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SUMMARY

In this paper, we propose a computational algorithm for the solution of thermally coupled flows in subsonic
regime. The formulation is based upon the compressible Navier–Stokes equations, written in nonconserva-
tion form. An efficient modular implementation is obtained by solving the energy equation separately and
then using the computed temperature as a known value in the momentum-continuity system. If an explicit
single-step time integration scheme for the energy equation is used, the decoupling results to be natural.

Integration of the momentum-continuity system is carried out using a semi-explicit method, combin-
ing Runge–Kutta and Backward Euler schemes for the momentum and continuity equations, respectively.
Implicit treatment of pressure leads to favorable time step estimates even in the low Mach number (Ma� 1)
regimes. The numerical dissipation introduced by the Backward Euler scheme ensures absence of the
spurious high frequencies in the numerical solution.

The key point of the method is the assumption of linear variation of the temperature within a time step.
Combined with a fractional splitting of the momentum-continuity system, it allows to solve the continuity
only once per time step. Omitting the necessity of solving for the pressure at every intermediate step of
the Runge–Kutta scheme minimizes the computational cost associated to the implicit step and leads to an
efficiency close to that of a purely explicit scheme.

The method is tested using two benchmark examples. Copyright © 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Motivation Many problems of practical importance deal with thermally coupled flows at low
speeds. These range from heating of liquid semiconductors to ignition of domestic objects under
fire situations. In such problems, the flow’s velocity is low (typically the subsonic range), but the
encountered temperature gradients can be very large. These in turn induce density alterations, thus
precluding the use of incompressible models (often used for isothermal low-speed flows). When
the temperature gradients and therefore density changes are small, the Boussinesq hypothesis is
often employed [1, 2]. This hypothesis is based on assuming the buoyant term of the momentum
equation to be temperature dependent, while keeping the density in the rest of the terms in the gov-
erning equations constant. Boussinesq solvers require the subsequent solution of the energy and
momentum-continuity system. The popularity of the Boussinesq hypothesis is especially indebted
to the simplicity of its implementation, a reason why in many situations, the analysts discard the use
of compressible models.
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If the temperature gradients are large and the flow expansion/compression is of interest, one is
obliged to use more sophisticated models [3, 4]. The use of models based on a full set of compress-
ible Navier–Stokes equations is one of such options. Many of the existing compressible solvers
belong to this category, but work well in high-speed regimes only. Mostly being fully explicit, they
experience difficulties when applied to the low speed regimes because of the presence of acoustic
waves. Although representing the true physical phenomenon, acoustic waves are often of no interest
for the macroflow simulations at low speeds. In particular, in the low Mach number regime, they
propagate with the speed much larger than that of the bulk flow. Thus, if the objective of the analysis
is the prediction of the bulk flow behavior, the acoustic waves can be considered as a sort of ‘noise’.

One possibility of excluding the acoustic scale consists in using ‘low Mach number models’
(see e.g. [5] or [6]). From the mathematical point of view, the idea of the low Mach number models
consists in rescaling the full set of compressible Navier–Stokes equations in order to filter out, at
the level of PDE, the acoustic pressure. This is done by expanding the compressible equations into
Taylor’s series and neglecting the terms multiplied by high orders of Mach number, which is valid
for Ma� 1 [7, 8]. The resulting PDE is then different from the original Navier–Stokes equations.

A different option for modeling the low speed flows relies on leaving the governing PDEs
unchanged, whereas filtering or damping out the acoustics at the discrete level, for example using a
dissipative time integrator. In this case, the numerical solution would contain the acoustic frequen-
cies that can be correctly resolved by the method (FEM in our case), while damping out the spurious
frequencies.

This option is followed in this work. In order to obtain an efficient implementation, we intro-
duce a number of assumptions that enable splitting the original monolithic system. These splits
include decoupling the energy equation and an application of the fractional step-like split to the
momentum-continuity system. Thus, an efficient modular implementation is facilitated.

The paper is organized as follows: first, we present the governing equations in the nonconservation
form, written in terms of primitive variables. Next, we develop the residual form of the equations
and motivate the decoupling of the energy equation from the rest of the system. After that, the dis-
crete form of the governing equations is presented. We motivate the utilization of the semi-explicit
strategy. A fractional step technique is applied to the momentum-continuity system and several
simplifying assumptions are introduced. The paper concludes with two benchmark examples, that
validate the method.

2. GOVERNING EQUATIONS IN SUB-SONIC REGIME

Nonconservation form of the governing equations Because shock waves are not present in sub-
sonic flows, the nonconservation form of the governing equations can be adopted [9, 10]. The
governing equations written in the nonconservation form have the structure of a convection-
diffusion-reaction equation, whose mathematical structure is thoroughly studied and for which
the stabilization techniques are well-established. We formulate the governing equations in terms
of primitive variables (pressure, velocity, temperature), a typical choice for the low speed formu-
lations [11]. From the implementation point of view, this overall setting enables reusing parts of
the incompressible codes that are predominantly written in the nonconservation form and primary
variables.

