A Template Tutorial: Panels,
Families, Clones, Winners and
Losers

C. A. Felippa

Publication CIMNE N2-219, September 2002



A Template Tutorial: Panels,
Families, Clones, Winners and
Losers

C.A. Felippa

Publication CIMNE N°-219, September 2002

International Center for Numerical Methods in Engineering
Gran Capitan s/n, 08034 Barcelona, Spain






TABLE OF CONTENTS

§1. INTRODUCTION
§2. HISTORICAL SKETCH
§2.1. G1: The Pioneers .
§2.2. G2: The Golden Age
§2.3. G3: Consolidation
§2.4. G4: Back to Basics
§3. PROBLEM DESCRIPTION
§3.1. Governing Equations
§3.2. The Rectangular Panel
§4. THE STRESS ELEMENT
§4.1. The 5-Parameter Stress Field
§4.2. The Generalized Stiffness
§4.3. The Physical Stiffness
§5. THE STRAIN ELEMENT
§6. THE CONFORMING DISPLACEMENT ELEMENT
§7. TEMPLATES
§7.1. Stiffness Decomposition
§7.2. Template Terminology
§7.3. Requirements
§7.4. Instances, Signatures, Clones
§8. FINDING THE BEST
§8.1. The Bending Tests
§8.2. The Optimal Panel
§8.3. The Strain Element Does Not Lock
§8.4. But the Displacement Element Does
§8.5. Multiple Element Layers
§9. MORPHING INTO BEAM-COLUMN
§10. A G3 DEVICE: SELECTIVE REDUCED INTEGRATION
§10.1.  Concept and Notation
§10.2. TheCase Rj; =0
§10.3. The Case R #0 .o
§10.4. Selective Directional Integrauon
§11. FUTILE FAMILIES
§11.1.  Equilibrium Stress Hybrids
§11.2. Bubble-Augmented Isoparametrics
§12. NUMERICAL EXAMPLES
§12.1. Example 1: Slender Isotropic Cantilever
§12.2. Example 2: Slender Anisotropic Cantilever .
§12.3. Example 3: Short Cantilever Under End Shear
§13. DISCUSSION AND CONCLUSIONS
Acknowledgements .
References
§A. OTHER PANEL GEOMETRIES

§A.1.  Parallelogram (Swept) Panel
§A.2.  Trapezoidal Panel

§A.3. A Unidirectional-Bending- Optlmal Trapezmdal Panel'

0 NN AWW WWNNN =

—
(=

—
W W N = =

e el e
NNk~ B~

—
~

DO DD = =t
O OO\ X

WW NN NN NN
el BN B RN NSRS I

W W
B~ W






A Template Tutorial: Panels, Families, Clones, Winners and Losers

CARLOS A. FELIPPA

Department of Aerospace Engineering Sciences
and Center for Aerospace Structures

University of Colorado

Boulder, Colorado 80309-0429, USA

Abstract

The article has a dual historical and educational theme. Itis a tutorial on finite element templates for two-dimensional
structural problems. The exposition focuses on the four-node plane stress element of flat rectangular geometry, called
here the “rectangular panel” for brevity. This is one of the two oldest two-dimensional structural elements, soon
to reach its gold anniversary. On the other hand the concept of finite element templates is a recent development.
Interweaving the old and the new throws historical perspective into the “golden age” of discovery of finite elements.
Templates provide a framework in which diverse element development methods can be fitted, compared and traced
back to the sources. On the technical side templates have the virtue of facilitating the unified implementation of
element families as well as the construction of custom elements. As an illustration of customization power, the
Appendix presents the construction of a four noded bending optimal trapezoid that has eluded FEM investigators
for several decades.

El agua es como un espejo en que desfilan las imdgenes del pasado.
Ricardo Giiiraldes, Don Segundo Sombra (1926)

Keywords: finite elements; history; templates; instances; clones; inplane bending; optimality; quadri-
lateral; membrane; plane stress; patch test; distortion sensitivity

1. INTRODUCTION

This article has a dual theme: historical and educational. To serve the latter, the exposition is written
as a tutorial article on two-dimensional finite element templates. Part of this material is extracted from
an advanced FEM course. Templates are parametrized algebraic forms that provide a continuum of
consistent and stable finite element models of a given type and node/freedom configuration. Template
instances produced by setting values to parameters furnish specific elements. If the template embodies
all possible consistent and stable elements of a given type, it is called universal.

Befitting the tutorial aim, the exposition centers on the simplest 2D element that possesses a nontrivial
template: the four-node plane stress element of flat rectangular geometry. [The three-node linear triangle
is simpler but its template is trivial.] This is called the rectangular panel for brevity.

The rectangular panel is interesting from both historical and instructional viewpoints because:
1. It is one of the two oldest continuum mechanical elements, the other being the linear triangle [1].

2. Along with its plane strain and axisymmetric cousins, it is the configuration treated by most new
methods since the birth of finite elements. Thus it provides an in-vivo specimen of FEM evolution
over the past 50 years.

3. It is amenable to complete analytical development, even for anisotropic material law. This makes
the element particularly suitable for homework and project assignments.

4.  Analytical forms make the concept of template signatures and clones highly visible to students.

1



The paper is organized as follows. Section 2 outlines element formulations from 1950 to date. Section
3 introduces the focus problem. Sections 4-6 follow up on the historical theme by developing stress,
strain and displacement-based models for the rectangular panel.

The concept of template is introduced in Section 7 by calling attention to a common structure lurking
behind the stiffness expressions of stress, strain and displacement elements. Template terminology
follows as consequence of this idea: families, signatures, instances and clones. The role of higher order
patch tests in optimality is illustrated in Chapters 8-9. The SRI scheme is worked out in Section 10
to show that templates naturally lead to correct splittings of the elasticity law. The concept of element
families is illustrated in Section 11 using stress hybrid and displacement bubbles as examples. Section
11 provides numerical examples and Section 12 discussion and conclusions. The Appendix collects
templates for more general geometries to give a glimpse into the unifying power of this concept for
constructing custom elements.

2. HISTORICAL SKETCH

This section summarizes the history of structural finite elements since 1950 to date. It functions as a
hub for dispersed historical references. Readers uninterested in historical aspects should skip directly to
Section 3.

For exposition convenience, structural “finitelementology” may be divided into fourth generations that
span 10 to 15 years each. There are no sharp intergenerational breaks but noticeable change of emphasis.
The following summary does not cover the conjoint evolution of Matrix Structural Analysis into the
Direct Stiffness Method from 1934 through 1970. This was the subject of a separate essay [3].

2.1. G1: The Pioneers

The 1956 paper by Turner, Clough, Martin and Topp [1], henceforth abbreviated to TCMT, is recognized
as the start of the current FEM, as used in the overwhelming majority of commercial codes. Along with
Argyris’ serial [2] they prototype the first generation, which spans 1950 through 1962. A panoramic
picture of this period is available in two textbooks [4,5]. Przemieniecki’s text is still reprinted by Dover.
The survey by Gallagher [6] was influential but is now difficult to access outside libraries.

The pioneers were structural engineers, schooled in classical mechanics. They followed a century
of tradition in regarding structural elements as a device to transmit forces. This “element as force
transducer” was the standard view in pre-computer structural analysis. It explains the use of flux
assumptions to derive stiffness equations. Element developers worked in, or interacted closely with, the
aircraft industry. (One reason is that only large aerospace companies were then able to afford mainframe
computers.) Accordingly they focused on thin structures built up with bars, ribs, spars, stiffeners and
panels. Although the Classical Force method dominated stress analysis during the 1950s, stiffness
methods were kept alive by use in dynamics.

2.2. G2: The Golden Age

The next period spans the golden age of FEM: 1962-1972. This is the “variational generation.” Melosh
[7] showed that conforming displacement models are a form of Rayleigh-Ritz based on the minimum
potential energy principle. This influential paper marks the confluence of three lines of research: Argyris’
dual formulation of energy methods [2], the Direct Stiffness Method (DSM) of Turner [8-10], and early
ideas of interelement compatibility as basis for error bounding and convergence [11,12]. G1 workers
thought of finite elements as idealizations of structural components. From 1962 onward a two-step
interpretation emerges: discrete elements approximate continuum models, which in turn approximate
real structures.

By the early 1960s FEM begins to expand into Civil Engineering through Clough’s Boeing-Berkeley
connection [13] and had been named [14,15]. Reading de Veubeke’s famous article [16] side by side with
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TCMT [1] one can sense the ongoing change in perspective opened up by the variational framework.
The first book devoted to FEM appears in 1967 [17]. Applications to nonstructural problems start by
1965 [18].

From 1962 onwards the displacement formulation dominates. This was given a big boost by the inven-
tion of the isoparametric formulation and related tools (numerical integration, fitted coordinates, shape
functions, patch test) by Irons and coworkers [19-23]. Low order displacement models often exhibit
disappointing performance. Thus there was a frenzy to develop higher order elements. Other variational
formulations, notably hybrids [24-27], mixed [28,29] and equilibrium models [16] emerged. G2 can be
viewed as closed by the monograph of Strang and Fix [30], the first book to focus on the mathematical
foundations.

2.3. G3: Consolidation

The post-Vietnam economic doldrums are mirrored during this post-1972 period. Gone is the youthful
exuberance of the golden age. This is consolidation time. Substantial effort is put into improving the
stock of G2 displacement elements by tools initially labeled “variational crimes” [31], but later justified.
A comprehensive exposition may be found in Hughes’ textbook [32]. Hybrid and mixed formulations
record steady progress [33]. Assumed strain formulations appear [34]. A booming activity in error
estimation and mesh adaptivity is fostered by better understanding of the mathematical foundations [35].

Commercial FEM codes gradually gain importance. They provide a reality check on what works in the
real world and what doesn’t. By the mid-1980s there was gathering evidence that complex and high
order elements were commercial flops. Exotic gadgetry interweaved amidst millions of lines of code
easily breaks down in new releases. Complexity is particularly dangerous in nonlinear and dynamic
analyses conducted by novice users. A trend back toward simplicity starts [36,37].

2.4. G4: Back to Basics

The fourth generation begins by the early 1980s. More approaches come on the scene, notably the Free
Formulation [38,39], orthogonal hourglass control [40], Assumed Natural Strain methods [41-44], stress
hybrid models in natural coordinates [45—47], as well as derivatives: ANDES [48,49], EAS [50,51] and
others. Although technically diverse the G4 approaches share two common objectives:

(i) Elements must fit into DSM-based programs since that includes the vast majority of production
codes, commercial or otherwise.

(ii) Elements are kept simple but should provide answers of engineering accuracy with relatively coarse
meshes. These were collectively labeled “high performance elements” in 1989 [52].

“Things are always at their best in the beginning,” said Pascal. Indeed. By now FEM looks like an
aggregate of largely disconnected methods and recipes. Sections 4-6 look at three disparate components
of this edifice to set up the subsequent exhibition of common features by templates.

3. PROBLEM DESCRIPTION

3.1. Governing Equations

Consider the thin homogeneous plate in plane stress sketched in Figure 1. The inplane displacements are
{uy, uy}, the associated strains are {e,, eyy, €xy} and the inplane (membrane) stresses are {oyy, Oyy, Oy}
Prescribed inplane body forces are {b,, by}, but they will be set to zero in derivations of equilibrium
elements. Prescribed displacements and surface tractions are denoted by {iiy, it,} and (& fy} respectively.
All fields are considered uniform through the thickness k. The governing plane-stress elasticity equations
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Figure 1. A thin plate in plane stress, illustrating notation.

€xx a/ox 0 5 Oxx Eyy En En €xx
e),), = 0 3/8)’ |:ll" ] 5 Uyy = E12 Ezz E23 €yy )
Zexy d/dy d/dx Y Oxy Eyz Exz Es 26.\')'

are

g 1)
[3/8x 0 B/By] [U-"-"] N [bx] B [ojl
yy = .
0 a/dy d/dx Oy by 0
The compact matrix version of (1) is
e = Du, o = Ee, Dic+b=0, )

in which E is the plane stress elasticity matrix. The inverse of o = Ee is

€xx Cl 1 C12 C13 Oxx
eyy |=|[Ci2 Cn Cn||oy |, or e=Co, 3)
2eyy Ciz Cpn Cxudloy

where C = E~! is the matrix of elastic compliances.

3.2. The Rectangular Panel

The focus of this article, called the “rectangular panel,” is shown in Figure 2. For an individual element
the side-aligned local axes are also denoted as {x, y} for brevity. The inplane dimensions are a and
b =a/y, where y = a/b is the aspect ratio. The thickness and elastic properties are constant over the
element. The element has 4 corner nodes and 8 external (connective) degrees of freedom. The node
displacement and force vectors are configured as

T
u=1[uy Uy Uy Uy U3 Uy Uys Ups] @)

f=[fa fu fo fo fo fis fa fHul'. (5)

As noted in the Introduction most of the FEM formulation methods chronicled in Section 2 have been
tried on this configuration as well as its plane strain and axisymmetric cousins. The reason for this
popularity is that the rectangular panel is the simplest multidimensional element that can be improved.
(The three-node linear triangle is simpler but cannot be improved.)
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Figure 2. The rectangular panel.

In keeping with the expository theme, the next three sections derive the rectangular panel stiffness from
stress, strain and displacement assumptions, respectively. Mirroring history, the derivation of stress
and strain models follows the matrix-based direct elasticity approach used by the first generation, as
summarized in Gallagher’s review [6].

Ironically, the direct derivation will give optimal or near-optimal elements with no sweat whereas the
variationally derived displacement model needs tweaking (e.g., by SRI) to become useful.

4. THE STRESS ELEMENT

TCMT [1] is the starting point. In a historical summary Clough [13] remarks that the paper belatedly
reports work performed at Boeing’s Commercial Airplane Division in 1952-53 (indeed [1, p. 805] states
that the material was presented at the 22nd Annual Meeting of IAS, held on January 25-29, 1954.) In
addition to bars, beams and spars, TCMT presents two plane stress elements for modeling wing cover
plates: the three-node triangle and the four-node flat rectangular panel. Quadrilateral panels of arbitrary
geometry, not necessarily flat, were constructed as assemblies of four triangles.

Readers perusing that article for the first time have a surprise in store. The stiffness properties of both
panel elements are derived from stress assumptions, rather than displacements, as became popular in the
second generation. More precisely, simple patterns of interelement boundary tractions (a.k.a. stress flux
modes) that satisfy internal equilibrium are taken as starting point. Twenty years later and apparently
unaware of TCMT, Fraeijs de Veubeke [53] systematically extended the same idea in a variational
setting, to produce what he called diffusive equilibrium elements. These are designed to weakly enforce
interelement flux conservation. The comedy continues: twenty year later mathematicians rediscovered
flux elements, now renamed as “Discontinuous Galerkin Methods,” blessfully unaware of previous work.

The derivation below largely follows Chapter 3 of Gallagher [6], who presents a step by step procedure for
what he calls the “equivalent force” approach. The main extension provided here is allowing anisotropy.

4.1. The 5-Parameter Stress Field

Since TCMT the appropriate stress field for the rectangular panel is known to be [6, p. 19]

y X
Oxx = 1 + U4 7 Oyy = K2 + W5 = Oxy = U3. (6)

The five p; are stress-amplitude parameters with dimension of stress. They are collected in the 5-vector
p=0pu1 po pa pa psl. (7

The field (6) satisfies the internal equilibrium equations (1); under zero body forces. Evaluation over
element sides produces the traction flux patterns of Figure 3, copied verbatim from TCMT. Why five?
“These load states are seen to represent uniform and linearly varying stresses plus constant shear, along

5



fx=H1

= -y /b
=

L= U3

L =Us3

Figure 3. Nonzero interelement boundary tractions associated with the stress parameters
wi in (7). After [1, p. 812], in which these five patterns are called “load states.”

the plate edges. Later it will be seen that the number of load states must be 2n — 3, where n = number
of nodes.” [1, p. 813].

To establish connection to node displacements, p is extended as

Py =[p1 pa M3 pa ps e M7 psll €]

This array contains three dimensionless coefficients: p, w7 and ug, which define amplitudes of the
three element rigid body modes (RBMs):

RBM#1: u, = pga, uy =0, RBM#2: uy, =0, uy, = 76, RBM#3: u, = —pugy, Uy = [gx,

)
These modes produce zero stress. The foregoing relations may be recast in matrix form:
100 % 0 100% 0000
o=Np=Nypy, N=/0100 %[, Ny=/0100 2000/ (0
001 0 O 001 0 O0O0O0OO
The boundary traction patterns of Figure 3 are converted to node forces by statics. This yields
—b 0 b 0 b 0 —b 0
0 —a O —a 0 a 0 a
f=Ap, Al=ih|—-a -b —a b a b a -b|. (11)
1 1 1 1
b 0 b 0 b 0 —b O
0 %a 0 —éa 0 éa 0 —%a

Matrix A is the equilibrium matrix, also called the leverage matrix in the early FEM literature. When
restricted to the constant stress states (the first three columns of A), it is called a force-lumping matrix
and denoted by L in the Free Formulation of Bergan [38,39,54—60].

4.2. The Generalized Stiffness

Integrating the complementary energy density U* = %O'TCO' over the element volume V and identifying
U* = [, U*dV with % p"F,p yields the 5 x 5 flexibility matrix F,, in terms of the stress parameters.
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Its inverse is the generalized stiffness matrix S, = F

0
0

0
0
Fll =V | Cs Cy Ci 0
C
0

Cu Cr Cns 0 Ey En
Co Cn Cxn 0 1| Bz Ex
0 s S#Z— E13 E23

0 iCn © Vio o

0 5Cn 0 0

in which V = abh is the volume of the element.

4.3. The Physical Stiffness

Integration of the slave strain field e = E'oc =CN;pu + produces the displacement field

1, (x, y) = pea + o6 + (1Cry + 12C12 + p3Ci3)x + (5(11Ci3 + p2Cos + 13C33) — Kg)y
+ Y(us/a)Crax® + (a/b)Crixy + 5 ((a/b)Cra — (ns/a)Ca)y>,

iy (x, ¥) = b + §07 + G (11C13 + 12Ca3 + 13Ca3) + pg)x + (1Cra + (42Co2 + p3Ca3)y

Esz 0 0
Exn 0 0
Eyx 0 0o |, (12
0 12¢;' 0
0 0 126
(13)

+ 1 ((rs/a)Ca3 — (11a/b)C11)x" + (s/a)Coaxy + 5 (14a/b)Cr2y”.

with wg = —b>Ciapa/b + (b*Cp—a*Cr2) (us/a) and w7 = (a*Cy1—b*Cr2) (s /b) — a*Caapus/a. The
constant terms in u, and u,, which do not affect strains and stresses, have been adjusted to get relatively
simple terms in columns 4 through 8 of the matrix T, below. Physically, (13) aligns the bending
deformation patterns along the {x, y} axes. Evaluating (13) at the nodes we obtain the matrix that
connects node displacements to stress parameters: u = T p, , where

r—2aCyy — bCi3 —2aCip — bCyz —2aCi3 — bCs3 aCyy 0 4a O 2b

—2bC12 — aC13 —2bC22 = [lC23 —2bC23 = (lC33 0 bC22 0 4b —2a

2aC11 = bC13 2(lC12 - bC23 2aC13 - bC33 —CZCU 0 4a 0 2b

T, = i —2bCi2+aCi3 —2bCyp + aCy3 —2bChs + aCas 0 —bCypy 0 4b 2a
2aCyy + bCi3 2aCiy + bCoys 2aCi3 + bCs; aCyy 0 4a 0 —2b

2bCip + aCis 2bCyp + aCys 2bCor3 + aCss 0 bCyp 0 4b 2a

—2aCi1 +bCi;3 —2aCiy +bCy3 —2aCi3+ bCsz —aCyy 0 4a 0 —-2b
L 2bC12 = aC13 2bC22 - aC23 2bC23 - aC33

0 —bC22 0 4b —2a
(14)

The determinant of T is a*b*C;Cy, det(C), so T, is invertible if a # 0, b # 0, Cyy # 0, Cx, # 0 and
C is nonsingular. Inversion yields p, = U;u, where

U+ :'I‘_—l_l -

in which Uy =

—1(@Ep—bEp), Uis = Y(bEn+aEn), Uy = 3(@En+bEn), U

0 aC;,! 0 —aC; 0 aCy
1 1 1
ab 0 ab 0 ab 0
10 ‘l‘la 10 %a ? %a
L Za —Zb Z(l Zb —Z(l Zb
—L(®En+aEp), Uy = —3(@En+bEn), Un

Uiy Uis

Uy Uz

Uy Usg
-bC! 0

0 —acy | @
1

Lp 0

0 %a

1 1

—Za _Zb B

= 1(bEn—aEp), Uy =
= —1(bEy1—aE3), Uig =

1(@Ep—bEp), Uy = —5(En+aEn), Un = —1(@aEn+bEy), Uy = 1(bEp—aEn), Uy =
—1(aEp—bEy), Uss = 3(bEp+aEny), Uy = 3(a@En+bEx), Uy = —1(En—aEy), Us =
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(a) Direct derivation a la TCMT [1] (b) Energy derivation

f=AUu=Ksu f=AS A u=K,u
u > f u » f
Uu A A
Equilibrium Kinematic Equilibrivm
f=Ap x = Alu f=Ap
Kinematic+ A 4 _
Constitutive W, L4 X h=Sux > W, W+
Constitutive
Figure 4. Derivation of the stress-assumed rectangular panel stiffness.
Left side shows derivation bypassing energy methods.
5(@Ep—bEy), Uy = —L(bE3+aEsy), Uy = —3(aEp+bEs), Uy = L(bE;z—aEs), Uy =
—3(@En—bEx), Uss = L(bEi+aEs), Uss = r(aEx+bEsw), Uy = —3(bE;3—aEy) and

Usg = %(aE23—bE33). The stress-displacement matrix U that relates stress parameters to displace-
ments: p = Uu, is obtained by extracting the first five rows of U.:

Un U Uiz Uis Us Usg Un Uss
1 Usi U U Uy Uys Uy Uxn Uss
U= p Ui  Uxp Us; Usy Uss  Usg Uz Uss | =S.A". (16)
Plect 0o -bci! 0 bzt 0 -BCT 0O
0 aCy' 0 —aCy,) 0 aCy 0 —aCy;)

The relation U = S,A” can be checked directly. For this element it can be proven to hold by energy
methods, but that was not obvious in 1952. It must have been a relief when the element stiffness came
out symmetric. As Gallagher remarks [6, p. 22] symmetry is the exception rather than the rule for more
complicated configurations. That difficulty proved a big boost for the energy and variational methods of
the second generation.

