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[1] We provide a quantitative interpretation of the column experiment reported by
Gramling et al. (2002). The experiment involves advection‐dominated transport in porous
media of three dissolved species, i.e., two reactants undergoing a fast irreversible
reaction and the resulting product. The authors found that their observations could not be
properly fitted with a model based on an advection‐dispersion‐reaction equation (ADRE)
assuming the reaction was instantaneous, the actual measured total reaction product
being lower than predictions for all times. The data have been recently well reproduced by
Edery et al. (2009, 2010) by means of a particle tracking approach in a continuous time
random walk framework. These and other authors have questioned the use of partial
differential equation (PDE)–based approaches to quantify reactive transport because of the
difficulty in capturing local‐scale mixing and reaction. We take precisely this approach
and interpret the experiments mentioned by means of a continuum‐scale model based
on the ADRE. Our approach differs from previous modeling attempts in that we imbue
effects of incomplete mixing at the pore scale in a time‐dependent kinetic reaction
term and show that this model allows quantitative interpretation of the experiments in
terms of both reaction product profiles and time‐dependent global production rate. The
time dependence of the kinetic term presented accounts for the progressive effects of
incomplete mixing due to pore‐scale rate‐limited mass transfer, and follows a power law,
which is consistent with the compilation of existing experiments reported by Haggerty
et al. (2004). Our interpretation can form the basis for further research to assess the
potential use of PDE approaches for the interpretation of reactive transport problems in
moderately heterogeneous media.

Citation: Sanchez‐Vila, X., D. Fernàndez‐Garcia, and A. Guadagnini (2010), Interpretation of column experiments of transport
of solutes undergoing an irreversible bimolecular reaction using a continuum approximation, Water Resour. Res., 46, W12510,
doi:10.1029/2010WR009539.

1. Introduction

[2] Transport of reactive species in porous systems is
characterized by a combination of chemical and physical
processes. These occur on a multiplicity of space and time
scales which should be properly considered within a con-
ceptual and mathematical modeling framework. Among the
various types of processes which might occur in these com-
plex porous media, we focus on homogeneous irreversi-
ble reactions which are driven by mixing of two waters with
different chemical signatures. More specifically, we con-
sider the dynamics of bimolecular reactions taking place in
a laboratory‐scale column filled with granular material that
we model as uniform in terms of hydraulic conductivity
and porosity distributions.

[3] A modeling approach which is typically used to
interpret reactive transport is based on the conceptualization
of the porous system as an equivalent macroscopic contin-
uum. Mass conservation of the transported species is then
formulated in terms of a partial differential equation. A com-
mon model is based on the advection‐dispersion‐reaction
equation (ADRE). A bimolecular irreversible chemical reac-
tion aA + bB → cC, occurring during a laboratory‐scale
column (i.e., one‐dimensional) experiment is then described
by the following model:

@ci
@t

¼ �v
@ci
@x

þ D
@2ci
@x2

þMiri: ð1Þ

Here, ci is the aqueous concentration of chemical species i
(i = A, B, C), v is velocity,D is the dispersion coefficient, and
Mi is a stoichiometric coefficient, directly related to coef-
ficients a, b, and c. Finally, ri represents the space‐time‐
dependent rate at which species i is produced (or removed)
by the reaction. Appropriate initial and boundary conditions
complete the mathematical description of the problem.
[4] The theoretical framework based on the ADRE

assumes that two scale‐separation conditions are maintained:
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(1) the characteristic length associated with the pore space
geometry should be much smaller than that of the averaging
volume, and (2) solutes undergo instantaneous and complete
mixing within a control volume. These two conditions are
often violated in reactive transport processes that involve
mixing [e.g., Jose andCirpka, 2004; Tartakovsky et al., 2008,
2009], suggesting the need for a different macroscopic
description of the underlying processes. Along these lines, it
has been observed [Rashidi et al., 1996; Cao and Kitanidis,
1998; Raje and Kapoor, 2000; Gramling et al., 2002; Li
et al., 2006; Palanichamy et al., 2009; Edery et al., 2009,
2010] that the concentration of chemical species can display
significant variations within a given pore. Thus, it will be
different to compute total reaction rates from pore‐averaged
concentrations or from averaging pore‐scale rates within the
pore.
[5] An additional limitation of the ADRE is that it assumes