Remark For sonic and super-sonic regime, the use of the conservation form of the governing
equations is obligatory because of the presence of the flow discontinuities (shock waves). Note that
obtaining the nonconservation form of the governing equations from the conservation, one implies
the assumption of differentiability of the variables, which is not valid in case of the presence of dis-
continuities. It is shown that the solutions of the nonconservation form forMa > 1 do not satisfy the
second law of thermodynamics [9], thus explaining why the nonconservation form gives the wrong
position and intensity of the shocks, that is, nonphysical results.

The Navier–Stokes equations in the nonconservation form read

�
@v
@t
�r � � C � .v � r/ vD �f (1)
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@�

@t
C �r � vC v � r�D 0 (2)

�cv
@T

@t
C � .v � r/ T C pr � vDr � .krT /C‰CQ (3)

p D f .�,T / (4)

where � is the density, v is the velocity, � is the Cauchy stress, f is the body force, cv is the isochoric
heat capacity, k is the conductivity coefficient, p is the pressure, T is the temperature, ‰ is the vis-
cous dissipation energy, Q is the internal heat production term, and �r � v is the work due to flow
expansion. The first three conservation equations (momentum, continuity, energy) are completed
with the state Equation (4) (not specified until now for the sake of generality), necessary to close the
system. We restrict ourselves to Newtonian flows, thus defining the stress tensor as

� D�pIC 2�
�
rvCrvT

2

�
(5)

where I is the identity matrix, � is the dynamic viscosity, and rv is the velocity gradient.
Residual form of the governing equations In the following, we develop the residual form of the

governing equations at the continuous level. Such approach gives a clear vision of the terms that
couple the equations.

The governing equation system consisting of momentum, continuity, energy and state equations
(Equations (1–4)) can be written in residual form as:0
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where the momentum Rm, continuity Rc , energy Re , and state Rs equation residuals are defined as

Rm D
@v
@t
C v � rvC

1

�
rp �

1

�
r � .2��.v//� f (7)

Rc D
@�

@t
C �r � vC v � r� (8)

Re D cv
@T

@t
C .v � r/ T C

p

�
r � v�

1

�
r � .krT / (9)

Rs D p � f .�,T / (10)

where �.v/ D .rvCrvT /=2. Note that it is convenient to divide the momentum and energy
equations by density in order to make the inertial term linear.

Observing Equations (7) and (8), we can notice that @Rm=@T D 0, @Rc=@p D 0, @Rc=@T D 0

and @Rs=@vD 0. Thus, the monolithic system simplifies to0
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The system is nonlinear and fully coupled (as the off-diagonal terms are nonzero). We can
clearly see from Equation (11) that in comparison with the incompressible case, the energy equa-
tion becomes fully coupled as it contains the terms that depend on pressure, density, and velocity,
thus generally making all the four terms (@Re=@v, @Re=@�, @Re=@p, @Re=@T ) in the tangent matrix
nonzero.

Up to this point, no approximation was introduced and Equation (11) represents the exact
symbolic linearization of the original set of equations.

The implicit solution of the monolithic system defined by Equation (11) is a computationally
expensive procedure. The system is large and badly conditioned because of the presence of differ-
ent variables’ scales (pressure, velocity, temperature, density). The fully explicit integration of the
monolithic system (typical for sonic flows) is neither favorable because of the stiffness of the mass
conservation equation in the low speed regime.

Before defining a feasible time integration algorithm, we propose to obtain a simplified model.
Introducing essential approximations, we shall partition the monolithic system. The fundamental
idea will be to solve the energy equation separately for the temperature to obtain a reduced system
of equations that relates pressure and velocity and finally to use the fractional step approach for the
solution of the reduced problem, leading to a computationally efficient modular approach.

Uncoupling the energy equation The first split to the system Equation (6) can be introduced
by assuming that the current temperature T .t C �t/ D f .p.t/, �.t/, v.t//, that is, treating the
temperature explicitly. Introducing the time step index this can be written as

TnC1 D f .pn, �n, vn/ (12)

Under this assumption, the partial derivatives with respect to the velocity, density and pressure in
the tangent matrix of the energy equation vanish: @Re=@� D 0, @Re=@p D 0, @Re=@v D 0. In this
case, the system simplifies to0
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Because of the energy equation is now uncoupled, the system of Equations (13) can be written as
two separate ones:

@Re
@T

dT D Re (14)

and 0
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Equations (14) and (15) are now coupled only one way via the temperature and can be solved
sequentially.

Remark This split is ‘exact’ if an explicit single step time integration scheme is assumed [12];
however, it can be taken as an approximation T gnC1 if an implicit integrator for the temperature is
used. In this case, one can use an iterative procedure, where the energy equation solution is repeated
after solving momentum/continuity until convergence in density is achieved. In either case, the
temperature is used as a known value in the remaining equations system.