The physical stiffness K, relates f = K, u, where the o subscript flags the stress element. Combining
f=Apand p=Uu=S8,A" uyields
K, =AU=AS,A". (17

Figure 4 summarizes the foregoing derivation steps. Note that one can bypass the calculation of the
generalized stiffness S, if so desired, as diagrammed on the left of that figure. This is convenient for
presentation to students without a background on energy methods.

Note that the displacement field (13) contains quadratic terms if jt4 or w5 are nonzero. Hence the element
is nonconforming. This is acknowledged but dismissed as innocuous in TCMT [1, p. 814].

S. THE STRAIN ELEMENT

A strain-assumed element can be developed through an entirely analogous procedure. The counterpart
of (6) is

¥ X
exx = X1+ Xa 5 eyy = X2 + X5 - 2eyy = X3. (18)

where the x; are dimensionless strain-amplitude parameters. They are collected in the 5-vector

x=[x1 x2 x3 xa xs1'. (19)
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An extended vector is constructed by appending the RBM amplitudes

X+=[x1 X2 X3 Xa X5 X6 X1 xsl' . (20)

in which xg, x7 and xg are defined a a manner similar to (9). Note that e = Ny = N, x, where N and
N, are defined in (10). Integrating the strains yields the displacement field

e (X, ) = X6 + X8y + (X1 + xa/b)xy — 3(xs/a)y*,

(21)
y(x,y) = x7+ (X3 — x8)X + X2y — 3(xa/B)x* + (xs/a)xy.

Evaluating at the nodes and inverting yields x, = B, u where

r—4b 0 4b 0 4b 0 —4b 0 7
0 —4a 0 —4a 0 da 0 da

—4a —4b —4a 4b 4da 4b da —4b
1 8b 0 -8 0 8b 0 -8 O

By = 8ab| O 8 0 -8 0O 8 0 —8a 22)

2ab  b* 2ab —b* 2ab b*> 2ab —Db?

a> 2ab —a* 2ab a* 2ab —a* 2ab
| —4a 0 —da 0 da 0 da 0

from which we extract the first five rows to get the strain-displacement matrix relating x = B, u:

-b 0 b 0 b 0 —b 0
h 0 -—a 0 —a 0 a 0 a

B, = 2V —a —-b -—a b a b a —b (23)
26 0 -2b 0 2b 0 -2b O

0 2a 0 —2a 0 2a 0 —2a

For use below we note the following relation between the transformation matrices of the stress and strain
elements

1
AT =VD4B,, B,=-=D;'A”, D,=

=DL. (24
v 0 11_212] A ( )

O OO O -
S OO~ O

0
0
1
0
0

ogl~o oo
SFo oo o
I
| —

]
w
o

From (11) the lumping of the slave stress field Ee = ENx to node forces can be worked out to be

Eyy Ep E3z O 0
Eyp, Eyx Ex O 0
f=AE,x =VB]DsE,x, with Ey=|E3 Ej3 Ex 0 0 (25)
0 0 0 Ey O
0 0 0 0 Ep
Combining previous equations, the physical element stiffness is
K. =VB/D4E,B, =B/K,B,, with K, =VD,E,. (26)

9



(a) Direct derivation a la [6] (b) Energy derivation

f=B} VD,E,Byu

=K.u f=B;S,Byu=K,u

u > f u > f

A

Kinematic Kinematic Equilibrium
— -1 = B u = _nT
u=B,% X X Consfitutive+ x=Byu f=Byp
v Equilibrium
f=BJVD,E,y uw=VDE,x=S,x
X X ' % % S
Constitutive

Figure 5. Derivation of the strain-assumed rectangular panel stiffness.
Left diagram shows derivation bypassing energy methods.

Here K, denotes the generalized stiffness in terms of x. This matrix may be obtained also from standard
energy arguments: the strain energy density is U = %xTEx. Integrating over the element volume:
U= [, UdV and identifying with $x7K,x gives

Eyy Ep Ep 0 0
Ein Exn Ex 0 0
K,=VD4E, =V | E3 Exn Ex 0 0 27)
0 0 0 +LE; 0
0 0 0 0 LExn

Figure 5 summarizes the foregoing derivation steps. The direct step from x to f on the left is more
difficult to explain to students than the step from u to p in Figure 4. The energy based formulation
shown on the right of Figure 5 tends to be more palatable.

6. THE CONFORMING DISPLACEMENT ELEMENT

This derivation of the assumed-displacement element starts from a conforming displacement field that
enforces linear edge displacements. Using the matrix notation of [61, p. 227] for Irons’ isoparametric
formulation [23] specialized to the rectangle, the displacement field is bilinearly interpolated as

ORI
l:”.\-(x,y):| :l[_a 0Oa 0a 0 —a 0] %(1+§)(1—n)

@, )] 2L 0 =60 —-b0b 0b]|la+e)a+p |
i1=61+n)

where £ = 2x/a and n = 2y/b are the dimensionless quadrilateral coordinates. The derivation based

on the minimum potential energy principle is standard textbook material and only the final result is
presented here:

(28)

Enw Ep Esz O 0
1| Bz Ex Exz 0O 0
K, =B;K,B,, with K, = v | En Ex En 0 0 |, (29)
0 0 0 Qu 02n
0 0 0 OQn On
in which B, = AT as given by (11) and
b’Eyy + a’Ex; Ei3  Ex a’Ey + b*Ex
=12— =12(—+—, =12— = 30
Qn ab3h Oz <a2h + b2h) Oz a’bh (30)
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Figure 6. The template for the rectangular panel, illustrating
formulation dependent and independent parts.

This model has a checkered history. It was first derived as a rectangular panel with edge reinforcements
(omitted here) by Argyris in his 1954 Aircraft Engineering series [2, p. 49 in reprint]. He used bilinear
displacement interpolation in Cartesian coordinates. After much flailing, a conforming generalization
to arbitrary geometry was published in 1964 by Taig and Kerr [62] using quadrilateral-fitted coordinates
called {&, n} but running from 0 to 1. (Reference [62] cites an 1961 English Electric Aircraft internal
report as original source but [23, p. 520] remarks that the work goes back to 1957.) Bruce Irons, who was
aware of Taig’s work while at Rolls Royce, created the seminal isoparametric family as a far-reaching
extension upon moving to Swansea [19-22].

7. TEMPLATES
7.1. Stiffness Decomposition

The stiffnesses K,, K, and K, derived in the foregoing three Sections do not appear to have much in
common. Indeed if one looks at just the matrix entries no pattern is readily seen. Closer examination
reveals, however, that they are instances of the algebraic form

K =K, +K;, = VH'EH, + V H W' RWH,, (31)

where V = abh is the element volume and

0
¢ — a
2ab a —b —a b a —b
0, =1 1 0 -1 01 0 -1 0 (32)
210 1 0 -1 0 1 0o -1/
_|a O _ | Ru Rz
W_l: 0 l/b}’ R_[RIZ Rzz]'

Matrices H, and Hj, are the same for the three elements. Matrix R (a generalized bending rigidity)
depends on the formulation. The transition matrix W is formulation independent for rectangular panels.
For more complex geometries discussed in the Appendix, W may be formulation-adjusted to make R
simpler.

For the stress, strain and displacement elements R is R,, R, and R, respectively, where
2
a’E bE aE
E11+-—7;§l e

¢yl o Ey O
R =1|%u R, =1["H R, =%
3[ 0 Cz_zl]’ : 3[0 522]’ e ——bE13+T“E23 Ep + 220
a 22 pe

(33)
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RectPaneldTemplatestiffness([{a_,b_},Emat_,Cmat_,h_,name_,Rlist_]:=
Module[{V, found, Hc,Hh,W,Ke}, V=a*b*h;
{WRW, found}=RectPanel4TemplateWRW[{a,b},Emat,Cmat,name,Rlist];
If [Not[found], Print["Illegal elem name: ",name]; Abort[]]:
Hc:((—bl olbl Olbl ol_bl o)l {ol-al ol-alolal ola}l

{-al_bl -alblalblal-b)}/ (2*a*b) H

Hh={{1,0,-1,0,1,0,-1,0},{0,1,0,-1,0,1,0,-1}}/2;
Ke=V*Transpose [Hc] .Emat .Hc+V*Transpose [Hh] .WRW.Hh;
Return[Simplify[Kell]l:;

RectPaneld4TemplateWRW[{a_,b_},Emat_,Cmat_,name_,Rlist_]:=
Module[{R11,R12,R22,Rmat,Ell1,E12,E13,E22,E23,E33,
found=False,Cl11,Cc22,C33,C12,C13,C23,Edet,Cdet,W,WRW},

{{El11,E12,E13},{E12,E22,E23}, {E13,E23,E33}}=Emat;

If [Length[Cmat]<=0,
Edet=E11*E22*E33+2*E12*E13*E23-E11*E2342~-E22*E1342-E33*E1242;
Cll=(E22*E33-E2342) /Edet; C22=(E11*E33-E1342) /Edet;
C33=(E11*E22-E1242) /Edet; Cl2=(E13*E23-E12*E33)/Edet;
Cl3=(E12*E23-E13*E22) /Edet; C23=(E12*E13-E11*E23) /Edet,
{{c11,c12,c13},{c12,c22,c23},{Cc13,Cc23,C33}}=Cmat,
{{c11,c12,c13},{c12,c22,c23},{cl1l3,c23,C33}}=Cmat];

If [name=="Stress"||name=="QM6" | |name=="Q6",

R11l=1/(3*Cl1l); R22=1/(3*C22); R12=0; found=True];

If [name=="Strain", R11=E1l1l/3; R22=E22/3; R12=0; found=True];

If [name=="Disp", R1l1l=(E11+E33*a*2/b*2)/3;
R22=(E22+E33*b*2/a*2)/3; R12=(E13*b/a+E23*a/b)/3; found=True]l;

If [name=="Arbitrary", {R11,R12,R22}=Rlist; found=True];

w={{1/a,0},{0,1/b}}; Rmat={{R11,R12}, {R12,R22}};

WRW=Transpose[W] .Rmat.W; Return[{WRW, found}]];

Figure 7. A Mathematica implementation of the rectangular panel template (31).

But actually we are not restricted to these. Other expressions for R would yield other K. These are
possible, although not necessarily useful, stiffnesses for the rectangular panel if R is symmetric and
positive definite, and if its entries have physical dimensions of elastic moduli. Further if Ej3 = E»; =0
we set R = 0. The key discovery is that the element formulation affects only part of the stiffness
expression. See Figure 6.

7.2. Template Terminology

The algebraic form (31)-(32) is called a finite element stiffness template, or template for short.

Matrices Kj, and K, are called the basic and higher-order stiffness matrix, respectively, in accordance with
the fundamental decomposition of the Free Formulation [38,39,54—60]. These matrices play different
and complementary roles.

The basic stiffness K, takes care of consistency and mixability. In the Free Formulation a restatement
of (31) is preferred:

K,=V'LELT, (34)

where L = H,/V is called the force lumping matrix, or simply lumping matrix.

The higher order stiffness Kj, is a stabilization term that provides the correct rank and may be adjusted
for accuracy. This matrix is orthogonal to rigid body motions and constant strain states. To verify the
claim for this template introduce the following 8 x 6 matrix, called the basic-mode matrix in the Free
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Formulation:

r1 0 yi o x1 0y 20 —b —a 0 —b7
01 —x 0 y x 02 a 0 —b —a
1 0 y2 x, 0 y 20 b a 0 —b
_ 0 1 —X 0 Y2 X2 1 02 —a 0 —b a
Gre=11 o yi x3 0 y3| 2(20 b a O b (35)
0 1 —x3 0 y3 x3 02 —a 0 b a
1 0 va x4 0 20 b —-a 0 b
LO 1 —x4 0 y5 x4 102 a 0 b —al

The six columns of G,. span the rigid body modes and constant strain states evaluated at the nodes
(these bases are not orthonormalized as that property is not required here). It is readily checked that
H,G,. = 0. Therefore those modes, and any linear combination thereof, are orthogonal to the higher
order stiffness: K, G,. = 0. So the role of Hj, is essentially that of a geometric projector.

A Mathematicaimplementation of (31) is shown in Figure 7, as module RectPanel4TemplateStiffness.
The module arguments are the rectangle dimensions as list {a,b}, the 3 x 3 elasticity matrix
as list Emat={{E11,E12,E13},{E12,E22,E23},{E13,E23,E33}}, the 3 x 3 compliance ma-
trix as list Cmat={{C11,C12,C13},{C12,C22,C23},{C13,C23,C33}}, the thickness h, the name
as one of "Stress" ,"Strain", "Disp", "Q6", "QM6" or "Arbitrary", and finally the list
Rlist={R11,R12,R22}. The latter is used if the name is "Arbitrary". This comes handy for
finding the signature of known elements leaving the entries of R1ist symbolic and using the Solve
command. If Cmat is supplied as the empty list { }, the compliance matrix is calculated internally as
inverse of Emat.

The module returns the 8 x 8 stiffness matrix Ke as function value. To get the basic stiffness K;, only,
call with name = "Arbitrary" and R1ist={0,0,0}.

7.3. Requirements

An acceptable template fulfills four conditions: (C) consistency, (S) stability (correct rank), (I) observer
invariance and (P) parametrization. These are discussed at length in other papers [69-75]. Conditions (C)
and (S) are imposed to ensure convergence as the mesh size is reduced by enforcing a priori satisfaction
of the Individual Element Test (IET) of Bergan and Hanssen [76,77]

Condition (P) means that the template contains free parameters or free matrix entries. In the case of (31),
the simplest choice of parameters are the entries Ry, Ri2, R themselves. To fulfill stability, Ry; > 0,
Ry, > 0and R 1Ry — R%Z > 0. Parametrization facilitates performance optimization as well as tuning
elements, or combinations of elements, to fulfill specific needs.

Using the IET as departure point it is not difficult to show [78] that (31), under the stated restrictions
on R, includes all stiffnesses that satisfy the IET and stability. Observer invariance is a moot point for
this element since {x, y} are side aligned. As per the definition in the Introduction, (31) is an universal
template.

7.4. Instances, Signatures, Clones

Setting the free parameters to specific values yields element instances. The set of free parameters is
called the template signature, a term introduced in [73,74]. Borrowing terminology from biogenetics,
the signature may be viewed as an “element DNA” that uniquely characterizes it as an individual entity.
Elements derived by different techniques that share the same signature are called clones.

One of the “template services” is automatic identification of clones. If two elements fitting the template
(31) share R;;, Ry, and Ry, they are clones. Inasmuch as most FEM formulation schemes have been

13



Table 1. A Clone Gallery

Name Description Clones and sources
StressRP 5-stress-mode element of Section 4  Direct derivation: TCMT [1], Gallagher [6]
(a.k.a. BORP) Pian 5-mode stress hybrid [25,27]

Wilson-Taylor-Doherty-Ghaboussi Q6 [63]
Taylor-Wilson-Beresford QM6 [64]
Belytschko-Liu-Engelmann QBI [65]

SRI of iso-P with E split as per (54)

StrainRP 5-strain-mode element of Section 5 MacNeal QUAD4 [36,66]
SRI of iso-P with E split as per (56)

DispRP Bilinear iso-P element of Section 6  Argyris [2] as edge stiffened rectangular panel
Taig-Kerr [62] as specialized quadrilateral

Note 1: Many plane stress models listed above were derived for quadrilateral geometries, and a few
as membrane component of shells. The right-hand-column classification only pertains to the
rectangular panel specialization. For example, Q6 and QM6 differ for non-parallelogram shapes.

Note 2: Instances of the stress-hybrid and displacement-bubble-function “futile families” studied in
Section 11 are omitted, as they lack practical value.

Note 3: Post-1990 clones (e.g. EAS [51]) omitted to save space. See [67] for a recent survey.

tried on the rectangular panel, it should come as no surprise that there are many clones, particularly of
the stress element. Those presented before 1990 are collected in Table 1. For example, the incompatible
mode element Q6 of Wilson et al. [63] is a clone of StressRP. The version QM6 of Taylor et al. [64],
which passes the patch test for arbitrary geometries, reduces to Q6 for rectangular and parallelogram
shapes. Even for this simple geometry recognition of some of the coalescences took a long time, as
recently narrated in [68].

8. FINDING THE BEST

An universal template is nice to have. But an obvious question arises: among the infinity of elements
that it can generate, is there a best one? By construction all instances verify exactly the IET for rigid
body modes and uniform strain states. Hence the optimality criterion must rely on higher order patch
tests.

8.1. The Bending Tests

The obvious tests involve response to in-plane bending along the side directions. This leads to compar-
isons in the form of energy ratios. These have been used since 1984 to tune up the higher order stiffness
of triangular elements [54—57,79]. An extension introduced in this article is consideration of arbitrary
anisotropic material. All symbolic calculations were carried out with Mathematica.

The x bending test is depicted in Figure 8. A Bernoulli-Euler plane beam of thin rectangular cross-section
with height b and thickness & (normal to the plane of the figure) is bent under applied end moments
M,. The beam is fabricated of anisotropic material with the stress-strain law o = Ee of (2),. Except
for possible end effects the exact solution of the beam problem (from both the theory-of-elasticity and
beam-theory standpoints) is a constant bending moment M (x) = M, along the span. The associated
stress field is oy = —M, y/I,, 0y, = 0y, = 0, where I, = 5hb>.

