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Abstract

A residual type error estimator for nonlinear �nite element analysis is introduced.

This error estimator solves local problems avoiding both the computation of the 
ux

jumps and the associated 
ux splitting procedure. Pollution errors are taken into ac-

count by a feedback strategy, that is, an error estimate based on local computations

is used as the input of the pollution analysis. This estimator is used in the frame

of an adaptive procedure. Numerical examples show the estimator is able to drive

adaptive procedures leading to likely good solutions. Moreover, one of the examples

demonstrates that adaptive procedures are essential for complex highly nonlinear

mechanical problems because they may discover secondary collapse mechanisms.

Key words: Finite Elements, Error estimation, Pollution errors, Adaptivity,

Nonlinearity

1 Introduction

The use of �nite elements for practical engineering problems requires adaptive

computations. The scheme of a generic adaptive procedure is represented in

Figure 1. Error estimation is a key ingredient in any adaptive procedure be-

cause the acceptability criteria are based on the error estimate. Moreover, the

error estimate is essential to relate the output of the previous computation

with the requirements of the next mesh.
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Error estimators for linear problems are standard and perform well [26,27].

Error estimators may be classi�ed mainly into two groups: 1) 
ux projection

or ZZ-like [32] error estimators and 2) residual type error estimators [7,1,17],

see also [31] for a study of their relationship. Many nonlinear generalizations

have been de�ned from linear estimators. Nevertheless, most of them loose

the sound theoretical basis of the linear counterpart because they are based

on properties that stand only for linear problems [8,14,15,18,22,29,33].

Here, the generalization of a residual estimator [11] to nonlinear problems is

presented. The performance of this estimator does not depend on supercon-

vergence properties, which have only been proved for linear problems. More-

over, the presented approach can be applied to general unstructured meshes

with di�erent element types (for instance, triangles and quadrilaterals). Conse-

quently, assuming that a sound equation for the error is provided, this estima-

tor is easily applied to nonlinear problems. Here the nonlinear error equation

is linearized by means of a tangent Taylor expansion. Moreover, using this

estimator, a method for assessing pollution errors is readily available both for

linear and nonlinear problems.

It is important to notice that, generally, a distinction is made between error

estimators and error indicators. This distinction requires a de�nition which

has not been yet universally stated. In this context, error indicators are based

on heuristic considerations while error estimators approximate a measure of

the actual error in a given norm. Here, a tool for assessing the error measured

in the energy norm is proposed. The obtained approximation to the error is

asymptotically exact, that is, tends to the actual error if the element size tends

to zero, see also [2,3]. In that sense, this tool is an error estimator.

The remainder of the paper is structured as follows. Section 2 states the prob-

lem and introduces the notation. In section 3 the philosophy and the mecha-

nism of the linear error estimator introduced in [11] is described. The presen-

tation of the linear estimator is oriented to easily extend it to the nonlinear

case, this extension is presented in section 4. In section 5 several numerical

examples of adaptive computations using this estimator are presented. These

examples demonstrate the ability of the introduced estimator to deal with

highly nonlinear mechanical problems. Finally, section 6 includes some con-

cluding remarks.

2 Model problem

Let 
 be a bounded domain in IR2 with a smooth boundary @
. The bound-

ary @
 is divided into two parts �D and �N such that @
 = ��
D

S ��
N
and
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�D
T
�N = ;. The standard Sobolev space

H1
�D
(
) := fv 2 H1(
) such that v = 0 on �Dg

is introduced as the natural space containing the concerned functions.

The unknown function u is the solution of the following boundary-value prob-

lem:

Find u in H1
�D
(
) such that

a(u; v) = l(v) for all v 2 H1
�D
(
); (1)

where the forms a(�; �) and l(�) are de�ned in H1
�D
(
)�H1

�D
(
) and H1

�D
(
),

respectively.

Remark 1 Although u belongs to H1
�D
(
) (that is, u = 0 on �D) the Dirichlet

boundary conditions on �D in the original boundary value problem may be non-

homogeneous.