Next, we specify a plausible equation of state to enable condensation of the density in order to
write the system in terms of exclusively the chosen primary variables .v,p,T / as unknowns.
In the following, we shall assume the ideal gas equation of state p D �RT , the most common case
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for the compressible flows [12]. Once the state equation is specified, the Jacobian in Equation (15)
can be computed. The residual form of the ideal gas equation can be written as

Rs D p � �RT (16)

and thus, the total differential of the density:

d�D
1

RT
dp �Rs (17)

The partial differentiation of the state equation residual Equation (10) with respect to � and p
gives

@Rs
@p
D 1 (18)

@Rs
@�
D�RT (19)

Substituting the partial derivatives of the state equation residual into the system, Equation (15)
results in. Next, we substitute Equation (17) into the system. (15), giving0
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Next, we group together the terms multiplying the pressure increment dp, thus merging the sec-
ond and the third columns of the tangent matrix and move the terms multiplying the state equation
residual Rs to the right-hand side of the system: 
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Condensation of the density introduced a term corresponding to the residual of the state equation
into the momentum and continuity residua. In a general case, this term might be nonzero.

However, if the temperature at the time instance of the residual evaluation is known and the den-
sity in an implicit or a multistep explicit procedure is updated at every intermediate step/iteration
via the state equation, this term vanishes. Adopting these assumptions, the system simplifies to 
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1
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C @Rm
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@Rc
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1
RT
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C @Rc
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D

�
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(22)

Recall that the temperature in the previously mentioned equations is considered a known value
because of the assumption in Equation (12).

3. DISCRETE MODEL

At this point, the continuous model in the residual form consists of the energy equation one-way
coupled to the momentum-continuity system via the temperature. Next, a discrete model will be
described. First, we will describe the time integration of the momentum-continuity system. We omit
the details of the space discrimination as it is carried out using the standard Galerkin finite element
approach. The stabilization, having the energy equation uncoupled, can be carried out separately
for the energy and the momentum-continuity equation, using classical stabilization techniques, such
as Galerkin/least-squares, various variational multiscale methods Algebraic Subgrid Scale (ASGS),
Orthogonal Subscale (OSS) [13, 14] or finite calculus (FIC) [15].

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 70:1–19
DOI: 10.1002/fld



6 P. RYZHAKOV, R. ROSSI AND E. OÑATE

Semi-explicit approach for the momentum-continuity system The time integration strategy has a
major impact upon the computational efficiency of the method based upon Equation (22). A crucial
choice consists in whether to derive an explicit or an implicit time integration scheme.

Implicit methods (widely used in the incompressible codes) permit working with large time steps.
However, their application to Equation (22) requires evaluation of the partial derivatives with respect
to the density in the dynamic tangent, considerably complicating the implementation. Ignoring
these partial derivatives, thus violating the consistency of the linearization would impoverish the
convergence of the nonlinear procedure.

Explicit approaches require exclusively evaluation of the residua. Thus, the problem associated
with the evaluation of the derivatives with respect to the density vanishes. In comparison with the
implicit methods, explicit schemes do not involve linear equations system solution, thus making
them generally ‘faster’ per time step than their implicit counterparts. Their limitations originate
from the conditional time stability. For sonic and super-sonic flows, explicit schemes are preferred,
as the time step estimates (according to the Courant–Friedrich–Levy condition) result to be favor-
able. For low speed flows, the unfavorable time step restrictions of a fully explicit scheme originate
from the presence of the acoustic pressure. The time scale of the acoustic wave for a low speed
regime is much smaller than that of the mean flow. Otherwise, the mean flow velocity and vis-
cous scales in the problems of interest permit using large time steps. These considerations lead to
a conclusion that a computationally efficient strategy could be based upon a semi-explicit scheme,
where pressure is treated implicitly, whereas the rest of the terms are computed explicitly. Note,
that the main computational effort is associated to the solution of the momentum equation, which
is a nonlinear vector equation. Obtaining efficiency close to that of a fully explicit scheme implies
minimization of the computational cost associated to the implicit steps.

3.1. Integration of the momentum-continuity system

A combination of the 4th order Runge–Kutta with Backward Euler scheme A powerful class of
explicit methods is the Runge–Kutta multistep family. Runge–Kutta schemes evaluate the residual at
a number of intermediate steps. The n-step Runge–Kutta schemes give accuracy of nth order up to
nD 4 [9]. For n > 4, the order is less than n. This renders the four-step method particularly popular.
We propose a combination of the 4th order Runge–Kutta scheme for the momentum equation and a
Backward Euler scheme for the continuity equation. The Backward Euler scheme is chosen because
of its dissipative properties. These ensure that the spurious high frequencies (associated with the
acoustic scales in a low-speed range) that cannot be resolved by FEM are damped. For a general
Cauchy problem of type

@y

@t
D f .y.t/, t / (23)

the Runge–Kutta scheme yields the following formula:

ynC1 � yn

�t
D
1

6
Œr1C 2r2C 2r3C r4�, (24)

where r1 : : : r4 are the intermediate residuals (or in other words the ‘right-hand side’ corrections)
that are computed according to the formulae:

r1 D f .tn,yn/ (25)

yˇ1 D ynC
�t

2
r1 (26)

r2 D f .tnC
�t

2
,yˇ1/ (27)

yˇ2 D ynC
�t

2
r2 (28)
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r3 D f .tnC
�t

2
,yˇ2/ (29)

yˇ3 D ynC�tr3 (30)

r4 D f .tnC�t ,yˇ3/ (31)

This means that the computation of ynC1 requires evaluating the residual four times and updating
the unknown at each of the intermediate steps.