For the y bending test, depicted in Figure 9, the beam cross section has height a and thickness #, and
is subjected to end moments M,. The exact solution is M(y) = M,. The associated stress field is
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Figure 8. Constant-moment inplane-bending test along the x side dimension.

oyy = My, x/1, and oy, = oy, = 0, where I, = I—‘Zha3. For comparing with the FEM discretizations
below, the internal (complementary) energies taken up by beam segments of lengths @ and b in the
configurations of Figures 8 and 9, respectively, are

6aC11M'3
b3h

6bCrM;
, U)l?eam — = Y (36)

U?eam —
For the 2D element tests, each beam is modeled with one layer of identical 4-node rectangular panels
dimensioned a x b as shown in Figures 8 and 9. The aspect ratio b/a is denoted by y. By analogy
with the exact solution, all rectangles in the finite element model will undergo the same deformations
and stresses. We can therefore consider a typical element. For x bending the exact stress distribution
is represented by (7) on taking w4 = —Mb/I, = —12M,/(b*h) and 11 = py = 3 = us = 0. The
rigid body mode amplitudes are chosen to be zero for convenience: e = 7 = g = 0. Inserting these
w; into (14) we get the node displacement vector

12M,Cyya
uy = ————
bx b2h
Likewise, for the y bending test the element stress field is obtained by taking us = Mya/l, =

12My/(a2h) and u; = uy = p3 = g = g = U7 = png = 0. The node displacement vector
given by (14) is

[-1 01 0 =1 0 1 0]". 37)

_ 12M,Cpb
Y alh
The strain energies absorbed by the panel element under these applied node displacements are UP" =
%ungub_\_ and U} anel — %uZyKuby, respectively. Define the bending energy ratios as

u, 01 0 -1 010 —1]". (38)

anel anel
U? Uy
- _

= r, =
’ beam ’ y beam
U.\' Uy

(39

These happen to be the ratios of the exact (beam) displacement solution to that of the of rectangular panel
solution. Hence r, = 1 means that we get the exact answer under M, that is, the panel is x-bending
exact. If r, > 1 orr, < 1 the panel is overstiff or overflexible in x bending, respectively, and likewise
for y bending.

If . = 1 and ry, = 1 for any aspect ratio y = b/a and arbitrary material properties the element is called
bending optimal. If r, >> 1if a >> b and/or ry >> 1if a << b the element is said to experience
aspect ratio locking along the x or y direction, respectively. This is known as shear locking in the FEM
literature because it is traceable to spurious shear energy.
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Figure 9. Constant-moment inplane-bending test along the y side dimension.

8.2. The Optimal Panel
Applying the tests to the template (31) yields
ry = 3C11 Ry, ry = 3CnRoy. (40)
Clearly to get r, = r, = 1 for any aspect ratio we must take
Ry = %Cﬂl, Ry = %Cz_zl (41)

Because R;, does not enter the optimality criterion one can set Ry, = 0 for convenience. Comparing
to the R, of (33) shows that the 5-parameter stress model of TCMT [1] (and its clones) is the bending-
optimal rectangular panel. If the material is isotropic, Ri; = Ry = %E . Accordingly the StressRP
instance will be henceforth also identified by the acronym BORP, for Bending Optimal Rectangular
Panel.

8.3. The Strain Element Does Not Lock

It is interesting to apply the result (40) to other elements. The StrainRP element generated by the R, of
(33) gives

re =CpEq, ry = CpEjp. (42)
If the material is isotropic, C;y = Cy = 1/E and Ey; = Eypp = E/(1 — v2). This yields r, = ry =
1/(1—v?), which varies between 1 and 4/3. For an orthotropic body with principal material axes aligned
with the rectangle sides, E1; = E /(1 —viava1), Exn = E>/(1 —viavy1), Cyy = 1/Ey, Cpp = 1/E5, and
ry =ry = 1/(1 — viavy1). The ratios are independent of the aspect ratio y. Consequently StrainRP and
its clones do not lock, although the element is not generally optimal. Note that if Cy; E; and/or Cyp Ex,
differ widely from 1, as may happen in highly anisotropic materials, the bending performance will be
poor. See the Example problem in Section 12.2.

8.4. But the Displacement Element Does

DispRP is generated by the R, of (33). Inserting its entries into (40) we get

(EnEss — E3)(En + Exny?)
det(E) ’

_ (EuEs — ER)(En+ Eny ™)
det(E) ’

re = Cii(Eyy + Exny?) =

(43)

ry = Co(Exn + E3y ™)
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Figure 10. Morphing a 8-DOF rectangular panel unit to a 6-DOF beam-column element in the x direction.

in which det(E) = E({ExE33 + 2E12E13Exs — E11E%3 — E22E123 — Ex3 E122. For an isotropic material

2+ 21 —v) 14+2y2—v
———————, Yy S—am 0"
2(1 —v?) 2y2(1 —v?)

Ty = (44)
These relations clearly display aspect ratio locking for bending along the longest side dimension. For
example, if v = 0and @ = 10b whence y = a/b = 10, r, = 51 and DispRP is over 50 times stiffer in x
bending than the Bernoulli-Euler beam element. The expression (43) makes clear that locking happens
for any material law as long as E33 7 0. Since this is the shear modulus, the name shear locking used
in the FEM literature is justified.

8.5. Multiple Element Layers

Results of the energy bending test can be readily extended to predict the behavior of 2n (n = 1,2, ...)
identical layers of elements symmetrically placed through the beam height. If 2n layers are placed along
the y direction in the configuration of Figure 8 and y stays the same, the energy ratio becomes

r(2n) _ 22!1 -1 + Ty

X 22n ? (45 )

where r, is the ratio (40) for one layer. If r, = 1, r2" = 1 so bending exactness is maintained, as can be
expected. For example, if n = 1 (two element layers) r® = (3 + r,)/4. The same result holds for r,
if 2n layers are placed along the x direction in the conﬁguratlon of Figure 9.

9. MORPHING INTO BEAM-COLUMN

Morphing means transforming an individual element or macroelement into a simpler model using kine-
matic constraints. Often the simpler element has lower dimensionality. For example a plate bending
macroelement may be morphed to a Bernoulli-Euler beam or to a torqued shaft [75]. Toillustrate the idea
consider morphing the rectangular panel of Figure 10 into the two-node beam-column element shown
on the right of that Figure. The length, cross sectional area and moment of inertia of the beam-column
element, respectively, are denoted by L = a, A = bh and I, = b*h/12 = a*h/(12y>), respectively.

The transformation between the freedoms of the panel and those of the beam-column is

fuql [LO 36 00 07
Uyl 01 0 00 O fiy1 ]
Uy2 00 0 10 %b u_yl
Uy2 00 0O 01 O 0, B
Hr= uis “l1o0 0 10 —ib|] i =Tuu,. (46)
Uy3 00 O 01 0 ity
Uxa 10 -3 00 0 L4,
Luyd Lo 0 00 0
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where a superposed bar distinguishes the beam-column freedoms grouped in array u,,. As source select
StressRP fabricated of isotropic material. The morphed beam-column element stiffness is

A 0 0 —A 0 0
0 12cpl./L* 6exnl /L —12¢p1;;/L*  6cp3l;/L
0 6cal /L Aczly, —6cl /L 4l

0
0
—A 0 0 A 0 0 w5
0
0

m

E
Km = TT Ka Tm =
L

0 12cp1;/L* 6exl./L —12¢p 1, /L*  6cxl,, /L
0  6cl/L dessl; —6¢231; /L deal,

in which ¢y = ¢33 = %yz/(l 4+ v), and ¢33 = i(l + 3c¢22). The entries in rows/columns 1 and 4 form
the well known two-node bar stiffness. Those in rows and columns 2, 3, 5 and 6 are dimensionally
homogeneous to those of a plane beam, and may be grouped into the following matrix configuration:

0 0 0 0 12/L>  6/L —12/L* 6/L
El 0O 1 0 -1 6/L 3 —6/L 3
beam __ 124
K"==""110 o o o |TP | -izy12 -6/ 12712 —6/L “8)

0 -1 0 1 6/L 3 —6/L 3

in which B,, = ¢y = ¢33 = %yz /(1 4+ v). But (48), with 8, replaced by a free parameter §, happens to
be the universal template of a prismatic plane beam, first presented in [69] and further studied, for the
C! case, in [80,81] using Fourier methods.

The basic stiffness on the left characterizes the pure-bending symmetric response to a uniform moment,
whereas the higher-order stiffness on the right characterizes the antisymmetric response to a linearly-
varying, bending moment of zero mean. For the Bernoulli-Euler beam constructed with cubic shape
functions, B = 1. For the Timoshenko beam, the exact equilibrium model [5, p. 80] is matched by
B = Bco=1/(14+¢),¢ = 12EI,/(GA;L?),in which A; = 5bh/6isthe shearareaand G = %E/(I-{—v)
the shear modulus.

It is readily verified that the morphed B, is always higher than Bco forall 0 < v < % and aspect ratios
y > 0. This indicates that in beam-like problems involving transverse shear the rectangular panel will
be stiffer than the exact C° beam model. For example if v = 1/4,

Bco 5

B 2617 “9)

which never exceeds 5/6 and goes to zero as y — oo. This behavior can be expected, since the panel can
only respond to such antisymmetric node motions by deforming in pure shear. However, the symmetric
response is exact for any aspect ratio y, which confirms the optimality of StressRP. Observe also that
what was a higher order patch test on the two-triangle mesh unit becomes a basic (constant-moment)
patch test on the morphed element. This is typical of morphing transformations that reduce spatial
dimensionality.

For nonoptimal elements, one finds that the basic stiffness of the morphed beam is wrong except under
special circumstances; for example isotropic StrainRP with zero v, or one of the SRI elements studied
next.

10. A G3 DEVICE: SELECTIVE REDUCED INTEGRATION

The three canonical models of Sections 4-6 were known by the end of Generation 2. Next a third
generation tool will be studied in the context of templates.

Full Reduced Integration (FRI) and Selective Reduced Integration (SRI) emerged during 196972 [82—
85] as tools to “unlock” isoparametric displacement models. Initially labeled as “variational crimes”
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Figure 11. The two-way SRI matrix split.

[31], they were eventually justified through lawful association with mixed variational methods [86—88].
Both FRI and SRI turned out to be particularly useful for legacy and nonlinear codes since they allow
shape function and numerical integration modules to be reused.

For the 4-node rectangular panel only SRI is considered because FRI leads to rank deficiency: Ry} =
Ri» = Ry = 0. Two questions will be studied as it relates to templates:

(1) Can the template (31)-(32) be reproduced for any material law by a SRI scheme?
(i) Can BORP be cloned for any material law by a SRI scheme that is independent of the aspect ratio?

As shown below, the answers are (i): yes if Rj, = 0; (ii): yes.

10.1. Concept and Notation

In the FEM literature, SRI identifies a scheme for forming K as the sum of two or more matrices
computed with different integration rules and different constitutive properties, within the framework of
the isoparametric displacement model.

We consider primarely the case of a two-way constitutive decomposition. Split the plane stress consti-
tutive matrix E into

E=E +E; (50)

The isoparametric displacement formulation leads to the expression K = 2 B B'EB, d2 where A® is
the element area and B,, the isoparametric strain-displacement matrix. To apply SRI insert the splitting
(50) to get two integrals:

K= / hBI'E;B,dQ + f hB'E;B,dQ = K; + Kj. (51)
Ae Ae

The two matrices in (51) are done through different numerical quadrature schemes: rule (I) for the first
integral and rule (II) for the second.

For the rectangular panel the isoparametric model is the 4-node bilinear element. Rules (I) and (II)
will be the 1x 1 (one point) and 2x?2 (4-point) Gauss product rules, respectively. A general split of the
elasticity matrix is

Eiipr Enps Epm Eijy(1—p1) Ep(l—p3) E(l-—1)
E=E+En=|Epps Exnpr Enn |+ | En(l—p3) Ex(1—p) Ex(l—1)|, ((52)
Eszt, Entn Ent Ei(l1—1) Ex(l—1) Ex(l-—r1)

in which py, p2, p3, T1, T2 and 73 are dimensionless coefficients to be chosen.
10.2. The Case Rj, =0
A template with Rj, = 0 and arbitrary {R;;, Ry,} is matched by taking

_ 1-3Ry _ 1-3Ry

PrL=—F=—> P2
Exn

. T1 = Ty =T :1 (53)
E]] 1 2 3
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Since p3 does not appear, it is convenient to set it to one to get a diagonal Ey;. The resulting split is
Ey — 3Ry Ey, Ey3 3Ry 00
E +Ep = Ep Ex —3Ryn Exp|+| 0 3Ry 0, (54)
E3 Ex; E33 0 0 O

To get the optimal element (BORP) set Ry} = %C 1_11 and Ry = %Cz_zl:

Ey—Cp En  En c;' 0 0
E;+ En = Epp En—Cy; Exn|+| 0 C3 0], (55)
Ei3 Ex; E33 0 0 0
For isotropic material this becomes
E V2 oy 0 1 00
E]+EH=1 ZI:U V2 0 ]—{*E[O 1 0} (56)
VLo 0 la-v 000

To match the (suboptimal) StrainRP, in which R;; = %E 11 and Ry, = %Ezz the apropriate split is

0 Ep Ep Eqn 0 O
Ei+Ep = |:E12 0 Ezajl + [ 0 Exp 0] . (57)
Ei3 Ex Ess 0O 0 O

For isotropic material this becomes

0 v 0 1 00

0 1(1—v) 0 00

o

Some FEM books suggest using the dilatational elasticity law for E;. Ascanbe seen, the recommendation
is incorrect for this element.

10.3. The Case R, # 0

The case Ry, # 0, arises in anisotropic displacement models for which E3 # 0 and/or E3 # 0. Now
1, and 73 must verify Ej3y 1 + Epyts = Ep3y~' + Easy — 3Rya. Solve for that 7; (i = 2, 3) that
has an associated nonzero modulus. Note that the aspect ratio y will generally appear in the SRI rule.

This case lacks practical interest because optimality can be achieved with R, = 0. But for DispRP
an obvious solution that eliminates all aspect ratio dependentis p; = pp = p3 =171 =170 =13 =0,
whence E; = 0, E;; = E and the fully integrated isoP element, which locks, is recovered.

10.4. Selective Directional Integration

The template can also be generated by non-Gaussian rules. For example, the following three-way
directional split

Ey —Cy Ep Ens c'! 00 0 0 0
E1+EH+EIH=|: Epp Exn—Cy E23:|+|: 0 0 0]+[0 Gz o] (59)
Eps Exs Es3 0 0O 0 0 O

generates the optimal panel in conjunction with three rules. Rule (I) is one-point Gauss with
{£,n}) = {0, 0} and weight 4; Rule (II) has two points on the y = 0 median: {&, n} = {0, +1/+/3}
with weight 2; rule (ITI) has two points on the x = 0 median: {§, n} = {£1/ /3, 0} with weight 2. This
selective directional integration is difficult to extend to arbitrary quadrilaterals while preserving observer
invariance.
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Table 2. Signatures and Bending Ratios for Stress Hybrid Family

Ny 5 7 13 21 31
Rii/E 033333 221173 221762 222125 2.22235
Ry /E 033333 0.35650 0.35967 0.35979 0.35981

R 0 0 0 0 0

Ty 1.00000 6.63518 6.65386 6.66375 6.66705

Ty 1.00000 1.06949 1.07900 1.07938 1.07944

A DispRP (bilinear
iso-P model)
1.14

y-bending
energy ratio 1y

b StrainRP model /
1.12 47 (5 strain parameters) Bubble Augmented Family-r,..?,."

L1} :.'

Element aspect ratio: 31 stress parameters 2 bubbles
L.osk y 21 stress parameters 18 bubbles
O 7 O x 13 stress parameters
Losk 1 .. 7 stress parameters

4

Loal Stress Hybrid Family

1.02F

StressRP = BORP
(5 stress parameters)\ﬁr

x-bending energy ratio ry
L L A -

2 g g 5 6 T

Figure 12. Representation of template families on the {ry, r,} plane.

11. FUTILE FAMILIES

Families are template subsets that arise naturally from specific methods as function of discrete or con-
tinuous decision parameters. To render the concept more concrete, two historically important families
for the rectangular panel are considered next.

11.1. Equilibrium Stress Hybrids

This family was studied in the late 1960s. It is obtained by generalizing the 5-parameter stress form of
Section 4 with a polynomial series in {x, y}. An obvious choice is to make o,,, oy, and oy, complete
polynomials in {x, y}:

Oxx =Zaijxiyja Uyy=zbijxiij O'.\'yzzcijxiyj, i>0, j>0,i+j=<n. (60
ij ij ij

For a complete expansion of order n > 0 one gets 3(n + 1)(n + 2)/2 coefficients. Imposing strongly
the two internal equilibrium equations (1); for zero body forces reduces the set to n, = 3 4 3n + n?
independent coefficients. For n = 0, 1,3,5 and 7 this gives n, = 3,7, 13,21 and 31 coefficients,
respectively. (Only odd n is of interest beyond n = 0, since terms with i + j = 2, 4, ... etc., cancel out
on integrating strains over the rectangle and have no effect on the element stiffness.)

The stiffness equations of this family can be obtained by the hybrid stress method of Pian and Tong
[26,46]. To display the effect of n,, the signature of the template (31)—(32) and the associated bending
energy ratios were calculated for aspect ratio y = a/b = 4, isotropic material with modulus E and

Poisson’s ratio v = 1/3.
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Table 3. Signatures and Bending Ratios for Bubble-Augmented Family

np 0 2 18
Ry /E 237501 2.23894 2.22546
Ry»/E 038281 0.36088 0.35998

Ry» 0. 0. 0

Iy 7.12505 6.71683 6.67637

Ty 1.14844 1.08265 1.07994

The results are collected in Table 2. The bending energy ratios are displayed in Figure 12. Increasing
the number of stress terms rapidly stiffens the element in x-bending. This is an instance of what may
be called equilibrium stress futility: adding more stress terms makes things worse. (The phenomenon is
well known but a representation such as that in Figure 12 is new.) As n, — oo the template signature
approaches the limit Ry /E = 0.2224 and Ry, /E =~ 0.3599 to 4 places.

11.2. Bubble-Augmented Isoparametrics

A second family can be generated by starting from the conforming iso-P element DispRP of Section 6,
and injecting np, displacement bubble functions. (Bubble are shape functions that vanish over the element
boundaries.) The idea is also a G2 curiosity but has resurfaced recently. Results for 2 and 18 bubbles (1
and 9 internal nodes, respectively) are collected in Table 3 and displayed also in Figure 12.

As can be expected injecting bubbles makes the element more flexible but the improvement is marginal.
If n, — oo the signature approaches that of the n, — oo hybrid-stress model of the previous subsection.
For all this extra work (these models become expensive on account of high order Gauss integration rules
and DOF condensation), r, decreases from 7.12 to 6.67. This is a convincing illustration of bubble

futility.
Figure 12 also marks the energy ratios of the StrainRP element. For this instance Ry;/E = Ry /E =

3/8 = 0.375 and r, = r, = 1.125. Consequently the element is only slightly overstiff. Increasing the
number of strain terms, however, would lead to another “futile family.”

12. NUMERICAL EXAMPLES

Only three benchmark examples, all involving cantilever beams, are presented below.

12.1. Example 1: Slender Isotropic Cantilever

The slender 16:1 cantilever beam of Figure 13(a) is fabricated of isotropic material, with £ = 7680,
v=1/4and G = (2/5)E = 3072. The dimensions are shown in the Figure. Two end load cases are
considered: an end moment M = 1000 and a transverse end shear P = 48000/1027 = 46.7381. The
tip deflections 8¢ = u,c from beam theory: ML?/(2EL,) and PL*/(3EI,) + PL/(GA,), in which
I, = b’h/12 and A, = 5A/6 = 5bh/6, are both exactly 100. For the second load case the shear
deflection is only 0.293% of uc; thus the particular expression used for A is not very important.

Regular meshes with only one element (N, = 1) through the beam height are considered. The number
N, of elements along the span is varied from 1 to 64, giving elements with aspect ratios that go from
y = 16 through y = %. The root clamping condition is imposed by setting the u, node displacement to
zero at both root nodes, but u, is only fixed at the lower one thus allowing for Poisson’s contraction at
the root.

Tables 4 and 5 report computed tip deflections u,c for several element types. The first three rows list
results for the 3 rectangular panel models of Sections 4-6. The last three rows give results for selected
triangular elements. BODT is the Bending Optimal Drilling Triangle: a 3-node membrane element
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Figure 13. Slender cantilever beam for Examples 1 and 2.
A 16 x 1 FEM mesh with y = 1 is shown in (b).