The form a(�; �) is linear with respect to its second argument. In linear prob-

lems, a(�; �) is bilinear. In particular, for second order linear self-adjoint prob-

lems, a(�; �) is bilinear and symmetric. Moreover, in many problems (for in-

stance, in linear elasticity), a(�; �) is also positive de�nite and, hence, it is a

scalar product.

The Galerkin �nite element method provides an approximation uh to u, lying

in a �nite-dimensional space Vh � H1
�D
(
) and verifying

a(uh; vh) = l(vh) for all vh 2 Vh: (2)

The �nite-dimensional space Vh is associated with a �nite element mesh of

characteristic size h. The elements of this mesh are denoted by 
k, k = 1; 2; : : :

and its is assumed that �
 =
S
k
�
k.

The goal of a posteriori error estimation is to assess the accuracy of the ap-

proximate solution uh. This is done analyzing the error e := u � uh and

estimating both global and local measures of the error. Local measures are

used to describe the spatial distribution of the error and the global measure,

which is employed to verify the acceptability criterion, is obtained summing

up the local contributions.

Thus, a norm to measure the error must be de�ned. One of the most popular

options (in the linear case) is the energy norm induced by a(�; �):

kek := [a(e; e)]
1=2

: (3)
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The reasons for choosing k � k are: it has physical meaning, it is equivalent

to standard Sobolev norms and it can be easily restricted in order to obtain

associated local norms.

In the following, the restriction of k � k to the element 
k (k = 1; 2; : : :) of the

mesh is denoted by k�kk. The value of kekk in each element must be estimated

in order to describe the spatial distribution of e. A suitable extension of the

linear estimator maintaining most of its properties is de�ned for the nonlinear

case.

3 Linear a posteriori error estimation

Typically, for linear elasticity, linear heat di�usion, etc, a(�; �) is a scalar prod-
uct. Then uh is the projection of u on Vh and the error e = u�uh is orthogonal

to Vh in the sense of a(�; �). As previously said, the objective of this error esti-
mator is to assess both a global value of the error and its spatial distribution.

Assuming that a(�; �) is bilinear, Eq. (1) can be easily rearranged to obtain a

weak equation for the error. The error e is the element in H1
�D
(
) that veri�es

a(e; v) = l(v)� a(uh; v) for all v 2 H1
�D
(
): (4)

Note that the right-hand-side of Eq. (4) is a residual term which accounts for

the non-veri�cation of Eq. (1).

3.1 The reference error

The error e is unknown and it is impossible to obtain its exact value. Thus,

the only attainable goal is to obtain an approximation to e, say e~h. This

approximation to the error can be easily de�ned from a new approximation

to u, say u~h, more accurate than uh. For instance, u~h may be a �nite element

approximation associated with a �ner mesh of characteristic size ~h (~h << h).

The associated interpolation space V~h is much richer than Vh. Then u~h is much

more precise than uh and, therefore, e~h := u~h�uh is a good approximation of

e. This is formally shown in [21] as a consequence of the a priori convergence

analysis of the �nite element method.

Remark 2 The a priori error analysis of the �nite element method gives error

bounds like (see [16])

kek = ku� uhk � Chp and ku� u~hk � C~hp; (5)
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where p stands for the degree of the interpolating polynomial. Applying Richard-
son extrapolation and the orthogonality between e~h and u�u~h, it can be shown

that

ku� u~hk = ke~hk '
2
41 �

 
~h

h

!2p35
1=2

kek: (6)

That is, if ~h is one fourth of h and p is one, the reference error, e~h, is 97%

of the actual error e.

In the following, the �ner mesh of element size ~h is denoted as the refer-

ence mesh, as well as the associated solution, u~h, is the reference solution and

e~h is the reference error. Note that the discretization can be enriched using

di�erent strategies: instead of the the h-re�nement approach (reduce the ele-

ment size), the p-re�nement approach (increase the degree of the interpolation

polynomial) can also be used to increase the accuracy of the interpolation and

de�ne a reference solution. Here, for the simplicity of the presentation, only

the h-re�nement approach is presented.