that transport can be depicted as a Fickian process, thus
giving rise to interpretation problems associated with the
observation of non‐Fickian or anomalous transport (see the
recent review by Berkowitz et al. [2006, and references
therein]). These observations havemotivated intense research
toward alternative modeling schemes. Among these, particle
tracking (PT) methodologies are considered to be effective
techniques to provide appropriate depictions of some of the
salient features of reactive transport scenarios [Gillespie,
1977; Fabriol et al., 1993; Cao et al., 2005; Romero et al.,
2007; Palanichamy et al., 2009; Edery et al., 2009].
[6] Regardless of the above mentioned limitations, a

continuous formulation based on the ADRE is still used as a
basis modeling tool for reactive transport problems [see, e.g.,
Fernández‐Garcia et al., 2008; Sanchez‐Vila et al., 2009,
and references therein]. As such, it is embedded in a variety
of codes [e.g., Cederberg et al., 1985; Mangold and Tsang,
1991; Yeh and Tripathi, 1991; Steefel and Lasaga, 1994;
Walter et al., 1994; Saaltink et al., 2004; De Simoni et al.,
2005; Bea et al., 2009 and references therein] and is at the
core of benchmark problems comparing the results provided
by different numerical models to identify their similarities
and critical differences [e.g., Cochepin et al., 2008]. In the
context of a transport scenario involving a precipitation reac-
tion, Tartakovsky et al. [2008] and Katz et al. [2010] observed
that a very fine grid discretization could capture some of the
features of the investigated process, albeit an accurate quan-
titative description was not obtained.
[7] In this scenario, pore‐scale modeling techniques can be

extremely important in assessing the validity of continuum
approximations in reactive transport modeling, and estab-
lishing links between microscale processes and macroscale
effective parameters [Zhang et al., 2008; Tartakovsky et al.
2008]. Meile and Tuncay [2006] employ pore‐scale model-
ing to investigate the effect of small‐scale heterogeneity on
estimates of reaction rates for diffusion‐controlled heteroge-
neous and homogeneous reactions. They use high‐resolution
computational models that explicitly resolve small‐scale
heterogeneity in synthetically generated porous media and
upscale the pore‐scale simulation results of reactive transport
to obtain effective diffusion coefficients and volume aver-
aged reaction rates. The latter were then compared against
results obtained by a continuummodel based on the diffusion‐
reaction equation. Their findings indicated that, while pore‐
scale heterogeneity can substantially affect estimates of
heterogeneous reactions, a macroscopic description of the

homogeneous reactions could lead to interpretative errors of
a few percent. Recently, Battiato et al. [2009] illustrate a set
of sufficient conditions under which macroscopic reaction‐
diffusion equations can provide an adequate averaged
description of pore‐scale processes in the presence of het-
erogeneous reactions.
[8] Experimental work is useful to validate existing

methodologies for reactive transport modeling. Gramling
et al. [2002] used data from bimolecular reactive transport
column experiments to claim the inadequacy of the ADRE
model. In their reactive transport experiments, the cryolite‐
filled column was saturated with EDTA4−, and then CuSO4

was injected as a step input. The colorimetric reaction Cu2+ +
EDTA4− → CuEDTA2− was measured in the mixing zone.
The experiment was repeated with three different inlet
flow rates. The authors report the concentration profiles of
CuEDTA2− at four different times for the lowest flow rate.
They then report the concentration of total product generated
as a function of time. The measured produced CuEDTA2−