Table 4 Tip Deflections (exact=100) for Slender Isotropic Cantilever under End Moment

Element Mesh: x-subdivisions x y-subdivisions (Ny x N,)
I1x1 2x1 4x1 8§ x1 16 x 1 32 x 1 64 x 1
=16 (r=8 =4 ¥=2 =) =3 =P

StressRP (BORP) 100.00  100.00  100.00  100.00  100.00 100.00 100.00

StrainRP 93.75 93.75 93.75 93.75 93.15 93.75 93.75
DispRP 0.97 3.75 13.39 37.49 68.18 85.71 91.60
ALL-EX 0.04 0.63 7.40 35.83 58.44 64.89 66.45
CST 0.32 1.25 4.46 12.50 22.73 28.57 30.53
BODT 100.00  100.00  100.00  100.00  100.00 100.00 100.00

Table 5 Tip Deflections (exact=100) for Slender Isotropic Cantilever under End Shear

Element Mesh: x-subdivisions x y-subdivisions (Ny x N,)
1x1 2x1 4x1 8x1 16x1 32x1 64 x 1

=1 =8 k=49 r=2 =) @¥=3 ¥=)

StressRP (BORP) 75.02 93.72 98.39 99.56 99.86 99.94 99.97

StrainRP 70.35 87.88 92.26 93.35 93.63 93.71 93.73
DispRP 0.97 375 13.39 37.49 68.16 85.69 91.58
ALL-EX 0.24 0.69 6.36 35.18 59.59 65.70 67.03
CST 0.48 1.41 4.62 12.66 22.88 28.73 30.69
BODT 75.20 93.37 98.20 99.55 99.93 100.12 100.15

with drilling freedoms studied in [49,79,89,90]. ALL-EX is the exactly integrated 1988 Allman triangle
with drilling freedoms [91]. CST is the Constant Strain Triangle, also called linear triangle and Turner
triangle [1]. Both ALL-EX and BODT have three freedoms per node whereas all others have two. To
get exactly 100.00% from BODT under an end-moment requires particular attention to the end load
consistent lumping [90].

BORP is exact for all y under end-moment and converges rapidly under end-shear. The performance of
BODT is similar, inasmuch as this triangle is constructed to be bending exact in rectangular-mesh units.
(In the end-shear load case BORP and BODT, which morph to different beam templates, converge to
slightly different limits as y — 0.) StrainRP is about 6% stiffer than BORP, which can be expected
since 1/(1 — v?) = 16/15. DispRP, as well as the triangles ALL-EX and CST, lock as y increases.
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Table 6 Tip Deflections (exact=100) for Slender Anisotropic Cantilever under End Moment

Element Mesh: x-subdivisions x y-subdivisions (N, x Ny)
1x1 2x1 4x1 8 x1 16 x 1 32x1 64 x 1
y=16 =8 =4 ¥=2 ¥=) =3 =91

StressRP (BORP) 100.00  100.00  100.00  100.00  100.00 100.00 100.00
StrainRP 2.26 2.26 2.26 2.26 2.26 2.26 2.26
DispRP 0.02 0.07 0.25 0.76 153 2.08 2.25

Table 7 Tip Deflections (exact=100) for Slender Anisotropic Cantilever under End Shear

Element Mesh: x-subdivisions x y-subdivisions (N, x N,)
1x1 2x1 4x1 8x1 16 x 1 32 x1 64 x 1
=16 ¥=8 =4 ¥=2 =) F=3 =)

StressRP (BORP) 74.95 93.68 98.37 99.54 99.84 99.92 99.96
StrainRP 1.70 2,12 222 2.26 2.26 2.26 2.26
DispRP 0.02 0.07 0.25 0.75 1.52 2.06 2.23

The response for more element layers through the height can be readily estimated from (45). Conse-
quently those results are omitted to save space. For example, to predict the DispRP answer on a 8 x 4
mesh under end-moment, proceed as follows. The aspect ratio is y = 8. From the y = 8 column of
Table 4 read off r, = 100/3.75 = 26.667. Setn = 2 in (45) to get r™® = (15 +r,)/16 = 2.60417.
The estimated tip deflection is 100/2.60417 = 38.40. Running the program gives §c = 38.3913 as
average of the y displacement of the two end nodes. Predictions for the end-shear-load case will not be
as accurate.

12.2. Example 2: Slender Anisotropic Cantilever

Next assume that the beam of Figure 13(a) is fabricated of anisotropic material with the elasticity
properties

880 600 250 1 1791 —-2505 —150
E= [600 420 150] s C=E'!= 35580 [—2505 3599 180:| : 61)
250 150 480 0 —150 180 96

That these are physically realizable can be checked by getting the eigenvalues of E: {1386.1, 387.3, 6.63},
whence both E and C are positive definite. The load magnitudes are adjusted to get beam-theory tip
deflections of 100: M = 2.58672 and P = 0.121153. Since

E,1Cyy = 44.297 (62)

the energy ratio analysis of Sections 8.3-8.4, through equations (42) and (43), predict that the strain and
displacement model will be big losers, because r, > 44.297. This is verified in Tables 6 and 7, which

report computed tip deflections u ¢ for the three rectangular panel models. While BORP shines, the
strain and displacement models are way off, regardless of how many elements one puts along x.

Putting more elements through the height will help StrainRP and DispRP but too slowly to be practical.
To give an example, a 128 x 8 mesh of StrainRP (or clones) under end moment will have r® =
(63 + 44.297)/64 = 1.68 and estimated deflection of 100/1.67 = 59.67. Running that mesh gives
uyc = 59.65. So using over 2000 freedoms in this trivial problem the results are still off by about 40%.
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Figure 14. Short (Berkeley) cantilever under end shear: E = 30000, v = 1/4,
h = 1; root contraction not allowed, a 8 x 2 mesh is shown in (b).

Figure 15. Intensity contour plot of oy, given by the 64 x 16 BORP mesh.
Produced by Mathematica and Gaussian filtered by Adobe
Photoshop. Stress node values averaged between adjacent
elements. The root singularity pattern is clearly visible.

Oxx Oyy
60 5
0.75
40 0.5 4
20
0.25 3
0 0 00
-20 -025 2
-40f —— Exact =051 Exact 1. —— Exact .
—60 e Computed -0.75 e Computed 0 e Computed
% 4 2 0 2 4 6 % 9 =2 o0 3 4 o) 6 9 2o 1 6!

Figure 16. Distributions of oy, oy, and o,y at x = 12 given by the 64 x 16 BORP mesh.
Stress node values averaged between adjacent elements. Note different stress
scales. Deviations at y = %6 (free edges) due to “upwinded” y averaging.

12.3. Example 3: Short Cantilever Under End Shear

The shear-loaded cantilever beam defined in Figure 14 has been selected as a test problem for plane
stress elements by many investigators since originally proposed in [92]. A full root-clamping condition
is implemented by constraining both displacement components to zero at nodes located on at the root
section x = 0. The applied shear load varies parabolically over the end section and is consistently
lumped at the nodes. The main comparison value is the tip deflection ¢ = u,c at the center of the end
cross section. Reference [79] recommends §¢ = 0.35601, which is also adopted here. The converged
value of digits 4-5 is clouded by the mild singularity developing at the root section. This singularity is
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Table 8 Tip Deflections (exact = 100) for Short Cantilever under End Shear

Element Mesh: x-subdivisions x y-subdivisions (N, x Ny)

8x2 16x4 32x8 64x16 128 x32
StressRP (BORP) 98.80 99.59  99.88 99.97 100.00
StrainRP 97.24 99.19  99.77 99.94 99.99
DispRP 88.83 96.83 99.16 99.78 99.95
ALL-EX 89.43 96.88  99.16 99.79 99.96
CST 55.09 82.59  94.90 98.65 99.66
BODT 101.68  100.30 100.03 100.00 100.00

4x2 8x4 16x8 32x16 64 x 32
StressRP (BORP) 97.22 99.08  99.71 99.92 99.99
StrainRP 95.67 98.67  99.61 99.89 99.98
DispRP 69.88 90.05 97.24 99.28 99.82
ALL-EX 70.71 89.63 96.93 99.15 99.77
CST 37.85 69.86  90.04 97.25 99.28
BODT 96.68 98.44  99.37 99.78 99.93

2x2 4x4 8§x8 16x16 32 x 32
StressRP (BORP) 91.94 97.41 99.19 99.75 99.93
StrainRP 90.47 97.03 99.07 99.72 99.92
DispRP 37.84 70.57  90.39 97.35 99.31
ALL-EX 26.16 56.93 83.54 95.14 98.69
CST 17.83 43.84  75.01 92.13 97.86
BODT 92.24 96.99  98.70 99.48 99.81

displayed for o, in the form of an intensity contour plot in Figure 15.

Table 8 gives computed deflections for rectangular mesh units with aspect ratios of 1, 2 and 4, using
the three canonical rectangular panel models and the three triangles identified in Example 1. For end
deflection reporting the load was scaled by (100/0.35601) so that the “theoretical solution” becomes
100.00. (In comparing stress values the unscaled load of P = 40 was used.)

There are no drastically small deflections because element aspect ratios only go up to 4:1. Elements
StressRP (BORP), StrainRP and BODT outperformed the others. There is little to choose between these
3 models, which is typical of isotropic materials. The BODT triangle is geometrically more versatile
but carries one more freedom per node.

Figure 16 plots averaged node stress values at section x = 12 computed from the 64 x 16 BODT mesh.
The agreement with the standard beam stress distribution (that section being sufficiently away from the
root) is very good except for oy, near the free edges y = +6.

13. DISCUSSION AND CONCLUSIONS

What can templates contribute to FEM technology? Advantages in two areas are clear:

Synthesis. Only one procedure (module, function, subroutine) is written to do many elements. This
simplifies comparison and verification benchmarking, as well as streamlining maintenance. A unified
implementation automatically weeds out clones.

Customability. Templates can produce optimal and custom elements not obtainable (or hard to obtain)
through conventional methods.

A striking example of the latter is the UBOTP macroelement presented in Section A.3 of the Appendix.
This concludes a three decade search for a four noded trapezoid insensitive to distortion and that passes the
patch test [67]. To the writer’s knowledge, this model cannot be obtained with conventional formulations.
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Will the synthesis power translate into teaching changes in finite element courses? This is not presently
likely. Two reasons can be cited.

First, advantages may show up only in advanced or seminar-level courses. Beginning calculus students are
not taught Lebesgue integration and distribution theory despite their wider scope. Likewise, introductory
FEM courses are best organized around a few specific methods. Students must be exposed to a range of
formulations and hands-on work before they can appreciate the advantages of unified implementation.

Second, the theory has not progressed to the point where the configuration of a template can be written
down from first principles in front of an audience. Only two general rules are presently known: the
fundamental decomposition into basic and higher order components, and the method to get the matrix
structure of the basic part. No general rules to construct the higher order component can be stated aside
from orthogonality and definiteness constraints.

How far can templates go? As of this writing templates are only known for a few elements in one and
two dimensions, such as beams and flat plates of simple geometry. What is the major technical obstacle
to go beyond those? Symbolic power. One must rely on computer-aided symbolic manipulation because
geometric, constitutive and fabrication properties must be carried along as variables. This can lead, and
does, to a combinatorial tarpit as elements become more complicated.

The good news is that computer algebra programs are gradually becoming more powerful, and are now
routinely available on laptops and personal computers. Over the next ten years PCs are expected to
migrate to 64-bit multiple-CPUs capable of addressing hundreds of GBs of memory at over 10GHz
speeds. As that happens the development of templates for 3D solid and shell elements in reasonable time
will become possible.
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Appendix A. OTHER PANEL GEOMETRIES

The template framework of four noded membrane elements can be extended to more general geometries, at the
cost of increased complexity in symbolic computations. This Appendix presents templates for parallelogram and
trapezoidal geometries. The template for a general quadrilateral is the topic of a separate article [93].

The G1 direct elasticity methods of Sections 4-5 do not work beyond the parallelogram. The resulting “node
collocation” elements fail the patch test and cannot be fitted in the template framework. Variational methods are
required to get stress-assumed and strain-assumed elements that work. For stress elements the Hellinger-Reissner
(HR) principle is used. For strain elements, a strain-fit method [94] in conjunction with de Veubeke’s strain-
displacement mixed functional is used.
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and elasticity matrix E

Figure 17. The 4-node parallelogram (swept) panel.

A.1 Parallelogram (Swept) Panel

The geometry of the parallelogram panel shown in Figure 17 is defined by the dimensions a, b and the skewangle
w, positive counterclockwise. The template again has the configuration (31) displayed in Figure 6. With s = tan w
the matrices to be adjusted are

1 —b 0 b 0 b 0 —b 0 1
H(=——|i 0 —a—-bs O —a+bs 0 a+bs O a—bs:|, W:[“ 1].
2ab| 4 _ps —b —a+bs b a+bs b a—bs —b % 3
(63)
The higher order projector Hj, is exactly as in (32), whereas R depends on the formulation, as explained below. For

future use the compliance and elasticity in the median direction y,, (see Figure 17) are denoted by

3 4

wsinw 4+ 2C1, + Cx3) cos® wsin® @ — 2Cy3 cos wsin’® w + C; sin* @
_ Cyp» —2Cys + (2C1p + C33)s*> — 2C13s° + Cyy5*
(1+ 52)? ’
Ey, =Ex cos* w — 4E,; cos® wsinw + (2Ey, + 4E33) cos® wsin? w — 4Ey3 cos w sin® w + Ey sin® o
Ey —4Exys + 2E +4Ey)s> —4E;3s® + Eqyst
- 1+ 52)? '

C5,=Cn cos* w — 2Cy; cos

(64)

Stress element. A 5-parameter stress element StressPP can be constructed either directly, as done by Gallagher [6,
Ch. 3A], or by the HR principle, starting from the energy-orthogonal stress field

23!

Ox 1 0 0 y/b sin? w x,, 7%
|: Oyy ] = |: 010 O cos? w x,, :| us |, (65)

Oyy 0 01 0 —sinwcoswx, 4

Hs

in which sinw = s/+/1+ 52, cosw = 1/4/1+ 52, and x, = (x cos® + ysinw)/(a cosw) = (x + ys)/a. Both
methods give the same stiffness. [Because (65) is an equilibrium field, an equilibrium stress hybrid formulation
gives the same answer.] The stiffness is matched by the template with

1 1

Rp=0, Rp=———. 66
12 2 3C§"2(1+s2)2 (66)

If the material is isotropic the diagonal entries are Rj; = %E and Ry, = %E /(1 + 52)%. The Q6 and QM6 elements
continue to be clones of StressPP.

Strain element. A 5-parameter strain element StrainPP can be constructed by the direct elasticity method of Section
5, or by a variational strain-fitting method [94], starting from the companion of (65):

X1

Cxx 1 0 0 y/b sin w x,, X2
eyy |=[0 1 0 0 cos® w x,, x |- (67)

2eyy 0 01 0 -—2sinwcoswx, X4

X5
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Figure 18. The four noded trapezoidal panel and a two-trapezoid repeatable macroelement.

Both methods give the same result. The stiffness is matched by setting
Ey

Ru=3iE,, Rp2=0 Rypy=—2__,
1n=zLn 12 22 3(1+s2)2

(68)

Displacement element. The conforming, exactly integrated isoparametric element DispPP is matched by setting

1
Ry =3 (Eu+4Ei3s + QEn+4En)s® +4Ens® + Ens* + (Ey3 + 2Eps + Exns®)y?),
1 1
Ry = 3y (Eis + (Ep+2E33)s + 3Eps® + Ens® + (En+Ens)y®), Rp= W(ESS +2Exs + En(s*+y?)).

(69)
The StressPP element (as well as its clones Q6 and QME6) is again bending optimal along both x and y,, (median)
directions. The symbolic verification is far more involved than for the rectangular element because it requires the
use of free-free flexibility methods [95], and is omitted.

A.2 Trapezoidal Panel

The geometry of the trapezoidal panel shown in Figure 18 is defined by the dimensions @, b = a/y and the two
angles w; and w,, both positive counterclockwise. Define

si=tanw;, s=tanw;,, s=3i@1+5), d=3i6i—=5), ¢=bdla=dly. (70)

The template is again given by the matrix form (34). Matrices H, and W are as in (63), except that s has the new
definition (70). The higher order projector matrix is

thl[1—¢ 0 —l1+¢ 0 1+4¢ 0 —1—¢ 0 ]

0 1-¢ 0 ~—1+¢ 0 1+¢ 0 —l—¢ 1)

whereas R depends on the formulation, as detailed next.

Stress element. Element StressTP is generated by the 5-parameter stress assumption (65), with one change: the
(1,4) entry y/b is replaced by (y — yc)/b. If yc = —b%(s, —51)/(12a) = —éaa’/y2 the bending stresses are energy
orthogonal to constant stress fields. The stiffness matrix derived with the HR principle is matched by

1 1

Ri=—————, Rup=0, Rp= ,
YT -azyry " 27 3Ce A+ 2y + 522

(72)

in which C3, is the compliance along the median y, (cf. Figure 18), given by (64).

OMG element. The incompatible-mode element QM6 of [64] is no longer a clone of the stress element unless d = 0.
Its stiffness is matched by

1 1
=—  Rp=0, Ry= .
CuG—daz/y?ry P 27056 - /v (1 + 5272

(73)

Ry
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Figure 19. A well known distortion benchmark test. Dashed lines mark elements
that fail the patch test (only Q6 in this plot). For additional results on other
elements such as Pian-Sumihara and Enhanced Assumed Strain, see [67].

The only change is in R;;. The original incompatible-mode element Q6 of [63] fails the patch test if d # 0 and
consequently cannot be matched by the template (31).

Strain element. Element StrainTP is generated by the 5-parameter strain assumption (67), with one chan ge: the (1,4)
entry y/bisreplaced by (y—yc)/b. Energy orthogonality is again obtained if yo = —b%(s,—s)/(12a) = — tad/y?.
A strain-fitting variational formulation [94] yields a stiffness matched by

Ey E3),

R, = Ri,=0, Ry= )
B * 2731+ d2/y) (A + 522

C3-ar/y?

74

in which E7; is the direct elasticity along the median y, direction, as given by (64).

Displacement element. The conforming isoparametric displacement element DispTP with 2 x 2 Gauss integration
is matched by

E\ +4E;3s + 5*(QE1y + 4E33 + 4Eps + Exs?) + (Ess + 2Exs + Exps?)y?

Rij = :

1 3= d2y? 5
R, — Bzt s(Ei+2E3 +3Ens + Ens®) + (Ep + Ens)y? R, — En+2Ens + En(s> +y?)

o ) NP0

A.3 A Unidirectional-Bending-Optimal Trapezoidal Panel

Element StressTP is x-bending optimal (XBO) as an individual element, but far from it as a repeating macroelement.
Consider the configuration of Figure 18(b): two mirror-image trapezoidal elements are put toghether to form a
parallelogram macroelement. The macroelement shape is that of a swept panel, and is obviously repeatable along
x5

If a >> b and s; # s, the StressTP-fabricated macroelement rapidly becomes overstiff and overflexible in x- and
y-bending, respectively. For example if a/b = y = 8, sy = 0, s, = 1/2 and isotropic material with v = 1 /4 the
bendingratios are r, = 11.97 and r, = 0.1414. For the anisotropic elasticity matrix (61), r, = 6.93 and ry = 0.0792.
If an elongated macroelement is supposed to model unidirectional x-bending correctly, the overstiffness caused by
81 # s3 is called distortion locking. This phenomenon has been widely studied since the MacNeal-Harder test suite
gained popularity [96].

It is possible to construct a trapezoidal panel that is exact in unidirectional x bending when configured to form a
repeatable macroelement as in Figure 18(b), for any aspect ratio y as well as arbitrary side slopes s; and s5. This
template instance will be called UBOTP. A compact expression is obtained by taking the R matrix of StressTP,
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generated by (72) and modifying the (2,1) entry of W:

1/a 0
W= [ (CuBr’—ds)+Cu) 6 —d) — Cnd | J (76)
- CuGy?— /

It would be equally possible to keep W of (63) and adjust the entries of R. However, the correction (76) points the
way as to how to extend this result to arbitrary quadrilaterals [93].