The momentum Equation (1) assumes the form of Equation (23), thus Equation (25) can be
applied directly, leading to the following semidiscrete momentum equation residual (note that with a
certain abuse of notation, we use the same symbol Rm for the semidiscrete and continuous residual):

Rm D
vnC1 � vn

�t
�
1

6
Œr1C 2r2C 2r3C r4�D 0 (32)

The intermediate residua (that will be distinguished by a minuscule r symbol), defined according
to Equation (7) are substituted into Equations (25–31) giving:

r1 D f� vn � rvn � ��vnC
1

�n
rpn (33)

vˇ1 D vnC�tr1 (34)

r2 D f� vˇ1 � rvˇ1 � ��vˇ1C
1

�ˇ1
rpˇ1 (35)

vˇ2 D vnC
�t

2
r2 (36)

r3 D f� vˇ2 � rvˇ2 � ��vˇ2C
1

�ˇ2
rpˇ2 (37)

vˇ3 D vnC
�t

2
r3 (38)

r4 D f� vˇ3 � rvˇ3 � ��vˇ3C
1

�nC1
rpnC1 (39)

Equations (33–39) contain intermediate pressure and density pˇi , �ˇi . Therefore, in principle, the
continuity equation must be solved at every intermediate step. This would considerably increase the
computational cost, requiring to perform the implicit step (i.e. solve the continuity Equation (69))
three times. Additionally, the computation of the intermediate density via the constitutive relation
requires the knowledge of the temperature at t C�t=2.

However, this is unknown as the solution of the decoupled energy equation provides only TnC1 D
T .t C �t/. Thus, we are obliged to introduce an assumption upon the variation of the tempera-
ture between tn and tnC1. We propose to use a linear approximation TtC.�t=2/ D .TnC TnC1/=2
(because ˇ2 and ˇ3 correspond to t D tn C .�t=2)). This in turn implies (according to the state
equation) that p=� varies linearly in time between tn and tnC1, and thus also does the term 1�=rp.
This leads to the following fundamental simplification:

1

�ˇ1
rpˇ1 D

1

�ˇ2
rpˇ2 D

1

�
rp

�
tnC

�t

2

�
D 0.5

�
1

�n
rpnC

1

�nC1
rpnC1

�
(40)
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Application of Equation (40) in Equations (33–39) simplifies the intermediate residua to:

r1 D f� vn � rvn � ��vnC
1

�n
rpn (41)

r2 D f� vˇ1 � rvˇ1 � ��vˇ1C
1

2

�
rpn

�n
C
rpnC1

�nC1

�
(42)

r3 D f� vˇ2 � rvˇ2 � ��vˇ2C
1

2

�
rpn

�n
C
rpnC1

�nC1

�
(43)

r4 D f� vˇ3 � rvˇ3 � ��vˇ3C
1

�nC1
rpnC1 (44)

Equations (41–44) now contain densities and pressures corresponding to exclusively tn and tnC1.
It is convenient now to take out the pressure gradients (which is of particular advantage in the per-
spective of applying the fractional split) out of the residua, rewriting thus the Runge–Kutta equations
as:

vnC1 � vn
�t

D
1

6
Œr
0

1C 2r
0

2C 2r
0

3C r
0

4�C
1

2

�
rpn

�n
C
rpnC1

�nC1

�
(45)

with the intermediate residua r
0

i (note that the intermediate velocities are defined as before, that is,
according to Equations (34), (36), and (38) :

r
0

1 D f� vn � rvn � ��vn (46)

r
0

2 D f� vˇ1 � rvˇ1 � ��vˇ1 (47)

r
0

3 D f� vˇ2 � rvˇ2 � ��vˇ2 (48)

r
0

4 D f� vˇ3 � rvˇ3 � ��vˇ3 (49)

Equations (45) and (46–49) constitute the basis for the Finite Element (FE) formulation that follows.

3.2. Discrete form

The discrete form of Equations (45–49) using linear pressure-velocity interpolations reads (note
that the discrete quantities are distinguished by an over-bar notation)

M
NvnC1 � Nvn
�t

�
1

6
ŒNr1C 2 Nr2C 2Nr3C Nr4�C

1

2

�
G1=�nPnCG1=�nC1PnC1

�
(50)

which is computed in four successive steps, evaluating the discrete intermediate residua and
velocities defined as

Nr1 D F�K.Nvn/.Nvn/� �LNvn (51)

Nvˇ1 D NvnCM�1
�t

2

�
Nr1CG1=�n Npn

�
(52)

Nr2 D F�K.Nvˇ1/.Nvˇ1/� �L.1= N�ˇ1/ Nvˇ1 (53)

Nvˇ2 D NvnCM�1
�t

2

�
Nr2C

1

2

�
G1=�nPnCG1=�nC1PnC1

�	
(54)
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Nr3 D F�K.Nvˇ2/.Nvˇ2/� �L.1= N�ˇ2/ Nvˇ2 (55)

Nvˇ3 D NvnCM�1
�t

2

�
Nr3C

1

2

�
G1=�nPnCG1=�nC1PnC1

�	
(56)