was compared to an analytical solution of the ADRE. The
latter was derived upon the assumption that the concen-
tration of the limiting reactant was instantaneously and
completely consumed in the reaction. The authors observed
that the analytical solution of the ADRE significantly over-
predicted the space‐time evolution (in particular, the total
rate) of CuEDTA2− in the system.
[9] Edery et al. [2009, 2010] developed and implemented

a particle tracking (PT) approach to describe bimolecular
reactions under both Fickian and non‐Fickian transport
regimes. They compared the results of their approach against
the data of the lowest flow rate experiment of Gramling et al.
[2002], and concluded that a stochastic PT technique includ-
ing local‐scale dynamics through the incorporation of the
joint probability density function (pdf ) of particles’ transition
rates could successfully describe the experiments, while an
ADRE‐based analytical solution could not capture the actual
local‐scale dynamics (degree of mixing).
[10] Here, we reinterpret that same experiment ofGramling

et al. [2002] on the basis of an ADRE formulation. As
opposed to the methodology of Gramling et al. [2002], we
describe the macroscopic chemical behavior of the system
by means of a kinetic reaction rate. In our model, the latter is
proportional to the local concentrations of the reactants, with
an evolving (time‐dependent) coefficient of proportional-
ity that accounts for the progressive evolution of imperfect
mixing at the pore scale. The proposed model is consistent
with the reported experiments collected by Haggerty et al.
[2004]. We numerically solve the resulting system of par-
tial differential equations and show that they provide a
viable mean to interpret the experiments.

2. Modeling Assumptions

[11] We start by assuming that the system can be modeled
by means of the ADRE described by equation (1). At the
molecular level, the rate of the reaction of Cu2+ with EDTA4−

has been described as linearly proportional to the concen-
tration of each of the reactants [Hering and Morel, 1988],

r ¼ �cAcB; ð2Þ

where cA and cB are the aqueous concentrations of species
A and B, identifying Cu2+ and EDTA4−, respectively, and
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b [m3/(mol · s)] is a first‐order reaction rate constant. For
the reactive tracer experimental conditions of Gramling et al.
[2002], the observed b value reported in the literature [Hering
and Morel, 1988] leads to a characteristic reaction time of
fractions of milliseconds, thus suggesting the use of instan-
taneous reaction for the observation times of the experi-
ment. As stated before, when dealing with porous media, this
approach proved to be inadequate to model the experiments
ofGramling et al. [2002]. Another point to make is that these
experiments show tailing in the concentration curves. This
observation can be associated with the presence of slow
advection zones, where displacement is mainly controlled by
diffusive processes. As shown in section 3, these tails are
associated with a very small contribution to the total mass of
the reaction product. Yet, they are conceptually very signif-
icant, since the presence of pore‐scale immobile zones has a
large impact in the fate of reactants and reaction product.
Species A which is injected in the column cannot completely
and instantaneously react with an already existing species B,
as part of the pore water is not instantaneously accessible.
This results in slow and incomplete mixing at a macroscale.
[12] In short, a kinetic model for the reaction should

incorporate the availability of the two reactants at a given
location (this is a necessary, albeit not sufficient, condition for
a reaction to take place). We contend that, since occurring of
the reaction would depend on the concentration of the two
species, one can assume amodel similar to equation (2). Here,
the b coefficient should be considered as a lumped parame-
ter including both pore‐scale mixing and chemistry‐related
effects. Equation (2) would be equivalent to a two‐region
mass transfer model regulating the rate of change of dis-
solved species concentration in the immobile zones [see, e.g.,
Kechagia et al., 2002; Lichtner and Kang, 2007; Donado
et al., 2009], so that b is closely related to the first‐order
mass transfer rate coefficient appearing in a two‐region mass
transfer model and regulating the rate of change of dissolved
species concentration in the immobile zones. From a physi-
cal standpoint immobile zones can represent sequences of
micropore conduits with relatively slow pore velocities as
compared to the mean water velocity (i.e., water does not
need to be totally “immobile”). These conduits are randomly
distributed in the system and mass transfer between them and
the main flowing conduits depends upon advective and dif-
fusive processes. Each of these regions has different mass
transfer properties so that the total solute mass exchange
represented in the macroscopic system takes place over var-
ious time scales. Haggerty et al. [2004] present a review of
more than 300 solute transport experiments and suggest
that mass transfer coefficients found in typical porous media
with a variety of occurring pore‐scale mass transfer processes
are mostly correlated to residence times and experiment
durations. Adopting the concepts suggested by Haggerty
et al. [2004] and on the basis of the analogy between
equation (2) and a two‐region mass transfer scheme, we
model b as a time‐dependent term, with the form b = b0 t