Itis not difficult to show that W/ RW for UBOTP is positive definite as long as the trapezoid is convex. Consequently
the element stiffness is definite and has the proper rank.

Figure 19 presents results for a widely used mesh distortion test, which involves one macroelement of the type
discussed. Results for six element types: UBOTP, StressTP, StrainTP, DispTP, Q6 and QM6 are shown. The
percentage of the correct answer is of course 100/r,. Of these six models only Q6 fails the patch test, but otherwise
works better than all others but UBOTP. StressTP, StrainTP and QM6 give similar results, as can be expected, whereas
DispTP is way overstiff even for zero distortion. UBOTP gives the correct result for all distortion parameters from
0 through 5, since r, = 1. If the aspect ratio of the cantilever is changed to, say 2a/b = 10, the differences between
elements become more dramatic.

At first sight the existence of UBOTP contradicts a theorem by MacNeal [97], which says that four noded quadrilat-
erals cannot both pass the patch test and be insensitive to distortion. The escape hatch is that y-bending optimality
(along the skew angular direction w; of the macroelement) is not attempted. If one tries imposing r, = ry = 1, the
solutions for {R,;, Rz, Ry} become complex if y >> 1 as soon as d deviates slightly from 0.
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Abstract

The article has a dual historical and educational theme. Itis a tutorial on finite element templates for two-dimensional
structural problems. The exposition focuses on the four-node plane stress element of flat rectangular geometry, called
here the “rectangular panel” for brevity. This is one of the two oldest two-dimensional structural elements, soon
to reach its gold anniversary. On the other hand the concept of finite element templates is a recent development.
Interweaving the old and the new throws historical perspective into the “golden age” of discovery of finite elements.
Templates provide a framework in which diverse element development methods can be fitted, compared and traced
back to the sources. On the technical side templates have the virtue of facilitating the unified implementation of
element families as well as the construction of custom elements. As an illustration of customization power, the
Appendix presents the construction of a four noded bending optimal trapezoid that has eluded FEM investigators
for several decades.

El agua es como un espejo en que desfilan las imdgenes del pasado.
Ricardo Giiiraldes, Don Segundo Sombra (1926)

Keywords: finite elements; history; templates; instances; clones; inplane bending; optimality; quadri-
lateral; membrane; plane stress; patch test; distortion sensitivity

1. INTRODUCTION

This article has a dual theme: historical and educational. To serve the latter, the exposition is written
as a tutorial article on two-dimensional finite element templates. Part of this material is extracted from
an advanced FEM course. Templates are parametrized algebraic forms that provide a continuum of
consistent and stable finite element models of a given type and node/freedom configuration. Template
instances produced by setting values to parameters furnish specific elements. If the template embodies
all possible consistent and stable elements of a given type, it is called universal.

Befitting the tutorial aim, the exposition centers on the simplest 2D element that possesses a nontrivial
template: the four-node plane stress element of flat rectangular geometry. [The three-node linear triangle
is simpler but its template is trivial.] This is called the rectangular panel for brevity.

The rectangular panel is interesting from both historical and instructional viewpoints because:
1. Itis one of the two oldest continuum mechanical elements, the other being the linear triangle [1].

2. Along with its plane strain and axisymmetric cousins, it is the configuration treated by most new
methods since the birth of finite elements. Thus it provides an in-vivo specimen of FEM evolution
over the past 50 years.

3. It is amenable to complete analytical development, even for anisotropic material law. This makes
the element particularly suitable for homework and project assignments.

4. Analytical forms make the concept of template signatures and clones highly visible to students.

1



The paper is organized as follows. Section 2 outlines element formulations from 1950 to date. Section
3 introduces the focus problem. Sections 4-6 follow up on the historical theme by developing stress,
strain and displacement-based models for the rectangular panel.

The concept of template is introduced in Section 7 by calling attention to a common structure lurking
behind the stiffness expressions of stress, strain and displacement elements. Template terminology
follows as consequence of this idea: families, signatures, instances and clones. The role of higher order
patch tests in optimality is illustrated in Chapters 8-9. The SRI scheme is worked out in Section 10
to show that templates naturally lead to correct splittings of the elasticity law. The concept of element
families is illustrated in Section 11 using stress hybrid and displacement bubbles as examples. Section
11 provides numerical examples and Section 12 discussion and conclusions. The Appendix collects
templates for more general geometries to give a glimpse into the unifying power of this concept for
constructing custom elements.

2. HISTORICAL SKETCH

This section summarizes the history of structural finite elements since 1950 to date. It functions as a
hub for dispersed historical references. Readers uninterested in historical aspects should skip directly to
Section 3.

For exposition convenience, structural “finitelementology” may be divided into fourth generations that
span 10 to 15 years each. There are no sharp intergenerational breaks but noticeable change of emphasis.
The following summary does not cover the conjoint evolution of Matrix Structural Analysis into the
Direct Stiffness Method from 1934 through 1970. This was the subject of a separate essay [3].

2.1. G1: The Pioneers

The 1956 paper by Turner, Clough, Martin and Topp [1], henceforth abbreviated to TCMT, is recognized
as the start of the current FEM, as used in the overwhelming majority of commercial codes. Along with
Argyris’ serial [2] they prototype the first generation, which spans 1950 through 1962. A panoramic
picture of this period is available in two textbooks [4,5]. Przemieniecki’s text is still reprinted by Dover.
The survey by Gallagher [6] was influential but is now difficult to access outside libraries.

The pioneers were structural engineers, schooled in classical mechanics. They followed a century
of tradition in regarding structural elements as a device to transmit forces. This “element as force
transducer” was the standard view in pre-computer structural analysis. It explains the use of flux
assumptions to derive stiffness equations. Element developers worked in, or interacted closely with, the
aircraft industry. (One reason is that only large aerospace companies were then able to afford mainframe
computers.) Accordingly they focused on thin structures built up with bars, ribs, spars, stiffeners and
panels. Although the Classical Force method dominated stress analysis during the 1950s, stiffness
methods were kept alive by use in dynamics.

2.2. G2: The Golden Age

The next period spans the golden age of FEM: 1962—1972. This is the “variational generation.” Melosh
[7] showed that conforming displacement models are a form of Rayleigh-Ritz based on the minimum
potential energy principle. This influential paper marks the confluence of three lines of research: Argyris’
dual formulation of energy methods [2], the Direct Stiffness Method (DSM) of Turner [8—10], and early
ideas of interelement compatibility as basis for error bounding and convergence [11,12]. G1 workers
thought of finite elements as idealizations of structural components. From 1962 onward a two-step
interpretation emerges: discrete elements approximate continuum models, which in turn approximate
real structures.

By the early 1960s FEM begins to expand into Civil Engineering through Clough’s Boeing-Berkeley
connection [13] and had been named [14,15]. Reading de Veubeke’s famous article [16] side by side with
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TCMT [1] one can sense the ongoing change in perspective opened up by the variational framework.
The first book devoted to FEM appears in 1967 [17]. Applications to nonstructural problems start by
1965 [18].

From 1962 onwards the displacement formulation dominates. This was given a big boost by the inven-
tion of the isoparametric formulation and related tools (numerical integration, fitted coordinates, shape
functions, patch test) by Irons and coworkers [19-23]. Low order displacement models often exhibit
disappointing performance. Thus there was a frenzy to develop higher order elements. Other variational
formulations, notably hybrids [24-27], mixed [28,29] and equilibrium models [16] emerged. G2 can be
viewed as closed by the monograph of Strang and Fix [30], the first book to focus on the mathematical
foundations.

2.3. G3: Consolidation

The post-Vietnam economic doldrums are mirrored during this post-1972 period. Gone is the youthful
exuberance of the golden age. This is consolidation time. Substantial effort is put into improving the
stock of G2 displacement elements by tools initially labeled “variational crimes” [31], but later justified.
A comprehensive exposition may be found in Hughes’ textbook [32]. Hybrid and mixed formulations
record steady progress [33]. Assumed strain formulations appear [34]. A booming activity in error
estimation and mesh adaptivity is fostered by better understanding of the mathematical foundations [35].

Commercial FEM codes gradually gain importance. They provide a reality check on what works in the
real world and what doesn’t. By the mid-1980s there was gathering evidence that complex and high
order elements were commercial flops. Exotic gadgetry interweaved amidst millions of lines of code
easily breaks down in new releases. Complexity is particularly dangerous in nonlinear and dynamic
analyses conducted by novice users. A trend back toward simplicity starts [36,37].

2.4. G4: Back to Basics

The fourth generation begins by the early 1980s. More approaches come on the scene, notably the Free
Formulation [38,39], orthogonal hourglass control [40], Assumed Natural Strain methods [41-44], stress
hybrid models in natural coordinates [45-47], as well as derivatives: ANDES [48,49], EAS [50,51] and
others. Although technically diverse the G4 approaches share two common objectives:

(i) Elements must fit into DSM-based programs since that includes the vast majority of production
codes, commercial or otherwise.

(ii) Elements are kept simple but should provide answers of engineering accuracy with relatively coarse
meshes. These were collectively labeled “high performance elements” in 1989 [52].

“Things are always at their best in the beginning,” said Pascal. Indeed. By now FEM looks like an
aggregate of largely disconnected methods and recipes. Sections 4-6 look at three disparate components
of this edifice to set up the subsequent exhibition of common features by templates.

3. PROBLEM DESCRIPTION

3.1. Governing Equations

Consider the thin homogeneous plate in plane stress sketched in Figure 1. The inplane displacements are
{ux, uy}, the associated strains are {ey, eyy, exy} and the inplane (membrane) stresses are {0y, 0yy, Oyxy).
Prescribed inplane body forces are {b,, b,}, but they will be set to zero in derivations of equilibrium
elements. Prescribed displacements and surface tractions are denoted by {it, i, } and (%, fy} respectively.
All fields are considered uniform through the thickness /2. The governing plane-stress elasticity equations
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Figure 1. A thin plate in plane stress, illustrating notation.
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are

o (D
9/0x 0 a/dy a""‘ n by| |0
0 9d/dy 9/ox & by | |0]
Oxy
The compact matrix version of (1) is
e = Du, o = Ee, Do +b=0, )
in which E is the plane stress elasticity matrix. The inverse of o = Ee is
€xx Cii Ciz Ci37[0xx
€yy = C12 sz C23 Oyy | > or e= CO‘, (3)
2eyy Ciz Cx Cspi3dloy

where C = E! is the matrix of elastic compliances.

3.2. The Rectangular Panel

The focus of this article, called the “rectangular panel,” is shown in Figure 2. For an individual element
the side-aligned local axes are also denoted as {x, y} for brevity. The inplane dimensions are a and
b =a/y, where y = a/b is the aspect ratio. The thickness and elastic properties are constant over the
element. The element has 4 corner nodes and § external (connective) degrees of freedom. The node
displacement and force vectors are configured as

_ T
u=[uy Uy Uy Uy U3 Uy Uy Uys] @)

f=(fa fu fo hHhe fa s fu full. ®)

As noted in the Introduction most of the FEM formulation methods chronicled in Section 2 have been
tried on this configuration as well as its plane strain and axisymmetric cousins. The reason for this
popularity is that the rectangular panel is the simplest multidimensional element that can be improved.
(The three-node linear triangle is simpler but cannot be improved.)
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Constant thickness /1
N and elasticity matrix E
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Figure 2. The rectangular panel.

In keeping with the expository theme, the next three sections derive the rectangular panel stiffness from
stress, strain and displacement assumptions, respectively. Mirroring history, the derivation of stress
and strain models follows the matrix-based direct elasticity approach used by the first generation, as
summarized in Gallagher’s review [6].

Ironically, the direct derivation will give optimal or near-optimal elements with no sweat whereas the
variationally derived displacement model needs tweaking (e.g., by SRI) to become useful.

4. THE STRESS ELEMENT

TCMT [1] is the starting point. In a historical summary Clough [13] remarks that the paper belatedly
reports work performed at Boeing’s Commercial Airplane Division in 1952-53 (indeed [1, p. 805] states
that the material was presented at the 22nd Annual Meeting of IAS, held on January 25-29, 1954.) In
addition to bars, beams and spars, TCMT presents two plane stress elements for modeling wing cover
plates: the three-node triangle and the four-node flat rectangular panel. Quadrilateral panels of arbitrary
geometry, not necessarily flat, were constructed as assemblies of four triangles.

Readers perusing that article for the first time have a surprise in store. The stiffness properties of both
panel elements are derived from stress assumptions, rather than displacements, as became popular in the
second generation. More precisely, simple patterns of interelement boundary tractions (a.k.a. stress flux
modes) that satisfy internal equilibrium are taken as starting point. Twenty years later and apparently
unaware of TCMT, Fraeijs de Veubeke [53] systematically extended the same idea in a variational
setting, to produce what he called diffusive equilibrium elements. These are designed to weakly enforce
interelement flux conservation. The comedy continues: twenty year later mathematicians rediscovered
flux elements, now renamed as “Discontinuous Galerkin Methods,” blessfully unaware of previous work.

The derivation below largely follows Chapter 3 of Gallagher [6], who presents a step by step procedure for
what he calls the “equivalent force” approach. The main extension provided here is allowing anisotropy.

4.1. The 5-Parameter Stress Field

Since TCMT the appropriate stress field for the rectangular panel is known to be [6, p. 19]

y X
Oxx = W1 + M4 5 Oyy = U2 + Us - Oxy = U3. ©)

The five p; are stress-amplitude parameters with dimension of stress. They are collected in the 5-vector

p=[p w2 ps pa pslt. @)

The field (6) satisfies the internal equilibrium equations (1)3 under zero body forces. Evaluation over
element sides produces the traction flux patterns of Figure 3, copied verbatim from TCMT. Why five?
“These load states are seen to represent uniform and linearly varying stresses plus constant shear, along
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rx=“r1

L=,

L= U3

L =U3

Figure 3. Nonzero interelement boundary tractions associated with the stress parameters
wi in (7). After [1, p. 812], in which these five patterns are called “load states.”

the plate edges. Later it will be seen that the number of load states must be 2n — 3, where n = number
of nodes.” [1, p. 813].

To establish connection to node displacements, p is extended as

py=[p1 M2 w3 pa ps e K7 psl” (8)

This array contains three dimensionless coefficients: 6, ;7 and pg, which define amplitudes of the
three element rigid body modes (RBMs):

RBM#1L: uy = pga, uy =0, RBM#2: u, =0, uy, = b, RBM#3: u, = —ugy, Uy = [4gX,

®
These modes produce zero stress. The foregoing relations may be recast in matrix form:
100 % 0 1004 0000
o=Np=Nyp,, N=/0100 |, Ny=|01 00 £ 000 (0
0010 O 0010 0O0O00O
The boundary traction patterns of Figure 3 are converted to node forces by statics. This yields
-b 0 b 0 b 0 -—b 0
0 —a O —a 0 a 0 a
f=Ap, Al=|—-a b —a b a b a -b|. (11)
1 1 1 1
g 0 —gb 0 b 0 —2b O
0 ga 0 —fa 0 ia 0 -la

Matrix A is the equilibrium matrix, also called the leverage matrix in the early FEM literature. When
restricted to the constant stress states (the first three columns of A), it is called a force-lumping matrix
and denoted by L in the Free Formulation of Bergan [38,39,54-60].

4.2. The Generalized Stiffness

Integrating the complementary energy density U* = %O'TCO' over the element volume V and identifying
= [ ye U* AV with % p"F, p yields the 5 x 5 flexibility matrix F, in terms of the stress parameters.
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Its inverse is the generalized stiffness matrix S, = F;l:

Chu Cp Ciz O 0 Eyw Ep Esz O 0
C2 Cxp Cs O 0 1| Bz Exn Exp 0 0
F,=V|[Ci3 Cx3 Ci3 0 0 y Sy = v E;3 Ey Ess 0 0 ,» (12)
0 0 0 £Ciy O 0 0 o0 12¢c o
0O 0 O 0 ﬁczz 0 0 0 0 12C3
in which V = abh is the volume of the element.
4.3. The Physical Stiffness
Integration of the slave strain field e = E™'o = CN, . produces the displacement field
Uy (x, ) = pea + 06 + (11C11 + 12C12 + p3Cr3)x + (11 Cis + 12Caz + 13 Ca3) — g)y
+ 3(1s/a@)Crax® + (a/b)Crixy + 1 ((ua/b)Cis — (115/a)C2)y?, 13)

y(x,y) = prb + g7 4+ (3(1C13 + 12Cos + w3C33) + pg)x + (111Cra2 + 12Co + 113Ca3)y
+ 5 ((s/a)Cos — (11a/b)C11) x> + (15/a)Caaxy + L(1a/b)Cray*.

with @5 = —b>Ci3ps/b + (b*Cpa—a*Cr2)(s/a) and w7 = (a*C11—b*Ci12) (k4/b) — a*Crapus/a. The
constant terms in u, and u,, which do not affect strains and stresses, have been adjusted to get relatively
simple terms in columns 4 through 8 of the matrix T, below. Physically, (13) aligns the bending
deformation patterns along the {x, y} axes. Evaluating (13) at the nodes we obtain the matrix that
connects node displacements to stress parameters: u = T, pt_, where

- —2aCyy — bCi3 —2aCip — bCy3 —2aC3 — bCs3 aCyy 0 4a O 2b7
—2bC12 == CZC13 —2bC22 = (ZC23 —2bC23 - aC33 0 bC22 0 4b —2a
2(lC11 — bC13 2aC12 — bC23 2aC13 = bC33 —(lCU 0 4a 0 2b
T, = % —2bC1y 4+ aCy3 —2bCyp +aCy3 —2bCy + aCss 0 —bCyp, 0 4b 2a
2aCi1 + bCy3 2aCiy + bCos 2aCi3 + bCs; aCyy 0 4a 0 —-2b
2bCiy + aCis 2bCyp + aCys 2bCy3 + aCss 0 bCyp 0 4b 2a
—2aCy1 + bCi3 —2aCip 4+ bCr3 —2aCi3 + bCs3 —aCyy 0 4a 0 -2b
= 2bC12 - aC13 2bC22 - aC23 2bC23 = aC33 0 —bC22 0 4b —2a |

(14)
The determinant of T is a*b*C}; Cy, det(C), so T, is invertible if a #£ 0, # 0, C1; # 0, Cy # 0 and
C is nonsingular. Inversion yields p, = U,u, where

[ U Un Uis Uis Us Ui Uiz Uss ]
U Uxn Uz Uz Uss U Uz Uas
U311 Us Uss | Uss U351 Uss Uz 1 Uss
1 | bCy; 0 —bCy, 0 bC, 0 —bC, 0
1 b 11 1 1 1
Ue=To=01 0 aci' 0 —acy 0 acy' 0 —acy|r @9
b 0 b 0 b0 b 0
0 ae 0ge 0 a0 g
L Za _Zb Z(l Zb —Za Zb —Z(l _Zb _
in which U;; = —3(bEn+aEn), Uy = —3(@Enp+bEp), Us = LbE —aEn), Uy =
—3(aEp—bEy), Uis = J(En+aEnp), Us = $(@En+bEp), Uy = —3(bE\1—aE3), Uiy =
5@En—bE3), Uy = —1(bEn+aEy), Uy = —(@En+bEy), Uy = 1(En—aEy), Uy =
—3(aEp—bEy), Uss = Y(0Ep+aEy), Uy = S(aExn+bEy), Uy = —1(bEpn—aEy), Ug =
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(a) Direct derivation a la TCMT [1] (b) Energy derivation

f=AUu=Ksu f=AS“ATu=KGu
u » f u > f
Uu A \
Equilibrium Kinematic Equilibrium
f=Apu x=Alu f=Ap
Kinematic+ / _
Constitutive W, Pt X H=Sux W, 4
Constitutive
Figure 4. Derivation of the stress-assumed rectangular panel stiffness.
Left side shows derivation bypassing energy methods.
3(@Ep—bEy), Uy = —L(bE3+aEsy), Up = —3(@Epn+bEy), Uy = Y(bE;z—aEs), Uy =
—3@En—bEx), Uss = Y(bEi+aEs), Uy = 1(aEn+bEs), Uy = —3(bE;z—aEs3) and

Usg = %(aE23 —bEj33). The stress-displacement matrix U that relates stress parameters to displace-
ments: = U, is obtained by extracting the first five rows of U, :

Ui Uiz Uis Us Uis Uis Uy Uig
Uz Uxn Uy Uay Uss Uss Uy Uss

1
U= i Uy U Uss Us4 Uss  Usg Uxy Usg =S, AT. (16)
@lbcy' 0o by 0 bCy! 0 —bCy! 0
0 e 0 —aCy' 0 aCy 0 —aCy)

The relation U = SMAT can be checked directly. For this element it can be proven to hold by energy
methods, but that was not obvious in 1952. It must have been a relief when the element stiffness came
out symmetric. As Gallagher remarks [6, p. 22] symmetry is the exception rather than the rule for more
complicated configurations. That difficulty proved a big boost for the energy and variational methods of
the second generation.