Nr4 D F�K.Nvˇ3/.Nvˇ3/� �LNvˇ3 (57)

where M, L, G, K are the global mass, Laplacian, gradient matrices, and discrete convective opera-
tor, respectively, and F is the body force vector, assembled from the elemental contributions defined
as (N stands for the standard linear FE shape functions)

MD
Z
�e

NNT d	 (58)

LD
Z
�e

rNrNT d	 (59)

GD
Z
�e

rNNd	 (60)

K.Nv/D
Z
�e

N .Nv � rN/ d	 (61)

FD
Z
�e

Nfd	 (62)

For the sake of clarity given a matrix A and a variable b, we shall use the following notation:
Ab identifies a global matrix, obtained by an assembly of elemental contributions multiplied by the
value of b evaluated at the Gauss point of the element. Thus, for example, G1=�nC1 corresponds to
rpnC1=�nC1 and denotes the assembly of elemental discrete gradients multiplied by the inverse of
the density 1=�nC1 taken at the Gauss point, that is, G1=�nC1 D

R
�e
rNN.1=�G/d	.

Equations (50–57) define the discrete model of the momentum equation under the fundamental
assumption (40), which permitted us to formulate the intermediate residua without necessitating the
solution of the continuity equations at the intermediate steps.

Next, we shall specify the discrete version of the continuity equation.
Continuity equation Application of the Backward Euler scheme to the continuity Equation (8)

gives the following residual

Rc D
�nC1 � �n

�t
C �nC1r � vnC1C vnC1 � r�nC1 (63)

The discrete version of the residual is

NRc DM
N�nC1 � N�n

�t
CD�nC1 NvnC1CC .NvnC1/ N�nC1 (64)

where D is the divergence matrix, and C is the scalar convective operator assembled from the
following elemental contributions:

DD
Z
�e

NrNd	 (65)

C.Nv/D
Z
�e

N .Nv � rN/ d	 (66)
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Next, we evaluate the approximate tangent entries according to Equation (22):

@ NRc
@Nv
� D.�nC1/ (67)

1

R NTnC1

@ NRc
@ N�
C
@ NRc
@ Np
�

1

RTnC1

�
1

�t
MCC .NvnC1/

	
(68)

Now, we introduce the residual (64) and the derivatives (67–68) into Equation (22) (second line of
the matrix equation) and write the continuity equation in terms of pressure:

D�nC1d NvC
�

1

R NTnC1
.M CC .NvnC1//

	
d Np D

D
1

R NTnC1
M
NpnC1 � Npn

�t
CD�nC1 NvnC1C

1

R NTnC1
C .NvnC1/ NpnC1 (69)

Fractional step split The discrete form of the coupled momentum-continuity system Equation
(22) is the combination of Equation (69) and (50–57). In order to decouple the solution for the veloc-
ity and pressure, we apply the pressure splitting, introducing the fractional velocity Qv. The fractional
and end-of-step momentum equations can be written as:

M
Qv� Nvn
�t

D ŒQr1C 2Qr2C 2Qr3C Qr4�CG1=�n Npn (70)

M
NvnC1 � Qv
�t

C
1

2

�
G1=�nC1 NpnC1 �G1=�n Npn

�
D 0 (71)

where the residuals and corresponding intermediate fractional velocities are defined as (note that to
distinguish the fractional residua and velocities, we use Qr and Qv instead of Nr and Nv ):

Qr1 D F�KNvn Nvn ��L1=�n Nvn (72)

Qvˇ1 D NvnCM�1
�t

2

�
Qr1CG�n Npn

�
(73)

Qr2 D F�KQvˇ1 Qvˇ1 ��L1=�n Qvˇ1 (74)

Qvˇ2 D NvnCM�1
�t

2

�
Qr2C 0.5

�
G�n Npn

��
(75)

Qr3 D F�KQvˇ2 Qvˇ2 ��L1=�n Qvˇ2 (76)

Qvˇ3 D NvnCM�1�t
�
Qr3C 0.5

�
G�n Npn

��
(77)

Qr4 D F�KQvˇ3 Qvˇ3 ��L1=�n Qvˇ3 (78)

One can see, that the fractional momentum equation and the intermediate residua contain pressure
and density corresponding exclusively to the time step n.

To express the end-of-step velocity as a function of the introduced fractional velocity, we use
Equation (71):

NvnC1 D
�t

2
M�1

�
G1=�nPn �G1=�nC1 NpnC1

�
C Qv (79)
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Substituting Equation (79) into the continuity Equation (69), we obtain the pressure Poisson
equation:

D�nC1

�
Qv�

�t

2
M�1

�
G1=�nC1 NpnC1 �G1= N�n

NPn
�	
C (80)

C
1

R NTnC1�t
M Œ NpnC1 � Npn�C

1

R NTnC1
C.Qv/ NpnC1 D 0

Here, we need to introduce the approximations G�nC1 � G�n and D�nC1 � D�n , in order to make
continuity equation linear in the pressure. As usually, the discrete Laplacian is approximated as
DM�1G� L.

Substituting these in Equations (70–71) leads to the final system of three equations.

