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Abstract. Research on Soft Active Materials (SAMs) has flourished in recent years driven
mainly by potential applications to actuation systems, tissue engineering, and soft robotics.
These applications benefit from the unique properties of SAMs such as large deformations, a
wide range of stimulants, and high motion complexities. Hydrogels are among the dominant
members of SAMs. Their highly nonlinear chemo-mechanical transient behavior is described by
equations that include rates of internal state variables representing the local swelling state of the
gel. Hence, the simulation of hydrogels requires intricate numerical approaches with stabilization
schemes. This paper presents an immersed boundary analysis technique to simulate models with
internal state variables. A hydrogel model is used as an example to describe the components
of the proposed technique. Level sets define the material layout on a fixed background mesh
and a generalized version of the extended finite element method predicts the response. The
influence of the internal state variables on the stability of the physical analysis is examined.
While focusing on an XFEM approach for hydrogels, the presented theory can be extrapolated
to similar applications using models with internal state variables (e.g., shape memory polymers)
and other immersed boundary analysis technique (e.g., CutFEM).

1 INTRODUCTION

Predicting realistic structural responses often requires accounting for intricate physical pro-
cesses occurring locally within the material. Such models introduce a set of unknowns, labeled
as internal state variables (ISVs), in addition to the state variables that describe the observable
behavior like temperature or displacement. These ISVs model, for example, path-dependent ma-
terial behavior and dissipative mechanisms that can be measured (e.g., average of microscopic
effects, local structural rearrangement) ([1]). In this paper, we focus on the computational as-
pects and the implementation of models with ISVs in immersed boundary analysis techniques.
These techniques capture crips interfaces on nonconforming meshes while providing accurate
prediction of the response.
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Models for Soft Active Materials (SAMs) can utilize ISVs to capture their slow time-dependent,
highly nonlinear diffusive response produced by their intricate internal structures. Transient
models for active materials such as gels (e.g., hydrogels, oil-based gels, aerogels) that can predict
large deformations and complex motions are a notable example in this group; see, for example,
[3, 4]. Models in which constitutive equations incorporate gradient-independent ISVs are defined
by only the local values of the ISVs but not their spatial gradients and thus, lack stringent spa-
tial continuity requirements. This feature is advantageous for Galerkin-based techniques such
as the finite element method since the ISVs can be approximated pointwise/locally ([2]). In
contrast, the governing equations of the observable response involve the spatial gradients of the
state variables which leads to a globally coupled system of discretized equations.

Numerous publications have provided detailed implementations schemes for models with ISVs
([5, 6]). Most of the published work, however, focuses on standard finite element methods
using a geometry conforming discretization due to its popularity and availability in commercial
software. Limited research has considered immersed boundary analysis techniques. Moreover,
contributions that use these techniques seldom elaborate on the computational aspects of their
implementations ([7]).

This paper presents a simple alternative to discretize the ISVs in immersed boundary analysis
techniques. In the proposed approach, the ISV variables do not depend on intersection patterns.
In addition, weakly enforced boundary and interface conditions, as well as a stabilization tech-
nique, are augmented to include the influence of the ISVs in their formulations. To highlight
the effectiveness of the proposed approach in simulating complex but relevant models, a coupled
diffusion large deformation theory for the simulation of hydrogel is used [6]. The domain is
discretized via the eXtended Finite Element Method (XFEM) in 3D examples.

This manuscript is organized as follows. Section 2 introduces the geometry description
method together with a summary of a transient nonlinear hydrogel model. Section 3 details the
discretization technique. The numerical approach to solve models with gradient-independent
ISVs is summarized in Section 4. The examples of Section 5 demonstrate that the proposed
handling of ISVs can reliably reproduce the hydrogel physical response, and Section 7 provides
a set of conclusions and directions for future work.

2 MODEL PROBLEM

2.1 Domain description

Consider a domain Ω ⊂ Rd for d spatial dimensions composed of two material phases ΩI and
ΩII . The computational domain Ω is the union of these two non-overlapping partitions with
boundaries ∂ΩI and ∂ΩII such that Ω = ΩI∪ΩII . External boundaries with prescribed Dirichlet
and Neumann conditions are denoted by ΓmD = ∂Ωm ∩ ∂ΩD and ΓmN = ∂Ωm ∩ ∂ΩN , respectively,
with m = [I, II]. A crisp material interface, ΓI,II ⊂ Rd−1, defined as ΓI,II = ∂ΩI ∩ ∂ΩII , is
described using a level set method ([8]). Thus, ΓI,II is defined by an isocontour of a level set
function ψ(X): ψ(X) < 0,∀ X ∈ ΩI ; ψ(X) > 0,∀ X ∈ ΩII ; and ψ(X) = 0, ∀ X ∈ ΓI,II ;
where X represents a point in the domain, as seen on the left side of Figure 2. Structured
meshes composed of eight-node hexahedra are used to linearly interpolate the level set field.
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2.2 Hydrogel coupled diffusion and large deformation theory