The physical stiffness K, relates f = K u, where the o subscript flags the stress element. Combining
f=Apand p=Uu=S8,A" uyields
K, =AU=AS,A". (17

Figure 4 summarizes the foregoing derivation steps. Note that one can bypass the calculation of the
generalized stiffness S, if so desired, as diagrammed on the left of that figure. This is convenient for
presentation to students without a background on energy methods.

Note that the displacement field (13) contains quadratic terms if 1t4 or ju5 are nonzero. Hence the element
is nonconforming. This is acknowledged but dismissed as innocuous in TCMT [1, p. 814].

5. THE STRAIN ELEMENT

A strain-assumed element can be developed through an entirely analogous procedure. The counterpart
of (6) is

y X
exxy = X1+ X4 E’ €yy = X2 + X5 Zv 2e.vy = X3- (18)

where the x; are dimensionless strain-amplitude parameters. They are collected in the 5-vector

Xx=[x1 x2 x5 x« xs1". (19)
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An extended vector is constructed by appending the RBM amplitudes

X+=[X1 X2 X3 X4 Xs Xe

X1

xs1”.

(20)

in which xg, x7 and xg are defined a a manner similar to (9). Note that e = Nx = Ny x, where N and
N are defined in (10). Integrating the strains yields the displacement field

ux(x, ) = X6 + X8y + (1 + xa/b)xy — (xs/a)y?,
uy(x,y) = x7+ (3 — X8)* + X2 — 3(xa/B)x* + (x5/a)xy.

Evaluating at the nodes and inverting yields x, = B, u where

( —4b 0 4b 0 4b
0 —4a 0 —4a 0
—4a —4b —4a 4b 4a
B. — L 8b 0 -8 0 8b
*T8b| 0 8 0 -8 0
2ab  b*  2ab —b* 2ab
a’> 2ab —-a® 2ab a?
| —4da 0 —4da 0 da

0
4a
4b

0
8a
b2

2ab

0

—4b
0

0
da
—4b
0
—8a
—b?
2ab
0

21

(22

from which we extract the first five rows to get the strain-displacement matrix relating x = B, u:

1
0 b

(23)

] =DI. (29

-b 0 b 0 b 0
h 0 —a O —a 0 a
B, = v | =@ b —a b a b
2b 0 -2 0 2b O
0 2a 0 —2a 0 2a
For use below we note the following relation between the transformation matrices of the stress and strain
elements
1 00 0 o0
1 01 0 0 O
A"=VD,B,, B,=-D;'AT, D,=[0 0 1 0 0
¥ 000 L o0
000 0 &

From (11) the lumping of the slave stress field Ee = EN to node forces can be worked out to be

Eq

Ep

E3
0
0

f=AE,x =VB/DsE,x, with E,=

Combining previous equations, the physical element stiffness is

E,

Ey

Ex;
0
0

Ei3

Ex

E33
0
0

0
0
0
Eq
0

K, =VB/D,E.B, =B'K,B,, with K, =V D,E,.

9

0
0
0 (25)
0
Exn
(26)



(a) Direct derivation a la [6] (b) Energy derivation

f=B/VD,E,B,u

=K.u f=B;S;Byu=K,u
u » f u > f
A A

. Kinematic Kinematic Equilibrium
- R =B,u = —R!
u=B, x| |X=5 Conslitntive+ x=Byu f=Bp
v Equilibrium
/
f=BIVD,E, x w=VDE,x=S,x
X X+ s X X+ i >» U
Constitutive

Figure 5. Derivation of the strain-assumed rectangular panel stiffness.
Left diagram shows derivation bypassing energy methods.

Here K, denotes the generalized stiffness in terms of x. This matrix may be obtained also from standard
energy arguments: the strain energy density is U = %XTEx. Integrating over the element volume:
U = [,.UdV and identifying with $x K, x gives

Ey Epn Ep 0 0
Ein Exn Ex 0 0
K,=VD4E, =V | E3s Ey E; 0 0 @7
0 0 0 LE; 0
0 0 0 0 En

Figure 5 summarizes the foregoing derivation steps. The direct step from :x to f on the left is more
difficult to explain to students than the step from u to p in Figure 4. The energy based formulation
shown on the right of Figure 5 tends to be more palatable.

6. THE CONFORMING DISPLACEMENT ELEMENT

This derivation of the assumed-displacement element starts from a conforming displacement field that
enforces linear edge displacements. Using the matrix notation of [61, p. 227] for Irons’ isoparametric
formulation [23] specialized to the rectangle, the displacement field is bilinearly interpolated as

;1= -n)
[u_\.(x,y)] 1 [—a Oa 0a 0 —a 0:| %(1-{-&)(1—77)

1y (x, ) 0-b0—-b0b O0b||la+eya+n |
i1=5A+1)

where & = 2x/a and n = 2y/b are the dimensionless quadrilateral coordinates. The derivation based

on the minimum potential energy principle is standard textbook material and only the final result is
presented here:

=3 (28)

Eyw Eo Ez 0 O
1| Bz Ex Ex 0 O
K, =B/K,B,, with K= |Es En E 0 0 |, (29)

0 0 0 Qu QOn
0 0 0 Qi 0»

in which B, = AT as given by (11) and

b2E11 +a2E33 ) <E13 E23

ab3h ) Q12 = BT +

a’Ex + b?Ex;
a’h = b2h

=12
Qu a3bh

) , On=12 (30)
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K =viE|[ E|| B |+vEWIRIW H ]

8x8 8x3 3x3 3x8 8x2 2x2 2x2 2x2 2x8

[ ] Formulation dependent
[ ] Formulation independent
[ ] Formulation independent for rectangles

Figure 6. The template for the rectangular panel, illustrating
formulation dependent and independent parts.

This model has a checkered history. It was first derived as a rectangular panel with edge reinforcements
(omitted here) by Argyris in his 1954 Aircraft Engineering series [2, p. 49 in reprint]. He used bilinear
displacement interpolation in Cartesian coordinates. After much flailing, a conforming generalization
to arbitrary geometry was published in 1964 by Taig and Kerr [62] using quadrilateral-fitted coordinates
called {&, n} but running from O to 1. (Reference [62] cites an 1961 English Electric Aircraft internal
report as original source but [23, p. 520] remarks that the work goes back to 1957.) Bruce Irons, who was
aware of Taig’s work while at Rolls Royce, created the seminal isoparametric family as a far-reaching
extension upon moving to Swansea [19-22].

7. TEMPLATES
7.1. Stiffness Decomposition

The stiffnesses K, K, and K,, derived in the foregoing three Sections do not appear to have much in
common. Indeed if one looks at just the matrix entries no pattern is readily seen. Closer examination
reveals, however, that they are instances of the algebraic form

K =K, + K, = VH'EH, + V H W' RWH;,, 31)

where V = abh is the element volume and

a —b
H 1|10 -1 0 1 -1 0 (32)
=201 0 -1 0 0 -1/
_ 1/(1 0 _ R“ R12
w l: 0 l/b]’ R——I:Rlz R22:|

Matrices H, and Hj, are the same for the three elements. Matrix R (a generalized bending rigidity)
depends on the formulation. The transition matrix W is formulation independent for rectangular panels.
For more complex geometries discussed in the Appendix, W may be formulation-adjusted to make R
simpler.

For the stress, strain and displacement elements R is R,, R, and R, respectively, where

a’Ey bEy3 | aky
a b

cil oo Ey 0 Eu+ =3
RG:%l: I :I, Re:%[ = :|’ Ru:':l,T b

0 cz 0 Ep bEs +aBxn o8
a

b*Exs
a2

Ey» +
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RectPaneld4TemplateStiffness[{a_,b_},Emat_,Cmat_,h_,name_,Rlist_]:=
Module[{V, found,Hc,Hh,W,Ke}, V=a*b*h;
{WRW, found}=RectPaneld4TemplateWRW[{a,b},Emat,Cmat,name,Rlist];
If [Not[found], Print["Illegal elem name: ",name]; Abort[]];
He={{-b, Olblolblol_bl 0}, {0,-a, 0,-a,0,a, 0,a},

{-a,-b,-a,b,a,b,a,-b}}/(2*%a*b);

Hh:{{ll 01_11011101'110}1 (011107'11011'01"1}}/2;
Ke=V*Transpose [Hc] .Emat .Hc+V*Transpose [Hh] .WRW.Hh;
Return[Simplify[Kell];

RectPaneld4TemplateWRW[{a_,b_},Emat_,Cmat_,name_,Rlist ]:=
Module[{R11,R12,R22,Rmat,E11,E12,E13,E22,E23,E33,
found=False,C11,C22,C33,C12,C13,C23,Edet,Cdet,W,WRW},

{{El1l1,E12,E13}, {E12,E22,E23}, {E13,E23,E33} }=Emat;

If [Length[Cmat]<=0,
Edet=E11*E22*E33+2*E12*E13*E23-E11*E2342-E22*E1342-E33*E1242;
Cll=(E22*E33-E2342) /Edet; C22=(E11*E33-E1342) /Edet;
C33=(E11*E22-E1242) /Edet; Cl12=(E13*E23-E12*E33)/Edet;
Cl3=(E12*E23-E13*E22) /Edet; C23=(E12*El13-E11*E23) /Edet,
{{c11,c12,c13},{c12,c22,Cc23},{C13,C23,C33}}=Cmat,
{{c11i,c12,c13},{c12,c22,c23},{C13,C23,C33}}=Cmat];

If [name=="Stress"||name=="QM6" | |name=="Q6",

R1l1l=1/(3*Cl1l); R22=1/(3*C22); R12=0; found=True];

If [name=="Strain", R11=E11/3; R22=E22/3; R12=0; found=True]l;

If [name=="Disp", R1ll=(E11+E33*a*2/b%2)/3;
R22=(E22+E33*b*2/a*2)/3; R12=(El3*b/a+E23*a/b)/3; found=True]l;

If [name=="Arbitrary", {R11,R12,R22}=Rlist; found=True];

w={{1/a,0},{0,1/b}}; Rmat={{R11,R12}, {R12,R22}};

WRW=Transpose[W] .Rmat.W; Return[{WRW, found}]];

Figure 7. A Mathematica implementation of the rectangular panel template (31).

But actually we are not restricted to these. Other expressions for R would yield other K. These are
possible, although not necessarily useful, stiffnesses for the rectangular panel if R is symmetric and
positive definite, and if its entries have physical dimensions of elastic moduli. Further if Ej3 = E»; =0
we set Rjy = 0. The key discovery is that the element formulation affects only part of the stiffness
expression. See Figure 6.

7.2. Template Terminology

The algebraic form (31)-(32) is called a finite element stiffness template, or template for shot.

Matrices K;, and K}, are called the basic and higher-order stiffness matrix, respectively, in accordance with
the fundamental decomposition of the Free Formulation [38,39,54—60]. These matrices play different
and complementary roles.

The basic stiffness K, takes care of consistency and mixability. In the Free Formulation a restatement
of (31) is preferred:

K, =V 'LELT, (34)

where L = H,/V is called the force lumping matrix, or simply lumping matrix.

The higher order stiffness Kj, is a stabilization term that provides the correct rank and may be adjusted
for accuracy. This matrix is orthogonal to rigid body motions and constant strain states. To verify the
claim for this template introduce the following 8 x 6 matrix, called the basic-mode matrix in the Free
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Formulation:

~1 0 yi x1 0 y7 20 —b —a 0 —b7
01 —x; 0 y x 02 a 0 —b —a
1 0 Y2 X2 0 Y2 20 —b a 0 —b
0 1 —x3 0 y, x; 1102 —a 0 —b a
Ge=11 o ys x3 0 y3| 2|20 b a O b (35)
0 1 —x3 0 y3 x3 02 —a 0 b a
1 0 ya x4 0 4 20 b —a 0 b
L0 1 —x4 0 y; x4 L02 a 0 b —al

The six columns of G,. span the rigid body modes and constant strain states evaluated at the nodes
(these bases are not orthonormalized as that property is not required here). It is readily checked that
H,, G, = 0. Therefore those modes, and any linear combination thereof, are orthogonal to the higher
order stiffness: K G,. = 0. So the role of Hj, is essentially that of a geometric projector.

A Mathematicaimplementation of (31) is shown in Figure 7, as module RectPanel4TemplateStiffness.
The module arguments are the rectangle dimensions as list {a,b}, the 3 x 3 elasticity matrix
as list Emat={{E11,E12,E13},{E12,E22,E23},{E13,E23,E33}}, the 3 x 3 compliance ma-
trix as list Cmat={{C11,C12,C13},{C12,C22,C23},{C13,C23,C33}}, the thickness h, the name
as one of "Stress" ,"Strain", "Disp", "Q6", "QM6" or "Arbitrary", and finally the list
Rlist={R11,R12,R22}. The latter is used if the name is "Arbitrary". This comes handy for
finding the signature of known elements leaving the entries of R1ist symbolic and using the Solve
command. If Cmat is supplied as the empty list { }, the compliance matrix is calculated internally as
inverse of Emat.

The module returns the 8 x 8 stiffness matrix Ke as function value. To get the basic stiffness K, only,
call with name = "Arbitrary" and R1ist={0,0,0}.

7.3. Requirements

An acceptable template fulfills four conditions: (C) consistency, (S) stability (correct rank), (I) observer
invariance and (P) parametrization. These are discussed at length in other papers [69-75]. Conditions (C)
and (S) are imposed to ensure convergence as the mesh size is reduced by enforcing a priori satisfaction
of the Individual Element Test (IET) of Bergan and Hanssen [76,77]

Condition (P) means that the template contains free parameters or free matrix entries. In the case of (31),
the simplest choice of parameters are the entries Ry, Ri2, Ra, themselves. To fulfill stability, R;; > 0,
Ry > 0and Ry Ry — sz > 0. Parametrization facilitates performance optimization as well as tuning
elements, or combinations of elements, to fulfill specific needs.

Using the IET as departure point it is not difficult to show [78] that (31), under the stated restrictions
on R, includes all stiffnesses that satisfy the IET and stability. Observer invariance is a moot point for
this element since {x, y} are side aligned. As per the definition in the Introduction, (31) is an universal
template.

7.4. Instances, Signatures, Clones

Setting the free parameters to specific values yields element instances. The set of free parameters is
called the template signature, a term introduced in [73,74]. Borrowing terminology from biogenetics,
the signature may be viewed as an “element DNA” that uniquely characterizes it as an individual entity.
Elements derived by different techniques that share the same signature are called clones.

One of the “template services” is automatic identification of clones. If two elements fitting the template
(31) share Ry, Ri2 and Ry, they are clones. Inasmuch as most FEM formulation schemes have been
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Table 1. A Clone Gallery

Name Description Clones and sources
StressRP 5-stress-mode element of Section4  Direct derivation: TCMT [1], Gallagher [6]
(a.k.a. BORP) Pian 5-mode stress hybrid [25,27]

Wilson-Taylor-Doherty-Ghaboussi Q6 [63]
Taylor-Wilson-Beresford QM6 [64]
Belytschko-Liu-Engelmann QBI [65]

SRI of iso-P with E split as per (54)

StrainRP 5-strain-mode element of Section 5  MacNeal QUAD4 [36,66]
SRI of iso-P with E split as per (56)

DispRP Bilinear iso-P element of Section 6  Argyris [2] as edge stiffened rectangular panel
Taig-Kerr [62] as specialized quadrilateral

Note 1: Many plane stress models listed above were derived for quadrilateral geometries, and a few
as membrane component of shells. The right-hand-column classification only pertains to the
rectangular panel specialization. For example, Q6 and QM6 differ for non-parallelogram shapes.

Note 2: Instances of the stress-hybrid and displacement-bubble-function “futile families” studied in
Section 11 are omitted, as they lack practical value.

Note 3: Post-1990 clones (e.g. EAS [51]) omitted to save space. See [67] for a recent survey.

tried on the rectangular panel, it should come as no surprise that there are many clones, particularly of
the stress element. Those presented before 1990 are collected in Table 1. For example, the incompatible
mode element Q6 of Wilson et al. [63] is a clone of StressRP. The version QM6 of Taylor et al. [64],
which passes the patch test for arbitrary geometries, reduces to Q6 for rectangular and parallelogram
shapes. Even for this simple geometry recognition of some of the coalescences took a long time, as
recently narrated in [68].

8. FINDING THE BEST

An universal template is nice to have. But an obvious question arises: among the infinity of elements
that it can generate, is there a best one? By construction all instances verify exactly the IET for rigid
body modes and uniform strain states. Hence the optimality criterion must rely on higher order patch
tests.

8.1. The Bending Tests

The obvious tests involve response to in-plane bending along the side directions. This leads to compar-
isons in the form of energy ratios. These have been used since 1984 to tune up the higher order stiffness
of triangular elements [54-57,79]. An extension introduced in this article is consideration of arbitrary
anisotropic material. All symbolic calculations were carried out with Mathematica.

The x bending test is depicted in Figure 8. A Bernoulli-Euler plane beam of thin rectangular cross-section
with height b and thickness & (normal to the plane of the figure) is bent under applied end moments
M. The beam is fabricated of anisotropic material with the stress-strain law o = Ee of (2),. Except
for possible end effects the exact solution of the beam problem (from both the theory-of-elasticity and
beam-theory standpoints) is a constant bending moment M (x) = M, along the span. The associated
stress field is oy = —M, y/Iy, 0y, = 0,y = 0, where I, = £hb>.

For the y bending test, depicted in Figure 9, the beam cross section has height a and thickness /4, and
is subjected to end moments M,. The exact solution is M (y) = M,. The associated stress field is
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Figure 8. Constant-moment inplane-bending test along the x side dimension.

oyy = Myx/I, and 0y = o,, = 0, where [, = l—lzha3 . For comparing with the FEM discretizations
below, the internal (complementary) energies taken up by beam segments of lengths a and b in the
configurations of Figures 8 and 9, respectively, are

6aC11M\2. beam __ 6bC22My2

Ul_Jeam — ! s
* b3h Y a’h

(36)

For the 2D element tests, each beam is modeled with one layer of identical 4-node rectangular panels
dimensioned a x b as shown in Figures 8 and 9. The aspect ratio b/a is denoted by y. By analogy
with the exact solution, all rectangles in the finite element model will undergo the same deformations
and stresses. We can therefore consider a typical element. For x bending the exact stress distribution
is represented by (7) on taking py = —M,b/I, = —12M,/(b*h) and 1| = py = 3 = us = 0. The
rigid body mode amplitudes are chosen to be zero for convenience: g = 7 = pug = 0. Inserting these
i into (14) we get the node displacement vector

12M,Cy1a
u, = —-
bx b%h
Likewise, for the y bending test the element stress field is obtained by taking us = M,a/l, =

12My/(a2h) and p; = py = pu3 = pg = g = M7 = pg = 0. The node displacement vector
given by (14) is

[-1 01 0 —1 0 1 0]". (37)

12M,Cyb
0, = ———
by a’h
The strain energies absorbed by the panel element under these applied node displacements are UF*™ =

1ul Ku, and U} anel %uZyKuby, respectively. Define the bending energy ratios as

[0 1 0 -1 010 —17". (38)

anel anel
Uy Uy
ry = =

. {Jbeam’ Ty = {Jbeam’
X y

(39)

These happen to be the ratios of the exact (beam) displacement solution to that of the of rectangular panel
solution. Hence r, = 1 means that we get the exact answer under M,, that is, the panel is x-bending
exact. If r, > 1 orry < 1 the panel is overstiff or overflexible in x bending, respectively, and likewise
for y bending.