In fact, computing u~h and then obtaining e~h is equivalent to directly solving

the error equation (4) using the �ner mesh. That is, solving Eq. (1) using V~h
is equivalent to solving Eq. (4) using the same interpolation space. Thus, e~h
is the element of V~h that veri�es

a(e~h; v~h) = l(v~h)� a(uh; v~h) for all v~h 2 V~h: (7)

Nevertheless, the standard computation of e~h must be avoided due to its pro-

hibitive computational cost: the re�ned mesh generating V~h has a number of

degrees of freedom much larger than the original mesh and, therefore, the cost

of computing e~h is usually prohibitive.

In the remainder of this section a method for approximating e~h by low cost

local computations is presented. This method is split in two phases. First, a

simple residual problem is solved inside each element and an interior estimate

is obtained. Second, a new family of simple problems is considered and the

interior estimate is complemented adding a new contribution. The �rst phase

is called interior estimation and the latter is called patch estimation.

3.2 Interior estimation

Solving the global reference problem, see Eq. (7), implies the resolution of a

very large system of equations with a prohibitive computational cost. In order
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to avoid una�ordable computations, the error estimation must be performed

solving local problems. In fact, standard residual-type error estimators solve

elementary problems because the natural partition of the domain is the set of

elements of the \coarse" computational mesh, 
k, k = 1; 2; : : :.

Here, each element 
k is discretized by an elementary submesh built from a

discretization of the reference element and mapped into 
k, see Figure 2. Then,

the reference mesh is constructed by the assembly of the elementary submeshes

discretizing each element, see Figure 3. That is, each element 
k of the mesh is

associated with a local interpolation space V~h;k, induced by the corresponding

elementary submesh. In fact, this space V~h;k is a �nite-dimensional subset

of H1(
k). Notice that the functional space
L

k V~h;k does not coincide with

V~h because the former includes functions which are discontinuous along the

element edges.

Then, the elementary submeshes can be used to solve the error equation, see

Eq (4), on each element 
k of the original mesh. However, the solution of such

problems requires proper boundary conditions for the error. Most of residual

type error estimators (see [7,1,17]), solve Eq. (4) prescribing the 
ux around

each element 
k, that is, solving pure Neumann problems. The prescribed

values of error 
uxes are found splitting the jump of the 
uxes of uh across

the element edges. The computation of the 
ux jumps across the edges is

expensive. The splitting procedure usually equilibrates the 
uxes around the

element and, therefore, is generally involved.

In this work, the elementary problems are solved in a straightforward manner

imposing homogeneous Dirichlet conditions for the error, along the bound-

ary of each element 
k, see [11]. That is, the approximation to the error is

prescribed to zero in all the boundary nodes of the elementary submesh. In

other words, the local problem is solved in the interpolation space V~h;k;0 :=

V~h;k
T
H1

0 (
k), whereH
1
0 (
k) := fv 2 H1(
k) such that v = 0 in @
k n (@
k

T
�N )g.

The solution of this local problem is the function "k verifying:

a("k; v~h) = l(v~h)� a(uh; v~h) for all v~h 2 V~h;k;0: (8)

Remark 3 According to the de�nition of V~h;k;0, the error is set equal to zero
on g

D
(which is a true condition because uh is equal to u on �D, up to the

accuracy of the discretization) but also on the interior element boundaries
(where it is unknown). That is, the error is arti�cially set to zero along the

(interior) interelement boundaries. Notice that the 
ux of the error can be

computed on �N and this condition is implicitly imposed in Eq. (8) via the

residual right-hand-side term.

Remark 4 Assuming that a(�; �) is a scalar product, "k is the projection of e~h
on V~h;k;0.