M
Qv� Nvn
�t

D
1

6
ŒQr1.Nvn/C 2Qr2.Nvˇ1/C 2Qr3.Nvˇ2/C Qr4.Nvˇ3/�CG1=�n Npn (81)

1

2
L�n . NpnC1 � Npn/C

1

R NTnC1�t
M NpnC1C

1

R NTnC1
C.Qv/ NpnC1 D (82)

D
1

R NTnC1�t
M NpnCD�n Qv

M
NvnC1 � Qv
�t

C
1

2

�
G1=�nC1 NpnC1 �G1=�n Npn

�
D 0 (83)

3.3. Energy equation integration and the overall solution strategy

Decoupling the energy equation necessitated to assume that the derivative of the residual Re is
nonzero only with respect to the temperature (assumption Equation (12)), thus treating all the rest
of the terms explicitly. This is automatically satisfied for the simplest explicit scheme, namely the
Forward Euler scheme. In this case the discrete version of the energy equation Equation (8) has the
following form:

NRe D cvM
NTnC1 � NTn

�t
�
�
C .Nvn/ NTnCRDTn Nvn � kL1=�n NTn

�
D 0 (84)

and its solution gives the end-of-step temperature TnC1 without introducing any approximation
error, that is, the precision is bounded only by the order of the used time scheme.

Although for the Forward Euler scheme the splitting is exact, it restricts the time accuracy in
temperature to the first order and introduces time step restrictions because of conditional stability.
It may not be convenient to have the time step controlled both by the estimate originating from the
momentum equation integration (Runge–Kutta) and the energy equation. These considerations lead
to the possible choice of solving the energy equation implicitly, within an iterative context. That is,
solving the energy equation given the predicted values of pressure, density, and velocity, obtaining
T inC1 (i D 0, that is the first guess upon the end-of-step temperature). Either second-order predic-
tions can be applied (e.g. �0nC1 � ˛�n � ˇ�n�1, with ˛ D 2, ˇ D 1 for constant time step size) or
simply the value at n can be used (�nC1 � �n). Given T 0nC1, the momentum-continuity system is

solved to give vinC1, pinC1 and density �inC1 D
pi
nC1

RT i
nC1

is recovered. Then, the energy equation is

solved using these updated values, and the whole procedure is repeated until convergence in terms
of density is achieved.

The algorithms based on both possibilities for uncoupling the energy equation are presented in
Tables I and II.

Solution algorithms An algorithm based on the explicit one-step integration of the energy
equation is presented in Table I.

For the solution of the examples in the next section, single-step algorithm was used.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 70:1–19
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Table I. Implementation of the semi-explicit solver using explicit (Forward Euler) integration of the energy
equation.

1. Solve the energy equation explicitly (Equation (84)) and obtain the
temperature NTnC1 D f . Nvn, N�n, NTn/

2. Solve the fractional momentum equation (Equation (81)), obtain Qv (using N�D N�n for all the
intermediate steps)

3. Solve the continuity equation for the pressure (Equation (82)), obtain NpnC1
4. Obtain N�nC1 from the ideal gas equation (Equation (4))
5. Solve for end-of-step momentum (Equation (83)) and obtain NvnC1

Table II. Implementation of the semi-explicit solver using implicit integration of the energy equation.

1. Solve the energy equation implicitly using approximations for Np0nC1, N�0nC1, Nv0nC1 (Equation (84)) and

obtain a ‘guess’ for the end-of-step temperature NT inC1
2. Solve the fractional momentum equation (Equation (81)), obtain Qv
3. Solve the continuity equation for the pressure (Equation (82)), obtain NpinC1
4. Obtain N�inC1 from the ideal gas equation (Equation (4))

5. Solve for end-of-step momentum (Equation (83)) and obtain NvinC1
6. Check convergence in terms of density; if converged, go to next time step. Otherwise go to 7.
7. Solve the energy equation implicitly using NpinC1, N�inC1, NvinC1
8. Go to 2

4. EXAMPLES

The examples chosen show the applicability of the method to the problems involving convection
induced by temperature gradients. Attention is paid to the frequency spectra of the solution, reflect-
ing the impact of the presence of the acoustic waves. Detailed comparison with the results of the
chosen benchmarks published in literature serves for validating the method. The results shown next
correspond to the algorithm, summarized in Table I. The finite element formulation was imple-
mented within the Kratos Multiphysics FE System, a C++ object oriented FE framework developed
at the International Center for Numerical Methods in Engineering [16].

4.1. Natural convection in a square cavity at low Prandtl number

Natural convection in a square cavity is a classical benchmark example for the solvers for ther-
mally coupled flows. The problem is sketched in Figure 1. The isothermal vertical walls are kept
at constant but different temperatures. Upper and lower walls are modeled adiabatic. Homogeneous

Figure 1. Model of a square heated cavity.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 70:1–19
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Dirichlet boundary conditions are prescribed everywhere on the boundary for the velocity. The
problem is completely defined by two dimensionless parameters, the Prandtl number P r and the
Rayleigh number Ra, defined as

P r D
cp��

k
(85)

and

RaD P r �Gr (86)

with Gr being the Grashof number

Gr D
gL3.Th � Tc/

�2.Tav/
(87)

where cp is the specific isobaric heat, k is the conductivity, Th and Tc are the temperatures of the
hot and cold walls, respectively, Tav is their average, and L is the size of the cavity.