If y = 1 and r, = 1 for any aspect ratio y = b/a and arbitrary material properties the element is called
bending optimal. If ry >> lif @ >> b and/or ry, >> 1if a << b the element is said to experience
aspect ratio locking along the x or y direction, respectively. This is known as shear locking in the FEM
literature because it is traceable to spurious shear energy.
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Figure 9. Constant-moment inplane-bending test along the y side dimension.

8.2. The Optimal Panel
Applying the tests to the template (31) yields
re =3C1 1Ry, ry =3CnRo. (40)
Clearly to get r, = ry, = 1 for any aspect ratio we must take
Ri=3Cy,  Rn=3Cy (41)

Because R, does not enter the optimality criterion one can set Ry, = 0 for convenience. Comparing
to the R, of (33) shows that the 5-parameter stress model of TCMT [1] (and its clones) is the bending-
optimal rectangular panel. If the material is isotropic, Ri; = Ry = %E . Accordingly the StressRP
instance will be henceforth also identified by the acronym BORP, for Bending Optimal Rectangular
Panel.

8.3. The Strain Element Does Not Lock

It is interesting to apply the result (40) to other elements. The StrainRP element generated by the R, of
(33) gives

ry = Cr Eqy, ry = CynEy. (42)
If the material is isotropic, Ci; = Cy = 1/E and Ey; = Ey = E/(1 — v?). This yields r, = ry =
1/(1—v?), which varies between 1 and 4/3. For an orthotropic body with principal material axes aligned
with the rectangle sides, E1; = E1/(1 —viav21), Exa = E/(1 —viav21), Cii = 1/Eq, Cyp = 1/E,, and
ry =ry = 1/(1 —vipvy). The ratios are independent of the aspect ratio y. Consequently StrainRP and
its clones do not lock, although the element is not generally optimal. Note that if Cy; E;; and/or Cx, Enn
differ widely from 1, as may happen in highly anisotropic materials, the bending performance will be
poor. See the Example problem in Section 12.2.

8.4. But the Displacement Element Does
DispRP is generated by the R, of (33). Inserting its entries into (40) we get

(ExnEss — EZ)(En + E33v?)
= CilE Eunv?) = ,

Ty 11(Ei + Es3y”) det(E)

_ (E11Ess — EL)(Ex + Es3y72)

det(E)

(43)

ry = Cp(Exn + Ex3y ™)
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Figure 10. Morphing a 8-DOF rectangular panel unit to a 6-DOF beam-column element in the x direction.

in which det(E) = E11 ExE33 + 2Ep E3Ep3 — Eq E3y — ExyE?; — Es3 EZ,. For an isotropic material

2 2(1 - 1+2y2 —
re= M, ry = M (44)
2(1 —v?2) 2y2(1 —v?)
These relations clearly display aspect ratio locking for bending along the longest side dimension. For
example, if v = 0and a = 10b whence y = a/b = 10, r, = 51 and DispRP is over 50 times stiffer in x
bending than the Bernoulli-Euler beam element. The expression (43) makes clear that locking happens

for any material law as long as E33 # 0. Since this is the shear modulus, the name shear locking used
in the FEM literature is justified.

8.5. Multiple Element Layers

Results of the energy bending test can be readily extended to predict the behavior of 2n (n = 1,2, ...)
identical layers of elements symmetrically placed through the beam height. If 2n layers are placed along
the y direction in the configuration of Figure 8 and y stays the same, the energy ratio becomes

2 s
o _ P =14
x 22n ?

(45)

where 7, is the ratio (40) for one layer. If r, = 1, r_\z.” = 1 so bending exactness is maintained, as can be
expected. For example, if n = 1 (two element layers), r'f?) = (3 +ry)/4. The same result holds for r,

if 2n layers are placed along the x direction in the configuration of Figure 9.

9. MORPHING INTO BEAM-COLUMN

Morphing means transforming an individual element or macroelement into a simpler model using kine-
matic constraints. Often the simpler element has lower dimensionality. For example a plate bending
macroelement may be morphed to a Bernoulli-Euler beam or to a torqued shaft [75]. To illustrate the idea
consider morphing the rectangular panel of Figure 10 into the two-node beam-column element shown
on the right of that Figure. The length, cross sectional area and moment of inertia of the beam-column
element, respectively, are denoted by L = a, A = bh and I,; = b*h/12 = a>h/(12y3), respectively.

The transformation between the freedoms of the panel and those of the beam-column is

fuaql [LO 35 00 07
Uy 01 0 00 O Uyl
lhy 00 0 10 3b |]|Hn
Uy 00 0 01 0 91 —

Up = ui3 = 0 0 0 10 _%b i = Tpuy,. (46)

Uy3 00 0 01 0 l—lyz
g 10 —-3b00 0 (|4 |

| 1y4 L0001 0 00 o0
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where a superposed bar distinguishes the beam-column freedoms grouped in array u,,. As source select
StressRP fabricated of isotropic material. The morphed beam-column element stiffness is

A 0 0 —A 0 0

0 12C22122/L2 0c23l. /L _12022122/142 6ca3l;;/L
E 0 6casl;;/L desz 1y, —6cx31;;/L dezly,
L

0
K,=T'K, T, = g
m — 0 m — —A O 0 A 0 O
0
0

m

(47)

0 l20221zz/L2 6ca3 1, /L —12022121/142 6cal;; /L
0 6cxal /L dcyzl, —6c231 /L deasl;

in which ¢y = ¢33 = %yz/ (I +v),and ¢33 = %(1 + 3c¢;7). The entries in rows/columns 1 and 4 form
the well known two-node bar stiffness. Those in rows and columns 2, 3, 5 and 6 are dimensionally
homogeneous to those of a plane beam, and may be grouped into the following matrix configuration:

0 0 0 O 12/L* 6/L —12/L* 6/L
EI 0 1 0 -1 6/L 3 —6/L 3
beam __ zz
K =T"1lo o o o |[TA| _io/12 e/ 121> —6/L “8)
0 -1 0 1 6/L 3 —6/L 3

in which B,, = ¢y = ¢p3 = %yz /(1 +v). But (48), with B, replaced by a free parameter 8, happens to
be the universal template of a prismatic plane beam, first presented in [69] and further studied, for the
C! case, in [80,81] using Fourier methods.

The basic stiffness on the left characterizes the pure-bending symmetric response to a uniform moment,
whereas the higher-order stiffness on the right characterizes the antisymmetric response to a linearly-
varying, bending moment of zero mean. For the Bernoulli-Euler beam constructed with cubic shape
functions, B = 1. For the Timoshenko beam, the exact equilibrium model [5, p. 80] is matched by
B =Bco=1/(1+¢),¢ = 12E1,/(GA,;L?),in which A; = 5bh /6isthe shearareaand G = %E/(1+v)
the shear modulus.

It is readily verified that the morphed B,, is always higher than Bco forall 0 < v < % and aspect ratios
y > 0. This indicates that in beam-like problems involving transverse shear the rectangular panel will
be stiffer than the exact C° beam model. For example if v = 1/4,

Peo 5
ﬂm B 2(3 + )/2),

which never exceeds 5/6 and goes to zero as y — o0. This behavior can be expected, since the panel can
only respond to such antisymmetric node motions by deforming in pure shear. However, the symmetric
response is exact for any aspect ratio y, which confirms the optimality of StressRP. Observe also that
what was a higher order patch test on the two-triangle mesh unit becomes a basic (constant-moment)
patch test on the morphed element. This is typical of morphing transformations that reduce spatial
dimensionality.

(49)

For nonoptimal elements, one finds that the basic stiffness of the morphed beam is wrong except under
special circumstances; for example isotropic StrainRP with zero v, or one of the SRI elements studied
next.

10. A G3 DEVICE: SELECTIVE REDUCED INTEGRATION

The three canonical models of Sections 4-6 were known by the end of Generation 2. Next a third
generation tool will be studied in the context of templates.

Full Reduced Integration (FRI) and Selective Reduced Integration (SRI) emerged during 1969-72 [82—
85] as tools to “unlock” isoparametric displacement models. Initially labeled as “variational crimes”
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Figure 11. The two-way SRI matrix split.

[31], they were eventually justified through lawful association with mixed variational methods [86-88].
Both FRI and SRI turned out to be particularly useful for legacy and nonlinear codes since they allow
shape function and numerical integration modules to be reused.

For the 4-node rectangular panel only SRI is considered because FRI leads to rank deficiency: Ry =
Ri2 = Ry = 0. Two questions will be studied as it relates to templates:

(i) Can the template (31)—(32) be reproduced for any material law by a SRI scheme?
(if) Can BORP be cloned for any material law by a SRI scheme that is independent of the aspect ratio?

As shown below, the answers are (i): yes if R, = 0; (ii): yes.

10.1. Concept and Notation

In the FEM literature, SRI identifies a scheme for forming K as the sum of two or more matrices
computed with different integration rules and different constitutive properties, within the framework of
the isoparametric displacement model.

We consider primarely the case of a two-way constitutive decomposition. Split the plane stress consti-
tutive matrix E into
E =E; +Eq (50)

The isoparametric displacement formulation leads to the expression K = / ac B BZE B, d2 where A is
the element area and B, the isoparametric strain-displacement matrix. To apply SRI insert the splitting
(50) to get two integrals:

K= / hBI'E;B, dS +/ hBIEyB, dQ = K| + K. (51)
Ae Ae

The two matrices in (51) are done through different numerical quadrature schemes: rule () for the first
integral and rule (II) for the second.

For the rectangular panel the isoparametric model is the 4-node bilinear element. Rules (I) and dmn
will be the 1x 1 (one point) and 2x2 (4-point) Gauss product rules, respectively. A general split of the
elasticity matrix is

Eii1p1 Ennps Epn Ejy(1—p1) Epn(l—p3) Epp(l—1)
E=E+Ei=|Enps Enpr Ent |+| En(l—p3) En(l—p) Exn(l—1)|, (52
Ezt, Ent Eny Ein(l—1) Ex(l—1) Epn(l-—r1)

in which py, p2, p3, 71, 72 and 73 are dimensionless coefficients to be chosen.
10.2. The Case R;; =0
A template with Ry, = 0 and arbitrary {R;;, R»,} is matched by taking

_ 1-3Ry

Pl=s—f—— B
Eq

_ 1-3Ry

, T1=T, =13 =1. 53)
i 1=T2 =13 (
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Since p3 does not appear, it is convenient to set it to one to get a diagonal Ey;. The resulting split is
Ey — 3Ry Ey, Ey; 3Ry 0 O
E +Ejy = Ep; Exn —3Ry Ex|+| 0 3Ryp 0], (54)

To get the optimal element (BORP) set Ry = %Cﬁl and Ry, = %C{zl:

Ey - cy Ep Ep ci! o0 o
E; +Ey = En En—Cy En|+| 0 C3' 0], (55)
E13 E23 E33 0 0 0

For isotropic material this becomes
r LI 0 100
EI+EH=ﬁ|:v 2 0 ]+E[O 1 O:|. (56)
“YLlo o la-v 000

To match the (suboptimal) StrainRP, in which Ry; = %E 11 and Ry = %Ezz the apropriate split is

Ei+Eq = l:Elz 0 E23:| + |: 0 Exn 0] . 57
Ei3 Eyp Ess 0 0 O
For isotropic material this becomes
0 v 0 1 00
EI+EII=E[v 0 0 j|+E|:O 1 0:'. (58)
00 1(1—v) 000

Some FEM books suggest using the dilatational elasticity law for E;. As can be seen, the recommendation
is incorrect for this element.

10.3. The Case R|; # 0

The case Rys # 0, arises in anisotropic displacement models for which E13 # 0 and/or E,3 # 0. Now
7, and 73 must verify E;3y 7't + Enyts = Esy ™! + Exy — 3Ry,. Solve for that 7; (i = 2, 3) that
has an associated nonzero modulus. Note that the aspect ratio y will generally appear in the SRI rule.

This case lacks practical interest because optimality can be achieved with Rj; = 0. But for DispRP
an obvious solution that eliminates all aspect ratio dependentis py = p, = p3 =171 =1, =13 = 0,
whence E; = 0, E;f = E and the fully integrated isoP element, which locks, is recovered.

10.4. Selective Directional Integration

The template can also be generated by non-Gaussian rules. For example, the following three-way
directional split

Ey —Cy Ep Eis c' 00 0 0 0
Ei +Ep + En = |: E, Expn—Cy) E23:| +|i 0 0 0:| + |:0 Cx 0i|, (59)
Eis Eys Es; 0O 0O 0O 0 O

generates the optimal panel in conjunction with three rules. Rule (I) is one-point Gauss with
{£,n} = {0,0} and weight 4; Rule (II) has two points on the y = 0 median: {£, 7} = {0, £1/+/3}
with weight 2; rule (III) has two points on the x = 0 median: {£, n} = {£1/+/3, 0} with weight 2. This
selective directional integration is difficult to extend to arbitrary quadrilaterals while preserving observer
invariance.
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Table 2. Signatures and Bending

Ratios for Stress Hybrid Family

Ng 5 7 13 21 31
Rii/E 033333 221173 2.21762 2.22125 2.22235
Rxn/E  0.33333  0.35650 0.35967 0.35979 0.35981
Rz 0 0 0 0 0
Ty 1.00000 6.63518 6.65386 6.66375 6.66705
Ty 1.00000 1.06949 1.07900 1.07938 1.07944
y-bending A DispRP (bilinear
energy ratio 1y {14 iso-P model) ™o
"I StrainRP model /
1.12 4" (5 strain parameters) Bubble Augmented Family-p?l."
L1} _ !
Element aspect ratio: 31 stress parameters ¥ 2 bubbles
1.osk y 21 stress parameters 18 bubbles
O O x 13 stress parameters
1.06 F 1 .. 7 stress parameters
4 ; ;
Loal Stress Hybrid Family
1.02+
StressRP = BORP x-bending energy ratio ry
(5 stress parameters)\ﬁlr ,2 3 4 é 6 .7 >

Figure 12. Representation of template families on the {ry, r,} plane.

11. FUTILE FAMILIES

Families are template subsets that arise naturally from specific methods as function of discrete or con-
tinuous decision parameters. To render the concept more concrete, two historically important families
for the rectangular panel are considered next.

11.1. Equilibrium Stress Hybrids

This family was studied in the late 1960s. It is obtained by generalizing the 5-parameter stress form of
Section 4 with a polynomial series in {x, y}. An obvious choice is to make o, oyy and oy, complete
polynomials in {x, y}:

i i i i ! i N . . .
Oy = E agx'y, o= E bipx'y, o= Zcij x'y/, >0, j>0,i+j<n.(60)
i,j i,j ij

For a complete expansion of order n > 0 one gets 3(n + 1)(n + 2)/2 coefficients. Imposing strongly
the two internal equilibrium equations (1); for zero body forces reduces the set to ny, = 3 + 3n + n?
independent coefficients. For n = 0, 1,3,5 and 7 this gives n, = 3,7, 13,21 and 31 coefficients,
respectively. (Only odd # is of interest beyond n = 0, since terms withi + j =2, 4, ... etc., cancel out
on integrating strains over the rectangle and have no effect on the element stiffness.)

The stiffness equations of this family can be obtained by the hybrid stress method of Pian and Tong
[26,46]. To display the effect of n,, the signature of the template (31)—(32) and the associated bending
energy ratios were calculated for aspect ratio y = a/b = 4, isotropic material with modulus E and

Poisson’s ratio v = 1/3.
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Table 3. Signatures and Bending Ratios for Bubble-Augmented Family

nyp 0 2 18
Ry /JE 237501 2.23894 2.22546
Ry /E  0.38281  0.36088 0.35998

Ri» 0. 0. 0

T 7.12505 6.71683 6.67637

ry 1.14844 1.08265 1.07994

The results are collected in Table 2. The bending energy ratios are displayed in Figure 12. Increasing
the number of stress terms rapidly stiffens the element in x-bending. This is an instance of what may
be called equilibrium stress futility: adding more stress terms makes things worse. (The phenomenon is
well known but a representation such as that in Figure 12 is new.) As n, — 0o the template signature
approaches the limit Ry /E ~ 0.2224 and Ry, /E =~ 0.3599 to 4 places.

11.2. Bubble-Augmented Isoparametrics

A second family can be generated by starting from the conforming iso-P element DispRP of Section 6,
and injecting n;, displacement bubble functions. (Bubble are shape functions that vanish over the element
boundaries.) The idea is also a G2 curiosity but has resurfaced recently. Results for 2 and 18 bubbles (1
and 9 internal nodes, respectively) are collected in Table 3 and displayed also in Figure 12.

As can be expected injecting bubbles makes the element more flexible but the improvement is marginal.
If n, — oo the signature approaches that of the n, — oo hybrid-stress model of the previous subsection.
For all this extra work (these models become expensive on account of high order Gauss integration rules
and DOF condensation), r, decreases from 7.12 to 6.67. This is a convincing illustration of bubble

Sfutility.
Figure 12 also marks the energy ratios of the StrainRP element. For this instance Ry;/E = Ry /E =

3/8 = 0.375 and r, = r, = 1.125. Consequently the element is only slightly overstiff. Increasing the
number of strain terms, however, would lead to another “futile family.”

12. NUMERICAL EXAMPLES

Only three benchmark examples, all involving cantilever beams, are presented below.

12.1. Example 1: Slender Isotropic Cantilever

The slender 16:1 cantilever beam of Figure 13(a) is fabricated of isotropic material, with E = 7680,
v = 1/4and G = (2/5)E = 3072. The dimensions are shown in the Figure. Two end load cases are
considered: an end moment M = 1000 and a transverse end shear P = 48000/1027 = 46.7381. The
tip deflections ¢ = u,c from beam theory: ML?/(2EI,) and PL?*/(3EL,) + PL/(GA;), in which
I, = b°h/12 and Ay = 5A/6 = 5bh/6, are both exactly 100. For the second load case the shear
deflection is only 0.293% of uc; thus the particular expression used for A; is not very important.

Regular meshes with only one element (N, = 1) through the beam height are considered. The number
N, of elements along the span is varied from 1 to 64, giving elements with aspect ratios that go from
y = 16 through y = %. The root clamping condition is imposed by setting the u, node displacement to
zero at both root nodes, but u, is only fixed at the lower one thus allowing for Poisson’s contraction at
the root.

Tables 4 and 5 report computed tip deflections u,c for several element types. The first three rows list
results for the 3 rectangular panel models of Sections 4-6. The last three rows give results for selected
triangular elements. BODT is the Bending Optimal Drilling Triangle: a 3-node membrane element
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Figure 13. Slender cantilever beam for Examples 1 and 2.
A 16 x 1 FEM mesh with y = 1 is shown in (b).

Table 4 Tip Deflections (exact=100) for Slender Isotropic Cantilever under End Moment

Element Mesh: x-subdivisions x y-subdivisions (N, x Ny)
1x1 2x1 4x1 8§ x1 16 x 1 32x1 64 x 1
yr=16 =8 =49 ¥=2 =) =3 =)

StressRP (BORP) 100.00  100.00  100.00  100.00  100.00 100.00 100.00

StrainRP 93.75 93.75 93.75 93.75 93.75 93.75 93:75
DispRP 0.97 3.75 13.39 3749 68.18 85.71 91.60
ALL-EX 0.04 0.63 7.40 35.83 58.44 64.89 66.45
CST 0.32 1.25 4.46 12.50 22.73 28.57 30.53
BODT 100.00  100.00  100.00  100.00  100.00 100.00 100.00

Table 5 Tip Deflections (exact=100) for Slender Isotropic Cantilever under End Shear

Element Mesh: x-subdivisions x y-subdivisions (N, x N,y)
Ix1 2x1 4x1 8x1 16 x 1 32x1 64 x 1
r=16 r=8 =49 =2 @¢=1) =3 @@=}

StressRP (BORP) 75.02 93.72 98.39 99.56 99.86 99.94 99.97

StrainRP 70.35 87.88 92.26 93.35 93.63 93.71 93.73
DispRP 0.97 3.75 13.39 37.49 68.16 85.69 91.58
ALL-EX 0.24 0.69 6.36 35.18 59.59 65.70 67.03
CST 0.48 1.41 4.62 12.66 22.88 28.73 30.69
BODT 75.20 93.37 98.20 99.55 99.93 100.12 100.15

with drilling freedoms studied in [49,79,89,90]. ALL-EX is the exactly integrated 1988 Allman triangle
with drilling freedoms [91]. CST is the Constant Strain Triangle, also called linear triangle and Turner
triangle [1]. Both ALL-EX and BODT have three freedoms per node whereas all others have two. To
get exactly 100.00% from BODT under an end-moment requires particular attention to the end load
consistent lumping [90].