−m.
The coefficient b0 and the exponent m need to be calibrated
against time‐dependent experimental observations.
[13] The reaction here studied has stoichiometric coef-

ficients M = −1 for reactants and M = +1 for the reac-
tion product. Regardless the reaction model proposed, either
equation (2) or any other alternative constitutive transport
model, one can derive two independent quantities, e.g., A0 =
cA + cC, and B0 = cB + cC, that satisfy a conservative

equation (in our model, the ADE). Any linear combination
of these two quantities (e.g., M0 = cA + cB + 2cC or M1 =
cA − cB) also satisfies an ADE. In particular, A0 satisfies
the following PDE (it follows directly from the manipulation
of equation (1) written in terms of species A and C)

@A0

@t
¼ �v

@A0

@x
þ D

@2A0

@x2
; ð3Þ

with the corresponding initial and boundary conditions

A0 ¼ C0 1� H xð Þð Þ at t ¼ 0
A0 ¼ C0 at x ! �1; A0 ¼ 0 at x ! þ1 ; ð4Þ

H and C0 being the Heavyside function and the concentration
of species A at the column inlet, respectively. An analogous
equation is satisfied by B0 with different initial and boundary
conditions. It then follows that M0 = C0 = constant. The
analytical solutions for A0 and B0 are well known and have
also been provided by Gramling et al. [2002]. From the
definitions above, A0(x,t) − B0(x,t) = cA(x,t) − cB(x,t), and it
can then be shown that the concentration of the aqueous
species B is governed by

@cB
@t

¼ �v
@cB
@x

þ D
@2cB
@x2

� �cB cB þ A0 � B0ð Þ: ð5Þ

This nonlinear partial differential equation can be solved by a
simple explicit scheme. Finally, at any given point in space
and time one can obtain the concentration of reaction product,
cC, as

cC x; tð Þ ¼ B0 x; tð Þ � cB x; tð Þ: ð6Þ

3. Interpretation of the Experiments
and Discussion

[14] The main interest of our work lies in the assess-
ment of the ability of our proposed modeling strategy to
capture the time‐dependent behavior of the system, in terms
of the evolution of (1) the space‐time distribution and (2) the
cumulative mass of the reaction product, CuEDTA2−. We
focus on the first experiment performed by Gramling et al.
[2002]. Four space distributions of concentrations recorded
at different observation times have been documented for this
experiment [Gramling et al., 2002], providing the amount
of information needed for the calibration of the parame-
ters included in our model. The other two experiments only
show the concentration profiles in the column for one obser-
vation time and provided little information on the time‐
dependent behavior of the system. Thus, they were excluded
from this study. Theworks ofEdery et al. [2009, 2010] analyze
the same experiment, thus allowing for a comparison of the
general modeling strategy and results. We assume that the
inlet flow rate and medium porosity are only minimally
affected by measurement uncertainty and set them to the
values reported by Gramling et al. [2002], i.e., 2.67 mL/min
and 0.36, respectively.
[15] Sensitivity analysis reveals that the amount of infor-