6



This discrete local problem leads to a system of equations

Ke
~h;k

"k = rek; (9)

where Ke
~h;k

is the sti�ness matrix resulting of discretizing a(�; �) in a basis of

V~h;k;0 which is the set of the standard �nite element interpolation functions

associated with the elementary submesh. The column vector rek results of dis-

cretizing the residual form l(�)� a(uh; �), see Eq. (8), in the same basis. The

vector "k is the expression of "k in the chosen basis. The local energy norm of

the interior estimate "k can be directly computed since

k"kk2 = a("k; "k) = "
T
kK

e
~h;k
"k = "

T
k r

e
k: (10)

Thus, since "k has its support in 
k, local and global norms are equal: k"kk =
k"kkk. Recall that the local restriction of the norm k � k to the element 
k,

k � kk, is used to obtain elementary measures of the error and to describe the

error distribution.

Once the elementary problems are solved, the local interior estimates can be

assembled to build up a global estimate " having values in the whole domain


,

" =
X
k

"k ; (11)

where, for a proper de�nition of the previous sum, the local functions "k
are continuously extended in the whole 
. The interior estimates "k and "k0

associated with di�erent elements (k 6= k0) are orthogonal because they have

disjoint supports (
k

T

k0 = ;). Then, Pythagoras theorem holds and the

norm of " can be easily computed:

k"k2 =X
k

k"kk2: (12)

Both local, "k, and global, ", interior estimates are projections of e (and also

of e~h) on the respective subspaces V~h;k;0 and
L

k V~h;k;0, which are included

in V~h (the inclusion in V~h is veri�ed because of the homogeneous Dirichlet

boundary condition, which preserves global continuity: note that V~h;k;0 � V~h
and

L
k V~h;k;0 � V~h). Consequently the norms of the interior estimates are

lower bounds of the actual and reference errors:

k"k � ke~hk � kek and k"kkk = k"kk � ke~hkk � kekk: (13)

The choice of the arti�cial boundary condition may imply that k"k << kek.
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This is a consequence of forcing the approximation " to be zero along the

interelement boundaries. Since the reference error e~h is generally nonzero in

all these points, " may be a poor approximation to e~h. In other words, inte-

rior residuals are considered in the right-hand-side term of Eq. (8) but the

information contained in the 
ux jumps is ignored.

3.3 Patch estimation and complete estimate

Once the interior estimate is computed a new contribution must be added

in order to account for the 
ux jumps. This is equivalent to improve the

error estimation by adding nonzero values in the interelement boundaries. In

this section, this is done following the same idea of the interior estimation,

precluding the direct computation of 
ux jumps and avoiding the 
ux splitting

procedure.

The interior estimate is based on solving local problems within the elements


k, k = 1; 2; : : :. But other partitions can also be used: let us consider a new

family of disjoint subdomains (�l, l = 1; 2; : : :) covering 
. Each one of these

subdomains �l overlaps a few number of elements.Moreover, these subdomains

include the interelement boundaries. In order to simplify the exposition, in

the following, the subdomains �l are called patches. Using the elementary

submeshes of Figure 2, the most natural choice for patch subdomains is to

associate them with the nodes of the mesh: each patch is associated with a

node and includes a fourth of every element sharing that node (see Figure 4

for an illustration and [11] for a detailed presentation).

Each patch submesh induces an interpolation subspace U~h;l. The space U~h;l is

associated with �l in the same way that V~h;k is associated with 
k. In order to

impose local boundary conditions e~h is approximated in U~h;l;0 := U~h;l

T
H1

0 (�l),

whereH1
0(�l) := fv 2 H1(�l) such that v = 0 in @�l n (@�l

T
�N )g. Thus, over

each patch �l, a new local estimate �l, is computed such that it belongs to

U~h;l;0 and veri�es

a(�l; v~h) = l(v~h)� a(uh; v~h) for all v~h 2 U~h;l;0: (14)

Eq. (14) can also be written in a matrix form analogous to Eq. (9)

K
p
~h;l

�l = r
p
l ; (15)

where matrix K
p
~h;l

and vectors �l and r
p
l are the expressions of a(�; �), �l and

l(�)� a(uh; �) in a basis of U~h;l;0. Thus, the norm of �l can be easily computed
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as

k�lk2 = �
T
l r

p
l (16)

and, again, the local estimates can be assembled to build up a global estimate

having values in the whole domain 
:

� =
X
l

�l: (17)

The norm of � can be easily computed, due to the orthogonality of the di�erent

spaces U~h;l;0 (patches are disjoint):

k�k2 =X
l

k�lk2: (18)

Nevertheless, the norm of � cannot be directly added to the norm of the

interior estimate " because � and " are not orthogonal. In order to easily add

the two contributions, � is forced to be orthogonal to ". That is, an additional

condition to each �l is imposed in Eq. (14). This orthogonality condition is

written

a("; �l) = 0; (19)

and can also be seen as a linear restriction to vector �l in Eq. (15):

"
TK

p
~h;l

�l = 0: (20)

Remark 5 The orthogonality condition of Eq. (20) is a linear restriction and
can be imposed either a priori, modifying the system of equations (15), or a
posteriori, solving the original Eq. (15) and modifying the result. The �rst op-

tion seems to be more natural since it corresponds to projecting on a restricted
space and it is easily implemented using the Lagrange multiplier technique.

The latter option consists on freely projecting e~h on U~h;l;0, that is, solving

Eq. (15), and then subtracting the projection of the result on span < " >.

Thus, a free projection, say �freel , is computed �rst and, then, the restricted
one, �l is obtained as

�l = �freel � a(�freel ; ")

a("; ")
" :

Thus, � is computed using the orthogonality condition of Eq. (19) or Eq. (20)

and the patch estimate � can be added to the former interior estimate " to
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build up an approximation to the reference error having values in the whole

domain 
:

e~h ' e
L
:= "+ �: (21)

This estimate is denoted by e
L
because it is obtained performing only local

computations. The global and local norms of e
L
can be easily computed:

ke
L
k2 = k"k2 + k�k2 (22)

and

ke
L
k2k = k"k2k + k�k2k = k"kk2 +

X
l

k�lk2k: (23)

Notice that in the sum of Eq. (23) subscript l ranges only the values such that

�l overlaps 
k, that is, �l

T

k 6= ;, see [11].

The global measure of the local estimate maintains the lower bound properties,

that is, ke
L
k � ke~hk. Moreover, taking into account the contribution of the

patches, the complete estimate ke
L
k is a quite good approximation of the

reference error ke~hk (and also of the actual error kek). An analysis of the

e�ciency of this estimator can be found in [12].

3.4 Assessment of the pollution error

The error estimation strategy presented above gives an estimate e
L
based on

local computations. Consequently, the error e�ects associated with the pollu-

tion [28] are ignored. The pollution error is contained in the forgotten global

part e
G
:= e~h�e

L
. In this section, a method for approximating e

G
is presented

that allows to capture the associated pollution e�ects. Babu�ska and coworkers,

see [4{6], introduced a pollution estimate which is mainly related with Green

functions. In a Boundary Value Problem, the Green functions describe the

interaction between di�erent points of the domain, consequently the pollution

that a�ects some point can be assessed by estimating the error in the approx-

imation of the associated Green function. Here, the approach is completely

di�erent: the pollution is taken into account because the estimation of the

global part of the error, e
G
, is carried out performing a global computation.

Replacing the de�nition of e
G
in Eq. (4), it can be easily found that e

G
is the

element of V~h verifying

a(e
G
; v~h) = l(v~h)� a(uh; v~h)� a(e

L
; v~h) for all v~h 2 V~h: (24)

10



Again, solving Eq. (24) is computationally una�ordable because it is a global

problem de�ned on the reference mesh. However, e
G
can be approximated

using the standard Galerkin �nite element method with the original mesh

generating Vh. That is, eG is approximated by e�
G
in Vh such that

a(e�
G
; vh) = l(vh)� a(uh; vh)� a(e

L
; vh) for all vh 2 Vh: (25)

Using Eq. (2), a simpler version of Eq. (25) is found:

a(e�
G
; vh) = �a(e

L
; vh): for all vh 2 Vh: (26)

The resolution implies a linear system of equations having the same matrix

as Eq. (2). Then, if a direct solver was employed in Eq. (2), the main cost of

solving Eq. (26) is to evaluate the right-hand-side term.