A transient nonlinear coupled chemo-mechanical hydrogel model that includes ISVs in rate
form and is suitable for large deformations is introduced in this section. The material is assumed
to be isotropic and defined by a Helmholtz free energy function, Υ. For detailed derivations of
the model presented below the reader is referred to [4, 6].

2.2.1 Kinematic equations

Consider a dry macroscopically homogeneous elastomeric body in ΩI in a fixed reference
configuration. Let x be an arbitrary material point of ΩI . The motion of x in ΩI is a smooth one-
to-one mapping x = τ(X, t), with the deformation gradient defined as F = ∇τ . The deformation
gradient F is decomposed into elastic and swelling parts, i.e., F e and F s, respectively, by a
multiplicative decomposition F = F eF s, with F s = λs1. The swelling stretch, λs > 0, is given
by λs = φ−1/3. The polymer volume fraction, φ, is the single ISV in this model, defined by
φ = 1

1+ΠCR
, with Π denoting the volume of a mole of fluid molecules, and CR representing the

fluid concentration of the dry elastomer.

2.2.2 Constitutive equations

The following free energy function accounts for the combined effects of mixing, swelling, and
elastic stretching (see [4]):

Υ =

(
1− φ
φ Π

)[
µ0 + (log(1− φ) + χφ)RT

]
+G

[
1

2
tr(F TF )− 3

2
− log(J)

]
+
K

2φ
[log(Jφ)]2 .

(1)
Here, µ0 is the reference chemical potential for the fluid (solvent), R is the gas constant, T is
a constant temperature, χ is the dimensionless measure of the enthalpy of mixing parameter,
G is the shear modulus of the gel polymeric network, K is the bulk modulus of the gel, J is
the determinant of the deformation gradient, i.e., J = det(F ), and tr(·) denotes the trace of a
tensor. The first Piola-Kirchhoff stress, P , is derived from the free energy using P = ∂Υ

∂F to
obtain the following expression:

P = [G(F − F−T ) +
K

φ
(log(Je)F−T ]. (2)

Similarly, the chemical potential is given by µ = ∂Υ
∂CR

:

µ = µ0 +RT (log(1− φ) + φ+ χφ2)− ΩKlog(Jφ)[1− 1

2
log(Jφ)]. (3)

For the fluid flux we assume that the spatial fluid flux, J , depends linearly on the spatial gradient
of the chemical potential, ∇µ, so that:

J = −M∇µ = − D

Π RT

(
1

φ− 1

)
∇µ, (4)

where M is the scalar mobility coefficient. Here, M is an isotropic function of the stretch and
the fluid concentration (through the polymer volume fraction), and D is the diffusion coefficient.

3



Jorge L. Barrera and Kurt K. Maute

3 DISCRETIZATION TECHNIQUE

The generalized Heaviside-enriched XFEM is adopted to discretize the governing equations
[10]. This immersed boundary technique uses enrichment functions on nonconforming meshes to
capture spatial discontinuities in elements cut by interfaces. The response for complex geometries
and intersection patterns is approximated consistently by allowing for multiple enrichment levels.
In this strategy, the state variable field of a two-phase problem is approximated as:

Û(X) =
L∑
l=1

(
H(−ψ)

n∑
i=1

Ni Û Ii,l +H(ψ)
n∑
i=1

Ni Û IIi,l

)
(5)

where l is the enrichment level, L is the maximum number of enrichment levels used for each
phase, N are the shape functions, and Ûmi,l is the vector of nodal field coefficients, i.e., Û =
[û, µ̂] at node i for phase m = I, II. The hat symbol accent denotes discrete variables. The
Heaviside functions, H, controls element interpolations in the phases and is defined as: H(ψ) =
1,∀ ψ > 0; and H(ψ) = 0,∀ ψ ≤ 0. All intersected elements are split into tetrahedral sub-
elements via Delaunay triangulation for integration purposes. Note that disconnected domains
of identical phase are approximated by different shape functions, and the weak form of the
governing equations is only integrated over the corresponding phase in each element; see [10] for
details. The flexibility of this approach has been demonstrated extensively ([11, 12]), however,
similar immersed techniques that provide a crisp definition of the interface (e.g, CutFem ([9]),
and HIFEM ([13])), are equally applicable without loss of generality.