mation available allows a reliable calibration of the three
parameters D, b0, and m. A small b value indicates that
no reaction is taking place, so that cA approaches A0, cB
approaches B0, and cC approaches 0. Very large b values (i.e.,
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corresponding to small times) result in an instantaneous
reaction, so that cC converges to the solution presented by
Gramling et al. [2002]. The shape of the concentration curves
is also very sensitive to the choice of the hydrodynamic
dispersion coefficient (D).
[16] Calibration of the ADRE model is performed upon

considering three adjustable parameters, D, b0, and m.
Calibration is performed manually against the data associ-
ated with sampling times 610 and 1114 s jointly (one single
individual curve could not be used since the m parameter
characterizes the temporal behavior of reaction rates). The
best fit between experimental observations and modeling
results is obtained for D = 1.30 × 10−3 cm2/s (which is
slightly lower than the value calibrated by Gramling et al.
[2002] for their nonreactive transport experiment), b0 =
240 L/(mol s1−m), and m = 0.93. The calibrated parameters
are then used to provide predictions associated with the
remaining two sampling times corresponding to 916 and
1510 s, respectively. Figure 1 compares the spatial distribu-
tion of the (normalized) reaction product, the results obtained
with our proposed kinetic reactive transport model for all
four sampling times, and the analytical solution obtained by
assuming instantaneous reaction with complete pore‐scale
mixing. The agreement between our model and the experi-
mental data is quite remarkable.
[17] A most significant result of our model is the evolu-

tion of b with time. The analysis of Haggerty et al. [2004]
suggests that the mass transfer time, which is inversely pro-
portional to the first‐order transfer rate coefficient, scales as

a power law of the advective and experimental observa-
tion times (tadv and texp, respectively). These authors derive
the corresponding scaling exponents by a linear regression
between the log‐transformed diffusion time and tadv and texp.
In our context we can assume that tadv corresponds approxi-
mately to the location of the observed peak concentration of
the reaction product (the actual experimental curve is virtu-
ally symmetric), while texp is the time at which a given profile
of the reaction product concentration is reported. Haggerty
et al. [2004] find that the first‐order mass transfer rate coef-
ficient scales as tadv

−0.85, or else as texp
−0.88, with correlation

coefficients r2 = 0.62 and 0.71, respectively. Our calibrated
value of m ( = 0.93) is remarkably close to these two expo-
nents. This supports our idea that the failure of the model-
ing attempt of Gramling et al. [2002] is related to their
disregarding of incomplete mixing effects associated with
delayed pore‐scale diffusion. Incorporating such effects in
the way we propose has a strong impact on the model cali-
bration and predictive capabilities.
[18] Our results should be contrasted with those of Edery

et al. [2009, 2010] who showed that a particle tracking
scheme in conjunction with an ADE‐based depiction of
transport could not reproduce the concentration profiles of the
product, neither at the peak, nor at the tails. The agreement
observed in Figure 1 is of similar quality to that obtained
by Edery et al. [2010; their Figure 1a] when their PT scheme
is implemented within a non‐Fickian model based on a
CTRWapproach. They simulated the bimolecular reaction by
introducing two types of particles (marked “A” and “B”)

Figure 1. Best fit obtained with the kinetic reactive transport model for four different times (610,
916, 1114, and 1510 s). CuEDTA2− concentrations for the experiment conducted with a flow rate of
2.67 mL/min. The first and the third curves starting from the left are used for calibration. The remaining
two curves are predictions, used for model validation. The curves corresponding to the ADRE model
considering instantaneous equilibrium is reported for comparative purposes.
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into the simulation domain and then letting them migrate
within the system until the relative distance between two
given A and B particles was smaller than a prescribed value,
R. When this happens, the two particles are replaced by a “C”
particle, mimicking the occurrence of a reaction. Therefore,
the model of Edery et al. [2009, 2010] has essentially two
key adjustable parameters, one governing the probabilistic
distribution of the particles transitions times, and a second
one being the “effective” reaction radius, R. The latter is
found to be orders of magnitude larger than the molecular
interaction radius, which specifies the capability of two
molecules to react and is usually in the order of nanometers.
Establishing a relationship between these two parameters
and those appearing in our model is not trivial and needs to
be further investigated.
[19] We next consider the integrated reaction rate as a

function of time, R(t) =
Rþ1
�1 r(x,t)dx, and the corresponding

cumulative mass of CuEDTA2− produced, M(t) =
R t
0 R(t)dt.