For the validation, numerical results will be presented for P r D 0.01 and Gr D 10E7 according
to the benchmark paper of Mohamad and Viskanta [17], where the benchmark is described.
Commonly modeled fluids, such as air or water have much higher values of Prandtl numbers,
P rwater � 7.0 and P rair � 0.7. For such Prandtl number, the fluid exhibits a steady-state solution.
However, it was discovered, that fluids with low Prandtl numbers (these are e.g. liquid semicon-
ductors), constitute an interesting problem: starting from Gr � 5 � 10E6, the fluids start exhibiting
an oscillatory flow field and a periodic solution. The transient nature of the flow provides a chal-
lenging example for testing the solver. Computation of velocity and temperature fields as well as
frequency spectra under such flow conditions shall give us a solid base for the validation of the
solver developed. As reported in literature, over-diffusive models lead to steady-state instead of
periodic solutions. The example allows us also to see the impact that the presence of acoustic waves
has upon the solution in a low Mach regime (Ma� 0.01).

Remark The settings are chosen as follows:

� Th D 305 [K]
� Tc D 295 [K]
� Tinit D 295 [K]
� PrD 0.01
� GrD 10E7

Nondimensionalization was obtained using the following scales: �T , L
2

˛
, ˛
L

for temperature,
length, time, and velocity, respectively, where ˛ D k

cp�
is the thermal diffusivity.

Figure 2 illustrates the temperature and velocity distributions once a periodic behavior is reached.
One can see a rotational velocity field. The density distribution is inversely proportional to the
temperature, as the pressure distribution is typically hydrostatic.

For the detailed analysis, two sampling points are chosen according to [17]: Point 1 located at the
middle of the cavity .0.5 , 0.5/, and Point 2 located at the middle right part of the cavity .0.9 , 0.5/.
Next, we present figures displaying the horizontal velocity evolution at these points. The upper
graphs correspond to Point 1 and the lower ones to Point 2. Figure 3 illustrates the frequency spec-
tra obtained on three different meshes (all meshes used were uniform and unstructured. Coarse
mesh: 2500 elements, standard mesh: 5700 elements, fine mesh: 23 000 elements). Comparing the
frequency spectra with the results obtained in [17] shown on Figure 4, one can see the dominat-
ing frequency of � 25 [Hz] at the cavity center. In our work we obtain one more frequency of �
45 [Hz]. Similarly, at Point 2, the two dominating frequencies detected in the numerical experi-
ment in [17] are found in the present work, whereas a third frequency of � 70 [Hz] is also found.
Comparison in the time domain and frequency domains show good agreement with results of [17].
The presence of the higher frequencies in the compressible model is expected and reflects the pres-
ence of acoustic waves. One can see that as the mesh resolution increases the captured frequency
range extends.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 70:1–19
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(a) temperature distribution (b) velocity distribution

(c) density distribution

Figure 2. Transient behavior in the square heated cavity for PrD 0.01, GrD 10E7.

Figure 3. Frequency spectra in the square heated cavity at two sampling points. Results obtained on various
meshes.

Remark The average CPU time associated to the solution of one time step for the proposed
semi-explicit methodology was compared with the time needed for an implicit solution. For exam-
ple, for the mesh of 5700 elements and a time step size of � 0.001 [s], the proposed method
required�0.096 [s] per time step, whereas for the equivalent implicit method, the CPU time was of

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 70:1–19
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Figure 4. Velocity evolution and frequency spectra in the square heated cavity for PrD 0.01, GrD 10E07.
Comparison with [17].

� 1.42 [s]. The solutions were obtained with a OpenMP-parallel code using eight processors in
both cases. Although this information is clearly implementation-dependent and does not reflect the
advantages of the implicit method (like the possibility of using larger time steps), it nevertheless
provides some qualitative insight of the computational efficiency of the method.

4.2. 8:1 heated cavity

Here, the benchmark proposed by Christon et al. in [18] is solved. The example models a differ-
entially heated rectangular cavity. The ratio between the vertical/horizontal edge length is 8:1. The
spatial structure of the flow is made of vertical and horizontal boundary layers and corner struc-
tures, which depend very sensitively on the aspect ratio, Prandtl number, and thermal boundary
conditions. All these features lead to a very complex time behavior resulting from several instabil-
ity mechanisms, traveling waves in the vertical boundary layers, and thermal instabilities along the
horizontal walls [19].

The geometry is shown in Figure 5, and the benchmark parameters are summarized next:

� LD 1m
� HD 8 m
� Th D 285.15 [K]

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 70:1–19
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(a) model and location
of the reference point

(b) meshes used

Figure 5. Differentially heated cavity with an aspect ratio of 8:1

� Tc D 275.15 [K]
� RaD 3.4E05
� P r D 0.71
� Point of analysis: .x,y/D .0.181, 7.37/
� top and bottom walls are adiabatic.