3.1 Nodal internal state variables

In the standard finite element method, numerical approximations of ISVs are usually per-
formed pointwise, i.e., per integration point. If this strategy is adopted in immersed boundary
analysis methods, the number and location of the ISVs are function of the intersection pattern
due to the triangulation. Figure 1a illustrates this scenario in a 2D sketch of an intersected ele-
ment that requires re-discretization when perturbing the interface. Another drawback of defining
ISVs at integration points is that the total number of ISVs can become significantly larger due
to the relatively large number of integration points used to integrate intersected elements.

To overcome the aforementioned issues, this paper proposes a conceptually simpler alter-
native to discretize the ISV fields, namely, define ISVs nodally. In this strategy, ISVs are
interpolated by shape functions, similarly to Eq. 5. A set of nodal ISV coefficients, φ̂el , per
enrichment level interpolate the ISV at any point in an element, e, for an enrichment level, l,

by φel (X) =
∑Ne

nodes
k=1 Nk(X)(φ̂el )k. Since inter-element space continuity is not required for the

ISVs (see Eq. (9)), nodal ISVs defined at nodes of adjacent elements are not shared, but defined
separately for each background element and enrichment level, as seen in Fig. 1b.

Despite the governing equations are evaluated only in the material phase, the state variable
fields extend to the unphysical space, i.e., the subdomain of an intersected element on which
the governing equations are not defined. There are cases where the value of a state variable
field is bounded, such as 0 < φ < 1 in the model introduced above. When using a standard
finite element interpolation scheme, such as Lagrange functions, the bounds can be satisfied
by imposing constraints on the coefficient of the interpolation functions, i.e., the Degrees Of
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Figure 1: Nodal IVS considerations: (a) integration points for different triangulations, (b) independent
set of ISVs per enrichment level, and (c) linear interpolation beyond physical space.

Freedom (DOFs). In the case of XFEM this is not possible, as illustrated for a 1D intersected
element in Fig. 1c. In this Figure, case II shows that the nodal values on the unphysical space
can be negative without producing a negative response in the physical space. To avoid numerical
issues associated with ISV values exceeding their bounds in the unphysical space, the ISVs are

projected into an unbounded space using φ̃ = −log
(

1
φ − 1

)
, where φ̃ is the projected unbounded

ISV. This projection is applied to the governing equations formulated below.

3.2 Implementation

The weak form the equations governing the hydrogel response can be written as follows:

RGbl =

[
RuGbl

RµGbl

]
=

[
RuP +RuI +RuD +RuF

RµP +RµI +RµD +RµF

]
=
[
0
0

]
, RLcl = RφP = 0; (6)

where RGbl define the global problem that governs the mechanical and chemical state variables,
i.e., the u and µ unknowns, while the last equation is used to compute the nodal ISVs, φ. The
superscript P identifies the residual terms. The superscripts I, D and F label the terms used
to weakly enforce Dirichlet interface and boundary conditions, and stabilization, respectively.
These additional residual terms are explained below. Note that the weakly enforced conditions
and stabilization terms are not needed in RLcl.

3.2.1 Weak form of hydrogel model (RuP , RµP , RφP )

The weak form of the governing equations in the absence of body forces and following varia-
tional principal is described below. A total Lagrangian formulation and a first order backwards
difference implicit scheme are used. The mechanical residual of the transient global problem of
this coupled model consists of the balance of momentum defined as:

RuP (u, φ∗) =

∫
ΩI
δF (u) : P (u, φ∗)dV −

∫
Γ
δut̄ dΓ. (7)
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Similarly, the balance of the mass of the solvent is as follows:

RµP (µ, φ∗, φ∗(n−1)) = −
∫

ΩI
δµ

[
1− φ∗(n−1)/φ∗

∆t Ωφ∗

]
dV +

∫
ΩI
δµJ(µ, φ∗) dV +

∫
Γ
δµj̄ dΓ. (8)

In these residuals, δu and δµ are kinematically admissible displacement and chemical potential
test functions, respectively. Here, the previous time step with time increment ∆t is denoted by
the superscript (n− 1), and the asterisk on the ISVs, i.e., φ∗, indicates equilibrium. Thus, both
the stress, P , and the flux, J , are function of the ISV variables at local equilibrium. Moreover,
the chemical residual is also function of the previous state of the ISVs.