Figure 2 depicts the time evolution of measured M together
with that determined by our model on the basis of the cal-
ibrated parameters. As a term of comparison, the produced
mass estimated on the basis of an ADRE model assuming
instantaneous equilibrium is also reported. At early times,
the reaction is relatively fast, because solutes move mainly
in the mobile zone. The immobile zones have not yet been
accessed by the solute, and thus mixing can almost be con-
sidered complete. The rate of growth of M(t) then decreases
with time, being mostly controlled by the slow diffusion of
the reacting species into and out of the immobile regions of
the system, causing incomplete (delayed) mixing. Extrap-
olating the data reported in the experiment to large times,
results in M(t) being (approximately) proportional to t0.53.
Our ADRE kinetic model shows that M(t) is asymptoti-
cally proportional to t0.5. This is equivalent to having R(t) =
dM/dt to scale as t−0.5 for large times, without ever stabiliz-
ing to a nonzero value (notice that the same behavior for
dM/dt would also be obtained with an ADRE model assum-
ing instantaneous equilibrium). As a consequence, we find

that diffusion becomes the only relevant process at large
times.
[20] Among the predictive capabilities of the kinetic

ADREmodel proposed, it is worth mentioning that the model
is capable of capturing the observed temporal increase of
the height of the peak of CuEDTA2−. This feature can be
observed in Figure 1, despite the large error associated to the
measurements at such high concentration values. Our kinetic
model indicates that two competing processes affecting the
peak of the reaction product are simultaneously taking place
in the column. While hydrodynamic dispersion is reducing
the peak of the reaction product due to dilution, the rate‐
limited mass transfer process taking place between mobile
and immobile water causes an increase of the reaction product
due to the late occurrence of local reactions in the immobile
water (delayed mixing). This interplay between dispersive
and reactive processes was already discussed by Edery et al.
[2009, 2010]. Notice that the peak concentration values ob-
tained with the analytical solution of the ADRE assuming
instantaneous equilibrium (also reported in Figure 1) not only
overestimate of about 40% the peak concentration, but also
display a constant height of the peak (due to the instanta-
neous total local consumption of the species with lowest
concentration).
[21] The evolution of the peak concentration of CuEDTA2−

with time is very sensitive to the actual choice of parameters,
indicating that calibration is indeed possible. The sensitiv-
ity analysis on the relevant model parameters describing
the kinetic term is shown in Figure 3. For the conditions of
Gramling’s experiment, our model shows that the evolution
of the simulated peak value with time is very sensitive to the
m and b0 values (Figures 3a and 3b, respectively) but not
to hydrodynamic dispersion (not shown). The curve for peak
concentration versus log‐time seems to display a straight line
for large times, where the slope is governed by m, and for a
given slope, the intercept is dictated by the b0 value. Irre-
spectively of the actual values of the parameters, all curves
show that dispersion is the dominant factor for very small
times (residence time in the column on the order of 10−3 pore
volumes) and the height of the peak of the reaction product
decreases with time. Then, the late occurrence of local reac-
tions associated with the effects of the immobile water
regions becomes increasingly important and the peak height
increases with time. Since the time that is required for the
system to experience the above mentioned transition in the
relative strength of dominant processes is extremely small
and the residence times in the column range between 0.1 and
1 pore volumes, this feature cannot be used to validate or
reject the kinetic model presented.
[22] Our model does not provide a very good reproduc-

tion of the tails of the concentration profiles, the agreement
between observed and modeled tails slightly deteriorating
for the largest observation time reported. This is not a sur-
prising feature. Tails are associated with low values of either
species A or B. Under these conditions, the reaction rate is
close to 0 (see equation (2)), and the transport equations of
the species A and B basically reduce to the ADE. The fact
that an ADE‐based transport model cannot properly repro-
duce such tails is a well‐known feature that has been exten-
sively discussed in the literature [e.g., Berkowitz et al., 2006].
However, this discrepancy did not influence significantly
the ability of the model to capture the remaining salient
features of the experiment, in particular the total rate of