The model is shown schematically in Figure 5. Nondimensionalization was obtained using the
following scales: �T , L,

p
gˇL�T , L=

p
gˇL�T for temperature, length, time, and velocity,

respectively, where ˇ D 1=Tav is the thermal expansion coefficient. All the data will be presented
in terms of nondimensionalized quantities. Tests were carried out using two meshes, one containing
17 000 (referred as ‘coarse’) triangles with size varying from 0.02 (at the walls) to 0.08 (in the inte-
riors) and the other one containing 45 000 (referred as ‘fine’) with sizes varying from 0.01 (at the
walls) to 0.03 (in the interiors). Both meshes are shown in Figure 5.

In establishing this benchmark, Christon et al. [18] proposes Ra D 3.4E05 as it constitutes
a slightly over-critical Rayleigh number. All the investigations carried out [19–22] announce crit-
ical Rayleigh number to be above 3.0E05. To ensure that in the under-critical regime the flow
converges to the steady behavior, we performed a series of tests with Ra D 2.8E05. The solu-
tion converged to a steady-state independent of the mesh used conforming the expected result (this
can be seen in Figure 6, where the temperature evolution at ‘Point 1’ defined by Christon [19] as
.x,y/D .0.1810, 7.37/ is shown).

Next, we present the results obtained on two meshes with the compressible solver developed in
this work in the critical regime; that is, when instead of a steady-state, a periodic solution is reached.

Figure 6. Temperature (nondimensionalized) evolution for RaD 2.8 E05 (under-critical regime) in the 8:1
cavity.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 70:1–19
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The comparison of the compressible solver results on coarse and fine meshes is shown in Figure 7(a).
One can see that the oscillation amplitude does not vary considerably between both meshes (see the
superimposed graphs). The average temperature value is found to be‚D 0.265888, and the average
amplitude a D 0.007377. The period of oscillations is found to be 3.51. The comparison with the
results of Christon [18] are summarized in Table III.

It was observed in [19] that explicit algorithms on coarse meshes were unable to capture the
oscillatory solution found at RaD 3.4 � 10E05 and PrD 0.71. The cause was attributed to the mass
lumping used in the explicit schemes. In the present work in spite of the mass lumping, the periodic
behavior was captured already on the rough mesh using the present methodology, this can be seen
on Figure 8. A comparison with the explicit Boussinesq assumption-based solver is also shown on
Figure 8. The solver based on the Boussinesq assumption led to under-estimation of the oscillation
amplitude on the fine mesh, whereas not capturing the oscillating behavior on the rough mesh.

The stream-lines pattern obtained by solving the problem with the compressible solver is shown
in Figure 7(b). The results match very well those reported by Salinger et al. in [22], namely the
stream-line pattern corresponding to the flow after the first Hopf bifurcation. However, in [22], the
critical Rayleigh number was found to be Racr D 3.61 �E05, which is larger than the ones reported
by Xin and Le Quere [21] and Christon [18], that found Racr D 3.1 �E05. The present results show
that Racr D 3.4 �E05 correspond to the over-critical regime.

5. SUMMARY AND CONCLUSIONS

A finite element formulation and an algorithm for the solution of compressible subsonic flows was
proposed. The formulation was based on the complete set of compressible Navier–Stokes equations.

(a) Results obtained on rough and fine
meshes super imposed

(b) stream lines pattern

Figure 7. Temperature (nondimensionalized) evolution for RaD 3.4 E05 (supercritical regime) in the 8:1
cavity.

Table III. Comparison of the compressible solver results with the ones obtained in [19] for the 8:1 cavity.

Parameter Comp. solver Christon(ref.mesh)

Period avg 3.51 3.52
ux avg 0.0608 0.06112
ux ampl 0.0521 0.05078
uy avg 0.4473 0.4638
uy ampl 0.07724 0.0726
T avg 0.26588 0.2663
T ampl 0.0421 0.03975
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Figure 8. Temperature (nondimensionalized) evolution for RaD 3.4 E05 in the 8:1 cavity.

The absence of shock waves in the subsonic regime permitted to write the governing equations in
the nonconservation form. We showed that in the case of explicit treatment of the energy equation,
this becomes uncoupled from the rest of the system naturally (without the need for introducing any
approximation). For solving the (uncoupled) momentum/continuity system, we proposed a semi-
explicit method, where the momentum equation was integrated explicitly (except for the pressure
term) and the continuity—implicitly using a dissipative time integrator. We showed that under the
assumption of linear variation of temperature within a time step, one may omit resolving the continu-
ity equation at the intermediate steps of the Runge–Kutta scheme, thus reducing the computational
effort associated to the implicit step. The features of the method can be summarized as:

� efficiency close to that of a fully explicit approach
� implicit treatment of pressure leading to the invariance of the time step estimation of the

acoustic waves
� the frequency spectrum contains the acoustic contributions that can be correctly resolved by

FEM
� spurious high frequencies are damped by a dissipative time integrator

We also addressed a possibility of an iterative approach, where the solution of the energy equation
based on the known values of velocity, pressure, density is considered to be a guess for the momen-
tum/equation system, that is updated until convergence in temperature is achieved. In either case,

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 70:1–19
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the fractional step split was applied to the momentum/continuity system. The introduced methodol-
ogy not only permits splitting the monolithic system into a set of smaller ones, but also a modular
implementation similar to that of the incompressible case.
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