For given state variables u and µ, the ISV φ is governed by the following residual:

RφP (u, µ) =

∫
Ωe
δφ

{
µ0 − µ
RT

+ log(1− φ) + φ+ χ(φ)2 − ΠK

RT

[
log(Jφ)

(
1 +

1

2
log(Jφ)

)]}
dV

+

∫
Ωe
δ∇φ∇φ

{
1

φ− 1
+ 1 + 2χφ− ΠK

RTφ

[
1− log(Jφ)

]}
dV.

(9)
Similarly, δφ is a kinematically admissible ISV test function, but integrated over an element
domain, Ωe, as described in 3.1. Note that Eq. (9) has been augmented with a stabilization term
following the Galerkin Gradient Least-Squares (GGLS) approach to mitigate the generation of
wiggles or oscillations in the solution ([14]). The GGLS method is preferred for stability in the
H1 semi-norm, i.e., to enforce continuity in the spatial gradient of the ISV residual and thus,
preserve consistency with the global problem.

Figure 2: Illustration of a 2D domain described by a level set field together with sketches of the strategies
for weakly enforce boundary and interface conditions (RUD , RUI ) and ghost penalization (RUF ).

3.2.2 Interface and boundary conditions (RuI , RuD , RµI , RµD)

In the problem configurations considered here, an initially dry hydrogel swells due to the
continuous supply of solvent modeled by a varying chemical potential prescribed along either the
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interface and/or external boundaries. In the XFEM framework presented previously, Neumann
conditions are prescribed the same way as in standard finite elements. Dirichlet interface and
external boundary conditions, however, are enforced weakly via the unsymmetric version of
Nitsche’s method [15]. In the proposed formulation, the residual terms are function of the ISVs
and the state variables, and second order derivatives of the stress and flux are required for a
consistent formulation (i.e., an exact Jacobian/Tangent):

RuI (u, φ
∗) = −

∫
Γ
δuP (u, φ∗)η dΓ∓

∫
Γ
δP (u; δu, φ∗)η JuK dΓ +

∫
Γ

(
1

φ

)
G

h
γDu JδuK JuK dΓ,

RµI (µ, φ∗) = −
∫

Γ
δµJ(µ, φ∗)η dΓ∓

∫
Γ
δJ(µ; δµ, φ∗)η JµK dΓ +

∫
Γ

(
1

φ
− 1

)
M

h
γDµ Jδµ KJµK dΓ.

(10)
The jump operator J·K is defined as JU(X)K = limε→0+ U(X + ε)− U(X− ε) = U(X)− Ū . The
vector η represents the normal of the interface. The penalty factors to enforce the prescribed
Dirichlet boundary conditions ū and µ̄ are denoted by the penalty factors, γDu and γDµ , respec-
tively. To include the transient effect of the ISVs, the last terms are multiplied by a factor
function of the ISVs. Note that a dry and wet gel at equilibrium is described by φ ≈ 0.999 and
φ ≈ [0.1− 0.2], respectively, which circumvents numerical issues arising from division by zero.

3.2.3 Face-oriented ghost stabilization (RuF , RµF )

Numerical instabilities can occur in the XFEM (and similar immersed boundary analysis
techniques) when the material interface moves too close to a node of the background mesh.
Such configurations lead to a vanishing zone of influence of certain DOFs. In this work, the
face-oriented ghost penalization proposed by [16] is used in the vicinity of the interface to
stabilize the XFEM discretization:

RuF (u, φ∗) =
∑
F∈F

∫
Γ

(
1

φ

)
GhγGu Jδ∇u ηK JP (u, φ∗) ηK dΓ,

RµF (µ, φ∗) =
∑
F∈F

∫
Γ

(
1

φ
− 1

)
MhγGµ Jδ∇µ ηK JJ(µ, φ∗)ηK dΓ.

(11)

The faces F in the set F are the element faces in the vicinity of the interface for which at least
one of the two adjacent elements is intersected as shown in the onset of Fig. 2. The normals of
the shared elements are denoted by η. Similar to the previous section, both residuals are scaled
by factors functions of the ISVs to account for the transient response.

4 NUMERICAL APPROACH

4.1 Adaptive time increment scheme

A pseudo time continuation method is used to reach steady state. The time increment is
updated using ∆t = f∆t∆t

(n−1). The parameter, f∆t, is chosen to be greater than one when
the Newton algorithm converges. Conversely, if either the local or global problem diverges, the
current time increment is restarted with f∆t < 1. Numerical experiments show that choosing
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f∆t = [0.5− 1.15] allows the problem to converge to steady state without an excessive number
of time increments.