Figure 2. Total mass of CuEDTA2− produced as a func-
tion of time compared to that predicted by our model for a
flow rate of 2.7 mL/min. The curve corresponding to the
ADRE model considering instantaneous equilibrium is
reported for comparative purposes.
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production, since the tails do not contribute much to the
total mass.
[23] Finally, we note that, in principle, the coefficient b

appearing in equation (2) is also related to the chemistry of
the system under study. For the purpose of this analysis
we have assumed that this dependence is absorbed by b0.
Further work is needed to fully explore this dependence and
to discern the various contributions to the system dynamics.

4. Concluding Remarks

[24] We have provided an interpretation of some of the
experimental results of Gramling et al. [2002] by means of a
modeling approach based on the formulation of the reactive
transport problem in terms of a set of PDEs and conceptu-
alizing the porous system as an equivalent continuum. The
salient feature is the introduction of an effective kinetic
reaction term whose forward rate coefficient is linear in the
concentration of both reactants. This term is included in the
model as a way to account for incomplete mixing. The same
experiments were recently modeled by Edery et al. [2009,
2010] on the basis of a stochastic particle tracking meth-
odology, upon including pore‐scale dynamics via a solute

particles displacement pdf and the introduction of an effec-
tive reaction distance.
[25] Our modeling approach is based on the idea that

microscale heterogeneity of the pore space causes the reac-
tive solutes to experience differential diffusion, developing
on different time scales, so that reactants cannot interact
instantaneously and are controlled by mass transfer between
regions associated with different pore velocities. The agree-
ment between the observed experimental concentration
profiles and our modeling results suggests that the reactive
transport scenario analyzed can be modeled by means of a
continuum‐scale representation, when an appropriate effec-
tive first‐order kinetic term for the reaction rate is considered.
Essentially, this term is included in the model as a way to
account for incomplete mixing. On the contrary, modeling
the analyzed experiments on the assumption that the system
attains instantaneously local equilibrium conditions (assum-
ing complete mixing locally) provides an overestimate of
the observed reaction product.
[26] Our modeling approach requires the calibration of

three parameters. These include (1) the impact of disper-
sive processes, as imbued in the dispersion coefficient and
(2) effects of diffusion between zones associated with dif-
ferent fluid velocity, as reflected by the dependence of the
reaction rate coefficient on observation time. This depen-
dence is generally nonlinear and is consistent with observed
dependencies of mass transfer rates on residence/observation
times in dual porosity media. Our results also suggest that the
data we analyze can be interpreted with similar high quality
agreement by adopting the hydrodynamic dispersion coeffi-
cient calibrated by Gramling et al. [2002] in the context of
nonreactive transport experiments.
[27] The assessment of the format of the functional depen-

dence of the reaction rate coefficient on both the microscale
properties of the porous medium and the system chemistry is
still an open issue. Further developments might include, for
instance, the assessment of the potential of upscaling meth-
odologies to provide further insights on the physics under-
pinning the experimental observations. The analysis of the
relationships between the parameters appearing in our model
and those adopted in the stochastic particle tracking simu-
lations by Edery et al. [2009, 2010] can provide relevant
information and a solid basis upon which one can understand
how the information content of parameters defined on dif-
ferent scales can be transferred. Nevertheless, we believe that
our interpretation can form the basis to spark further research
to assess the potential use of continuum approaches for the
quantitative interpretation of reactive transport problems at
different scales.
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