BORP is exact for all y under end-moment and converges rapidly under end-shear. The performance of
BODT is similar, inasmuch as this triangle is constructed to be bending exact in rectangular-mesh units.
(In the end-shear load case BORP and BODT, which morph to different beam templates, converge to
slightly different limits as ¥ — 0.) StrainRP is about 6% stiffer than BORP, which can be expected
since 1/(1 — v?) = 16/15. DispRP, as well as the triangles ALL-EX and CST, lock as y increases.
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Table 6 Tip Deflections (exact=100) for Slender Anisotropic Cantilever under End Moment

Element Mesh: x-subdivisions x y-subdivisions (Ny x N,)
I1x1 2x1 4x1 8x1 16x1 32 x 1 64 x 1
=16 =8 ¥=49 ¥=2 F=D) =3 =)

StressRP (BORP) 100.00  100.00  100.00  100.00  100.00 100.00 100.00
StrainRP 2.26 2.26 2.26 226 226 2.26 2.26
DispRP 0.02 0.07 0.25 0.76 1.53 2.08 225

Table 7 Tip Deflections (exact=100) for Slender Anisotropic Cantilever under End Shear

Element Mesh: x-subdivisions x y-subdivisions (N, x N,)
1x1 2% 1 4x1 8x1 16 x 1 32x1 64 x 1
y=16 =8 =49 =2 =) ¥=3) @r=13)

StressRP (BORP) 74.95 93.68 98.37 99.54 99.84 99.92 99.96
StrainRP 1.70 2.12 222 2.26 2.26 2.26 2.26
DispRP 0.02 0.07 0.25 0.75 1.52 2.06 223

The response for more element layers through the height can be readily estimated from (45). Conse-
quently those results are omitted to save space. For example, to predict the DispRP answer on a 8 x 4
mesh under end-moment, proceed as follows. The aspect ratio is ¥ = 8. From the y = 8 column of
Table 4 read off r, = 100/3.75 = 26.667. Set n = 2 in (45) to get r™® = (15 +r,)/16 = 2.60417.
The estimated tip deflection is 100/2.60417 = 38.40. Running the program gives §c = 38.3913 as
average of the y displacement of the two end nodes. Predictions for the end-shear-load case will not be
as accurate.

12.2. Example 2: Slender Anisotropic Cantilever

Next assume that the beam of Figure 13(a) is fabricated of anisotropic material with the elasticity
properties

880 600 250 1 1791 —-2505 —150
E= |:600 420 150:| , C=E'!= 35580 |:—2505 3599 180j| . (61)
250 150 480 —150 180 96

That these are physically realizable can be checked by getting the eigenvalues of E: {1386.1, 387.3, 6.63},
whence both E and C are positive definite. The load magnitudes are adjusted to get beam-theory tip
deflections of 100: M = 2.58672 and P = 0.121153. Since

E1C =44.297 (62)

the energy ratio analysis of Sections 8.3-8.4, through equations (42) and (43), predict that the strain and
displacement model will be big losers, because r, > 44.297. This is verified in Tables 6 and 7, which
report computed tip deflections u,¢ for the three rectangular panel models. While BORP shines, the
strain and displacement models are way off, regardless of how many elements one puts along x.

Putting more elements through the height will help StrainRP and DispRP but too slowly to be practical.
To give an example, a 128 x 8 mesh of StrainRP (or clones) under end moment will have r® =
(63 + 44.297)/64 = 1.68 and estimated deflection of 100/1.67 = 59.67. Running that mesh gives
uyc = 59.65. So using over 2000 freedoms in this trivial problem the results are still off by about 40%.
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Figure 14. Short (Berkeley) cantilever under end shear: E = 30000, v = 1/4,
h = 1; root contraction not allowed, a 8 x 2 mesh is shown in (b).

Figure 15. Intensity contour plot of oy, given by the 64 x 16 BORP mesh.
Produced by Mathematica and Gaussian filtered by Adobe
Photoshop. Stress node values averaged between adjacent
elements. The root singularity pattern is clearly visible.
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Figure 16. Distributions of oy, oy, and oy, at x = 12 given by the 64 x 16 BORP mesh.
Stress node values averaged between adjacent elements. Note different stress
scales. Deviations at y = =6 (free edges) due to “upwinded” y averaging.

12.3. Example 3: Short Cantilever Under End Shear

The shear-loaded cantilever beam defined in Figure 14 has been selected as a test problem for plane
stress elements by many investigators since originally proposed in [92]. A full root-clamping condition
is implemented by constraining both displacement components to zero at nodes located on at the root
section x = 0. The applied shear load varies parabolically over the end section and is consistently
lumped at the nodes. The main comparison value is the tip deflection 8¢ = u,c at the center of the end
cross section. Reference [79] recommends 8¢ = 0.35601, which is also adopted here. The converged
value of digits 4-5 is clouded by the mild singularity developing at the root section. This singularity is
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Table 8 Tip Deflections (exact = 100) for Short Cantilever under End Shear

Element Mesh: x-subdivisions x y-subdivisions (N, x Ny)

8x2 16x4 32x8 64x16 128x32
StressRP (BORP) 98.80 99.59 99.88 99.97 100.00
StrainRP 97.24 99.19 99.77 99.94 99.99
DispRP 88.83 96.83 99.16 99.78 99.95
ALL-EX 89.43 96.88 99.16 99.79 99.96
CST 55.09 82.59 94.90 98.65 99.66
BODT 101.68  100.30 100.03 100.00 100.00

4x2 8x4 16x8 32x16 64 x 32
StressRP (BORP) 97.22 99.08 99.71 99.92 99.99
StrainRP 95.67 98.67 99.61 99.89 99.98
DispRP 69.88 90.05 97.24 99.28 99.82
ALL-EX 70.71 89.63 96.93 99.15 99.77
CST 37.85 69.86 90.04 97.25 99.28
BODT 96.68 98.44 99.37 99.78 99.93

2x2 4 x4 8§x8 16x16 32.x 32
StressRP (BORP) 91.94 97.41 99.19 99.75 99.93
StrainRP 90.47 97.03 99.07 99.72 99.92
DispRP 37.84 70.57 90.39 97.35 99.31
ALL-EX 26.16 56.93 83.54 95.14 98.69
CST 17.83 43.84  75.01 92.13 97.86
BODT 92.24 96.99 98.70 99.48 99.81

displayed for o, in the form of an intensity contour plot in Figure 15.

Table 8 gives computed deflections for rectangular mesh units with aspect ratios of 1, 2 and 4, using
the three canonical rectangular panel models and the three triangles identified in Example 1. For end
deflection reporting the load was scaled by (100/0.35601) so that the “theoretical solution” becomes
100.00. (In comparing stress values the unscaled load of P = 40 was used.)

There are no drastically small deflections because element aspect ratios only go up to 4:1. Elements
StressRP (BORP), StrainRP and BODT outperformed the others. There is little to choose between these
3 models, which is typical of isotropic materials. The BODT triangle is geometrically more versatile
but carries one more freedom per node.

Figure 16 plots averaged node stress values at section x = 12 computed from the 64 x 16 BODT mesh.
The agreement with the standard beam stress distribution (that section being sufficiently away from the
root) is very good except for o, near the free edges y = +6.

13. DISCUSSION AND CONCLUSIONS

What can templates contribute to FEM technology? Advantages in two areas are clear:

Synthesis. Only one procedure (module, function, subroutine) is written to do many elements. This
simplifies comparison and verification benchmarking, as well as streamlining maintenance. A unified
implementation automatically weeds out clones.

Customability. Templates can produce optimal and custom elements not obtainable (or hard to obtain)
through conventional methods.

A striking example of the latter is the UBOTP macroelement presented in Section A.3 of the Appendix.
This concludes a three decade search for a four noded trapezoid insensitive to distortion and that passes the
patch test [67]. To the writer’s knowledge, this model cannot be obtained with conventional formulations.

26



Will the synthesis power translate into teaching changes in finite element courses? This is not presently
likely. Two reasons can be cited.

First, advantages may show up only in advanced or seminar-level courses. Beginning calculus students are
not taught Lebesgue integration and distribution theory despite their wider scope. Likewise, introductory
FEM courses are best organized around a few specific methods. Students must be exposed to a range of
formulations and hands-on work before they can appreciate the advantages of unified implementation.

Second, the theory has not progressed to the point where the configuration of a template can be written
down from first principles in front of an audience. Only two general rules are presently known: the
fundamental decomposition into basic and higher order components, and the method to get the matrix
structure of the basic part. No general rules to construct the higher order component can be stated aside
from orthogonality and definiteness constraints.

How far can templates go? As of this writing templates are only known for a few elements in one and
two dimensions, such as beams and flat plates of simple geometry. What is the major technical obstacle
to go beyond those? Symbolic power. One must rely on computer-aided symbolic manipulation because
geometric, constitutive and fabrication properties must be carried along as variables. This can lead, and
does, to a combinatorial tarpit as elements become more complicated.

The good news is that computer algebra programs are gradually becoming more powerful, and are now
routinely available on laptops and personal computers. Over the next ten years PCs are expected to
migrate to 64-bit multiple-CPUs capable of addressing hundreds of GBs of memory at over 10GHz
speeds. As that happens the development of templates for 3D solid and shell elements in reasonable time
will become possible.
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Appendix A. OTHER PANEL GEOMETRIES

The template framework of four noded membrane elements can be extended to more general geometries, at the
cost of increased complexity in symbolic computations. This Appendix presents templates for parallelogram and
trapezoidal geometries. The template for a general quadrilateral is the topic of a separate article [93].

The G1 direct elasticity methods of Sections 4-5 do not work beyond the parallelogram. The resulting “node
collocation” elements fail the patch test and cannot be fitted in the template framework. Variational methods are
required to get stress-assumed and strain-assumed elements that work. For stress elements the Hellinger-Reissner
(HR) principle is used. For strain elements, a strain-fit method [94] in conjunction with de Veubeke’s strain-
displacement mixed functional is used.
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and elasticity matrix E

Figure 17. The 4-node parallelogram (swept) panel.

A.1 Parallelogram (Swept) Panel

The geometry of the parallelogram panel shown in Figure 17 is defined by the dimensions a, b and the skewangle
w, positive counterclockwise. The template again has the configuration (31) displayed in Figure 6. With s = tan w
the matrices to be adjusted are

1 —b 0 b 0 b 0 —b 0 1
Hc=—|: 0 —a-bs O —a+bs 0 a+bs O a—bs:|, W=[“ 1].
2¢b —a—bs —-b —a+bs b a+bs b a—bs -—b _% B
(63)
The higher order projector Hj, is exactly as in (32), whereas R depends on the formulation, as explained below. For

future use the compliance and elasticity in the median direction y,, (see Figure 17) are denoted by
Cy =Cn costw — 2C,; cos® wsinw + (2C1 + C33) cos® wsin® w — 2C3 cos wsin® w + Cyy sin* o
_ Cn —2Cxs + (2Ciz + Cp3)s> = 2C135° 4 Cyys*
(14 s2)? ’
E}, = Ep cos* w — 4E,; cos® wsin w + (2E; + 4Ex3) cos® wsin® w — 4E 5 cos wsin® o + Ey sin*w
Eyp —4Exns + 2Ep +4E3)s> —4E;3s® + Ejyst
(14 s2)2 '

(64

Stress element. A 5-parameter stress element StressPP can be constructed either directly, as done by Gallagher [6,
Ch. 3A], or by the HR principle, starting from the energy-orthogonal stress field

i

Oxx 1 0 0 y/b sin w x,, Ua
l: Oyy :| = |:O 1 0 0 cos? wx,, jl us |, (65)

Oxy 0 01 0 —sinwcoswx, o

Hs

in which sinw = s/+/1+ 52, cosw = 1/4/1 +s2, and x,, = (xcosw + ysinw)/(acosw) = (x + ys)/a. Both
methods give the same stiffness. [Because (65) is an equilibrium field, an equilibrium stress hybrid formulation
gives the same answer.] The stiffness is matched by the template with

1

Ry=0, Rp=——"—"78H-.
12 2 3¢5 (115

(66)

Ry =—,
11 3C11

If the material is isotropic the diagonal entries are R; = ; E and Ry, = 1E/(1+ s%)2. The Q6 and QM6 elements
continue to be clones of StressPP.

Strain element. A 5-parameter strain element StrainPP can be constructed by the direct elasticity method of Section
5, or by a variational strain-fitting method [94], starting from the companion of (65):

X1
€xx 1 0 0 y/b sin® wx, X2
ey |=[0 1 0 0 cos? w x,, x| - 67)
2exy 0 01 0 —2sinwcoswx, X4

X5
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Figure 18. The four noded trapezoidal panel and a two-trapezoid repeatable macroelement.

Both methods give the same result. The stiffness is matched by setting
Ey

Riu=3%Ey, Rizp=0, Rpy=—2__,
1n=3Ln 12 22 30 + 592

(68)

Displacement element. The conforming, exactly integrated isoparametric element DispPP is matched by setting

1
Ry = 3 (Eni +4E 135 + QEp+4Ey)s® + 4Exns® + Exns* + (Ess + 2Enps + Ens®)y?),

1 1
Ry, = 3y (Eis + (Ena+2E3)s + 3Exs® + Ens® + (Ex+Ens)y?), Rp= F(EB +2E5s + En(s°+y?).

(69)
The StressPP element (as well as its clones Q6 and QMS6) is again bending optimal along both x and y,, (median)
directions. The symbolic verification is far more involved than for the rectangular element because it requires the
use of free-free flexibility methods [95], and is omitted.

A.2 Trapezoidal Panel

The geometry of the trapezoidal panel shown in Figure 18 is defined by the dimensions a, b = a/y and the two
angles w; and w,, both positive counterclockwise. Define

si=tanw;, s;=tanw, s=j3061+5), d=3is-5), ¢=>bdla=d/y. (70)

The template is again given by the matrix form (34). Matrices H, and W are as in (63), except that s has the new
definition (70). The higher order projector matrix is

_i[l-¢ 0 -—-14+4¢ 0 1+¢ 0 —-1-¢ O
H, l[ 0 1—¢ 0 —14+¢ 0 1+¢ 0 _1_¢:|, (71)

whereas R depends on the formulation, as detailed next.

Stress element. Element StressTP is generated by the 5-parameter stress assumption (65), with one change: the
(1,4) entry y/b is replaced by (y — yc)/b. If yc = —b*(s; —s1)/(12a) = —%aa’/y2 the bending stresses are energy
orthogonal to constant stress fields. The stiffness matrix derived with the HR principle is matched by

1 1

Ri=—————, R;3;=0, Rpy= ,
YT enG-ayy T 2T 3C5U /)1 + 22

(72)

in which C3, is the compliance along the median y,, (cf. Figure 18), given by (64).

OMG element. The incompatible-mode element QM6 of [64] is no longer a clone of the stress element unless d = 0.
Its stiffness is matched by

1 1
=——————  R;p=0, Rpy= :
CuB-a/y?’ P 2= CoB—d/yD( + 527

Ry (73)

33



:":] GROTP l$|
L e T S—
[(E=1500y=1/4h=1] 3 _ [\’ | et
e g 80 \\ ~~~~~~ Q
V sy z 3] ) StressTP
_f_ 1_ < 60 N
b= \ M, /b 5 F i‘ -
e N\ B 4o SrainTP M6
[0
M /b 2
2= 10— g 0\
8 = DispTP
2
2 3 4 5

Distortion parameter 2e/b

Figure 19. A well known distortion benchmark test. Dashed lines mark elements
that fail the patch test (only Q6 in this plot). For additional results on other
elements such as Pian-Sumihara and Enhanced Assumed Strain, see [67].

The only change is in Ry,. The original incompatible-mode element Q6 of [63] fails the patch test if d # 0 and
consequently cannot be matched by the template (31).

Strain element. Element StrainTP is generated by the 5-parameter strain assumption (67), with one change: the (1,4)
entry y/bisreplaced by (y—yc)/b. Energy orthogonality is again obtained if yc = —b*(s,—s,)/(12a) = — %ad/yz.
A strain-fitting variational formulation [94] yields a stiffness matched by

Ey E3,

Ri=——+—, R53=0, Ry= .
T3y P 2730+ &2/vHA + 52

74)

in which E7), is the direct elasticity along the median y,, direction, as given by (64).

Displacement element. The conforming isoparametric displacement element DispTP with 2 x 2 Gauss integration
is matched by

E\ +4E;s + s°(QEyy + 4Es; + 4Eps + Eps®) + (Ex3 + 2Exs + Exs?)y?

Ry = )

1 3= diy? 75
R, — Bt 5(En+2E3 +3Ens + Es®) + (En 4 Ens)y? R, — Ent2Ens+ En(s® +v?)

"o ) CET e -d Y

A.3 A Unidirectional-Bending-Optimal Trapezoidal Panel

Element StressTP is x-bending optimal (XBO) as an individual element, but far from it as a repeating macroelement.
Consider the configuration of Figure 18(b): two mirror-image trapezoidal elements are put toghether to form a
parallelogram macroelement. The macroelement shape is that of a swept panel, and is obviously repeatable along
x.

If a >> b and s # s, the StressTP-fabricated macroelement rapidly becomes overstiff and overflexible in x- and
y-bending, respectively. For example if a/b = y = 8, s; = 0, s, = 1/2 and isotropic material with v = 1/4 the
bendingratios are r, = 11.97 and ry = 0.1414. For the anisotropic elasticity matrix (61), 7, = 6.93 and r, = 0.0792.
If an elongated macroelement is supposed to model unidirectional x-bending correctly, the overstiffness caused by
s1 # sy is called distortion locking. This phenomenon has been widely studied since the MacNeal-Harder test suite
gained popularity [96].

It is possible to construct a trapezoidal panel that is exact in unidirectional x bending when configured to form a
repeatable macroelement as in Figure 18(b), for any aspect ratio y as well as arbitrary side slopes s; and s,. This
template instance will be called UBOTP. A compact expression is obtained by taking the R matrix of StressTP,
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generated by (72) and modifying the (2,1) entry of W:

1/a 0
W= |:_(C11(3y2—ds)+C13) (s —d)—Cpd I b:| (76)
Cu@By*—d*b /

It would be equally possible to keep W of (63) and adjust the entries of R. However, the correction (76) points the
way as to how to extend this result to arbitrary quadrilaterals [93].

Itis not difficult to show that W RW for UBOTP is positive definite as long as the trapezoid is convex. Consequently
the element stiffness is definite and has the proper rank.

Figure 19 presents results for a widely used mesh distortion test, which involves one macroelement of the type
discussed. Results for six element types: UBOTP, StressTP, StrainTP, DispTP, Q6 and QM6 are shown. The
percentage of the correct answer is of course 100/r,. Of these six models only Q6 fails the patch test, but otherwise
works better than all others but UBOTP. StressTP, StrainTP and QM6 give similar results, as can be expected, whereas
DispTP is way overstiff even for zero distortion. UBOTP gives the correct result for all distortion parameters from
0 through 5, since r, = 1. If the aspect ratio of the cantilever is changed to, say 2a/b = 10, the differences between
elements become more dramatic.

At first sight the existence of UBOTP contradicts a theorem by MacNeal [97], which says that four noded quadrilat-
erals cannot both pass the patch test and be insensitive to distortion. The escape hatch is that y-bending optimality
(along the skew angular direction w, of the macroelement) is not attempted. If one tries imposing r, = ry = 1, the
solutions for {Ry;, Ri2, Ry;} become complex if ¥ >> 1 as soon as d deviates slightly from 0.
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