contaminate the soil up to 15.24 cm (6 in) 4 below the soil surface. 15.24 cm (6 in) of soil cover maximizes radiation dose consequences in this accident scenario since lesser soil cover may aid in the leak migrating to the surface and creating a pool, which is analyzed separately. Greater thicknesses of soil cover provide more shielding from the source and therefore reduce the direct, skyshine, and bremsstrahlung radiation dose consequences. The density of the soil is assumed to be  $1.6 \text{ g/cm}^3$ . This value is 5. consistent with calculations and models used in WHC-SD-WM-SARR-016, Rev. 2. Higher density soils can be found on the Hanford Site, however, the density assumed here is considered representative and will provide conservative radiological consequence results. 6. The soil porosity (void fraction) is assumed to be 0.40. These pores/voids are where the leaked waste resides. A soil with a lower porosity (i.e., 0.30) was also investigated in the analysis of this accident scenario. It was found that developing the consequences with a lower void fraction would not result in conservative dose consequences since the volume of contaminated soil would be larger and therefore provide more self-shielding. EXPLICITLY concur with or deny (by including appropriate documentation) the assumption made above. REFERENCES

Cowley, W. L., 1996, Development of Radiological Concentrations and Unit Liter Doses for TWRS FSAR Radiological Consequence Calculations, WHC-SD-WM-SARR-037, Rev. 0, Westinghouse Hanford Company, Richland, Washington.

REFERENCES (Continued)				
Savino, A. V., 1996, WHC-SD-W Atmospheric Dispersion Westinghouse Hanford Cc	M-SARR-016, Rev Coefficients fo ompany, Richland	v. 2, Tank Waste or use in ASA Co I, Washington.	Compositions and onsequence Assessments,	
Alternatives		Consequences to Alternatives		
		5 N/A		
5 N/A Decision Reached		Basis for Decision		
Date Requested 9 June 6, 1996	Jate Requested Sent To June 6, 1996 10 G. Hanson, C. Carro, R. T Project Files		Date Requested By 11 June 14, 1996 (earlier response would be appreciated)	
Response #1		,		
	Λ	V 1/2 6/6/	6.	
12 Agree with Assum	otrans GN	HANSON	76	
Response #2				
13				
Attachments (List)		References (List) 15		
		Deservation #0. N		
Responder #1 Name and Signature		Responder #2 Name and Signature		
16 GN HANSON WITH				
Further Action Populad (i.e.	DMI Senier A	Route		
. a one neeron negatica (i.e., Mr., Senior management Attention, etc.)				
18				

## 2.0 PEER REVIEW CHECKLIST

(A HEDOP review checklist is not required since inhalation dose calculations are not performed.)

#### CHECKLIST FOR PEER REVIEW

Document Reviewed: "Calculation Notes That Support Accident Scenario and Consequence Development for Subsurface Leak Remaining Subsurface Accident," WHC-SD-WM-CN-004, Rev. 1, 9/96, by Grant Ryan.

Scope of Review: Entire Document.

.. .. ...

Yes	NO	NA		
[X]	[]	[]	Previous reviews complete and cover analysis, up to sc	ope of
			this review, with no gaps.	
[X]	[]	[]	Problem completely defined.	
ΪXΪ	Ĩ Ì	( )	Accident scenarios developed in a clear and logical ma	nner.
îxî	ΪĨ	i i	Necessary assumptions explicitly stated and supported.	
ř i	ìί	ixi	Computer codes and data files documented.	
ixi	ì ì	11	Data used in calculations explicitly stated in documen	t.
ixi	ΪÍ	i i	Data checked for consistency with original source info	rmation
1.11			as applicable.	
[X]	٢1	r 1	Mathematical derivations checked including dimensional	
[1]			consistency of results.	
ראז	ſ٦	[]	Models appropriate and used within range of validity o	r use
1.13			outside range of established validity justified.	
5X1	r 1	r ı	Hand calculations checked for errors. Spreadsheet res	ults
[~]	L J	11	should be treated exactly the same as hand calculation	s
£٦	7.1	רצו	Software input correct and consistent with document re	viewed
1	1	łŶi	Software output consistent with input and with results	ricaca.
LJ	1 1	[7]	reported in document reviewed	
٢¥٦	r 1	гэ	limits/criteria/quidelines applied to analysis results	are
[~]	LJ	1 1	appropriate and referenced limits/criteria/quideline	
			checked against references	3
6 8 1	٢١	r 1	Safety marging consistent with good engineering practi	C 9 5
łŶł	24		Conclusions consistent with analytical results and ann	licable
[~]	ιı	1	limite	illabie
۲Y٦.	гı	ГЛ	Pacults and conclusions address all points required in	the
[~]	11	LJ	archiom statement	une
r١	٢١	<b>ГY1</b>	Format consistent with appropriate NPC Pequilatory Guid	0.05
r i	LI	[~]	other standards	eui
r 1		111	Deview calculations comments and/ow notes and attach	ad
Lł		[~]	Neview calculations, comments, and/or notes are actach	eu.
[1]	r ı	r 1	Document approved	
171	r 1	r 1	occumente approvea.	
	An	thony V.	Savino Anthony Jamo	9/18/96
	Re	viewer (	Printed Name and Signature)	Date
		•	-	