In the first phase of this transient problem, rearrangement of molecules in the gel due to the
inflow of solvent occurs in a relatively small time. In this stage, the problem is dominated by
its chemical component and little swelling occurs. Thus, a small time increment is needed to
capture this. Subsequently, once a considerable amount of solvent has been absorbed by the gel,
large deformations controlled by the mechanical component require time steps that are orders of
magnitude larger than the first stage of this process to reach steady state. However, if the time
increment is too large, numerical instabilities associated with excessive swelling may compromise
convergence. Hence, a geometric progression of the time increment is used.

4.2 Nested Newton scheme

Unknowns at each discrete time are computed according to the nested Newton scheme ([17]),
where the global problem of the states of the model is decoupled from the local problem that
defines the evolution of the ISVs. This implies that the residuals in Eq. (9) are solved prior to
the construction of the elemental mechanical and chemical residuals. Hence, two Newton loops
are needed to solve this problem: an inner Newton loop that solves the nonlinear local problem
RLcl = 0, per element of the background mesh and level of enrichment; and an outer Newton
loop to compute the solution of RGbl = [RuGbl , RµGbl ]T = 0 globally. The state variables u
and µ are assumed to be constant in the local problem. The converged ISVs are used in the
consistent linearization of the global problem.

The second-order derivatives required for weakly imposing Dirichlet boundary and inter-
face conditions involve additional explicit and implicit dependencies of the nodal ISVs. Hence,
d2RLcl
du2 , d

2φ
du2 ,

d2RLcl
dµ2

, d
2φ
dµ2

, d
2RLcl
dµdu , d2φ

dµdu . are also needed, which results in considerably higher mem-
ory requirements and operations on higher-order tensors. Adding these derivatives implies addi-
tional non-traditional operators of higher-order derivations from intricate nonlinear expressions.
Note that if the projection of the ISVs is used, the derivative between the projected and unpro-

jected ISVs (i.e., ∂φ

∂φ̃
= 2

π(φ̃2+1)
and ∂2φ

∂φ̃2
= −4φ̃

π(φ̃2+1)2
) should also be included.

4.3 Model nondimensionalization

To ameliorate numerical instabilities due to the significant difference in magnitude between
the mechanical and chemical solutions, the governing equations are nondimensionalized. The
nondimensional problem is constructed using two independent parameters: a reference length,
Lref , and a reference chemical potential, µref . The parameter Lref is the scaling factor between
the nondimensional mesh and the actual domain size. The initial prescribed chemical potential
(which represents a dry hydrogel gel) is used for µref . A tilde is added on the symbols used
for the nondimensional parameters to differentiate them from their dimensional counterparts.
To nondimensionalize the model in a non-invasive manner, i.e., keep the original formulation
intact and only modify material parameters, the following must be satisfied:

Gref
Lref

= 1 and
DrefGref
µrefL

2
ref

=
Dref

µrefLref
= 1. Hence, after replacing these two equalities into the the nondimensional

expressions, the hydrogel model parameters are obtained using the following expressions: t =
Lref
Dref

t̃, Dref = µrefLref , Ω = Ωref Ω̃, Ωref =
µref
Gref

, D = Dref D̃, RT = µref R̃T . The state
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variables are recovered using u = Lref ũ, and µ = µref µ̃.

5 NUMERICAL EXAMPLES

The following examples demonstrate the applicability of the proposed immersed analysis
framework considering open systems thermodynamic. To precipitate the supply of solvent to
the hydrogel, an exponentially varying in time chemical potential is prescribed along boundaries.
The chemical potential is a function of the total simulation time and decreases orders of magni-

tude throughout the swelling process until it reaches a value of zero using µ̄(t) = µ0 + µ̄0 e
− t
tµ ,

with t =
∑n−1

i=0 ∆t(i). The reference chemical potential of the surrounding solvent is set to zero,
i.e., µ0 = 0 J/mol. The parameter µ̄0 represents the initial, uniform chemical potential of a
dry hydrogel. Typically, a relatively large negative value, i.e., µ̄0 ≈ [−104,−105] J/mol, is used.
The parameter tµ offers control on the exponential decay of the chemical potential and thus, the
speed of the absorption of solvent by the hydrogel. In the problems explored in this paper, this
parameter is set in the range of tµ = [150− 500]s. In addition, mechanical boundary conditions
(prescribed displacements and tractions) are enforced as specified in each example. Material
properties are summarized in Table 1 in SI units. Initial chemical and ISV conditions are also
included.

Table 1: Material properties and initial conditions of hydrogel model

Description Symbol Value [Units]

Shear Modulus G 1.0x106[Pa]
Bulk Modulus B 1.0x108[Pa]

Diffusion coefficient D 5.0x10−5[m2/s]
Enthalpy of mixing χ 0.2[−]

Temperature T 21 [C]
Initial chemical potential µ̄0 −1.48× 104[J/mol]

Initial polymer volume fraction φ̄0 0.999[−]

Note that the accuracy of the proposed XFEM framework was verified in 2D and 3D against
numerical results using standard finite elements, which has been omitted for brevity.

5.1 Example 1: free swelling

An eighth of a nondimensional cubic domain of edge length 1.0 with a spherical inclusion
located at the center is consider to simulate free swelling, see Fig. 3a. An exponentially decaying
chemical potential is prescribed along the top, right and back faces which are not intersected by
the inclusion. Furthermore, symmetry conditions are enforced along the bottom, left and front
faces. The radius of the hole is set to be half of the height of the domain. The problem domain
is discretized by a 10× 10× 10 mesh.

Figure 3b shows snapshots of deformed configuration (without scaling) colored by the ISV
field to visualize the evolution of the free swelling problem. This simulation highlights three
of the main characteristics of hydrogel analysis. First, the final simulation time is orders of
magnitude larger than the initial time step, as reported on the top. Second, the swelling of hy-
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Figure 3: (Left) Problem setup: free swelling of cube with spherical hole; (top-right) Evolution of gel
shape; (bottom-right) state fields of final time increment.

drogels is non-uniform at intermediate stages of the transient response. And third, the swollen
hydrogel at the end of the simulation is considerably larger than the initial configuration. The
displacement reaches values in the order of the domain size, while the chemical potential de-
creases exponentially, as shown in Figure 3c. Note that for visualization purposes only, the nodal
values are averaged to produce a continuous nodal ISV field. Overall, the augmented residual
with stabilization and weakly enforced conditions components is able to accurately predict the
hydrogel’s response in benchmark-like 3D tests.

5.2 Example 2: constrained swelling

To demonstrate the robustness of this XFEM framework in terms of being able to predict
physical instabilities, the example described in [6] is reproduced here. The reader is referred
to [6] for details of the problem configuration. In this example, a hydrogel ring has an influx
of solvent through the top face. The displacement of the bottom face is constrained in all
directions. The zero isocontour of the level set field slices the top face to produce small random
geometric imperfections to aid the initiation of buckling, see [6]. Two different thicknesses are
considered to simulate a “thick” and a “thin” ring. The other parameters remain unchanged in
both configurations.

Figure 4 shows snapshots of the evolution of the shapes of the constrained gels, colored by
the ISV field. The change in thickness leads to drastically different swollen shapes, i.e., the top
one stable with an axisymmetrically swollen gel, and the bottom one with a buckled pattern.
These results resemble those observed in experiments.

6 CONCLUSIONS

- An XFEM approach to simulate hydrogels was introduced. The model used couples large
deformations and nonlinear diffusion where the local material response is described by a
gradient-independent ISV that defines the swelling state. ISVs are interpolated by shape
functions for each element and enrichment level and projected into an unbounded space.
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Figure 4: Evolution of constrained swelling of (top) thick ring and (bottom) thin ring.

- The formulations to weakly enforce boundary and interface conditions, and to stabilize
gradients in the vicinity of the interface, were augmented to include the transient effect of
the ISVs. A pseudo transient continuation scheme was introduced to solve for steady state
conditions. This scheme involves nested Newton solvers for the global and local problems.

- The XFEM approach was verified with two problems considering free and constrained
swelling of the hydrogel. The supply of solvent to the gel is simulated via a time-dependent
chemical potential that is prescribed at external boundaries and interfaces. The problems
showed the large deformation nature of hydrogels, as well as the non-uniform swelling
behavior of the transient response.

- Future work should include the application of the presented approach to other problems
that require the use of models with ISVs such as elastoplasticity. Moreover, the robustness
of this framework should be tested in configurations that will benefit from the ISV inter-
polation scheme introduced here, e.g., design optimization problems using the methods
described in [18]. These methods require computation of gradients with respect to shape
and topology optimization parameters and thus, are affected by how ISVs are defined.
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