Remark 6 e
L

is the projection of e~h on a subspace included in V~h, more

precisely, this subspace is

(M
l

U~h;l;0

)
+ span < " > :

Consequently, e
G
is orthogonal to e

L
and

ke~hk2 = ke
L
k2 + ke

G
k2 � ke

L
k2 + ke�

G
k2

because ke
G
k � ke�

G
k. That is, the error estimate including the contribution

on e�
G
maintains the lower bound properties.

4 Nonlinear generalization

Fully nonlinear problem

If, the problem is nonlinear, the �rst argument of the form a(�; �) is nonlinear,
that is,

a(e+ uh; v) 6= a(e; v) + a(uh; v): (27)

This case includes general sources of nonlinearity. For instance, in mechanical

problems, both material (associated with the constitutive model) and geomet-

ric nonlinearities are accounted for.
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Consequently, the linear error equation Eq. (4), does not stand anymore. In

fact, the only available equation for the error is found re-writing Eq. (1):

a(e+ uh; v) = l(v) for all v 2 V: (28)

This equation is associated with a reference error e~h in V~h which could be

computed using the reference mesh:

a(e~h + uh; v~h) = l(v~h) for all v~h 2 V~h; (29)

This is una�ordable from a computational point of view, specially for nonlinear

problems. A method for approximating e~h by local inexpensive computations

is introduced in [13] for mechanical problems. This method follows the main

philosophy of the linear estimator presented in the previous section. Thus,

�rstly e~h is approximated solving elementary problems subject to homoge-

neous Dirichlet-type boundary conditions (interior estimate) and, secondly,

the estimate is completed by adding the contribution of a new set of approxi-

mations de�ned over a family of subdomains denoted as patches.

Nevertheless, often Eq. (29) can be simpli�ed and an approximate linear equa-

tion for the error is obtained. This is very useful because once a linear error

equation is found, the philosophy and the structure of the linear estimator

presented in the previous section can be extended for nonlinear problems in a

straightforward manner. This extension is presented in the remainder of this

section.

Tangent approximation and nonlinear error estimation

The error is assumed to be small compared with the solution. This stands

also for the reference error, that is, ke~hk << kuhk. Thus, the �rst argument

of a(�; �), which is a nonlinear function, can be properly approximated using a

tangent expansion around uh, see [9]:

a(e+ uh; v) � a(uh; v) + a
T
(uh; e; v): (30)

where a
T
(uh; �; �) is the linear approximation to a(�; �) around uh.

Replacing Eq. (30) in Eq. (28), an approximation for the error equation is

found:

a
T
(uh; e; v) = l(v)� a(uh; v) for all v 2 H1

�D
(
): (31)
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Eq. (31) is linear and very similar to Eq. (4): the right-hand-side residual

terms are identical. However, the left hand side terms are di�erent because of

the tangent form of Eq. (31).

The reference error equation can be obtained by discretizing Eq. (31). That

allows to characterize the reference error e~h as the solution of a linear problem:

a
T
(uh; e~h; v~h) = l(v~h)� a(uh; v~h) for all v~h 2 V~h; (32)

which is analogous to Eq. (7). Although the original problem and, hence, the

error equation Eq. (30) are nonlinear, Eq. (32) is a linear system of equations.

In fact, the matrix of this linear system of equations, which is associated with

the bilinear form a
T
(uh; �; �), is the standard tangent matrix. Notice that the

tangent matrix (or its approximation) is typically available in �nite element

codes. the linear system of equations (32) is still una�ordable because of its

size. Nevertheless, since Eq. (32) is linear, the linear error estimator presented

in section 3 can be fully extended to this nonlinear case. The philosophy of

the method is identical: the only di�erence is that instead of the linear error

equation (4), the tangent version of Eq. (31) is employed.

Once interior and patch estimates are computed, they must be measured and

added. Thus, in order to completely generalize the linear case, a nonlinear

energy norm must be de�ned. If the tangent form a
T
(uh; �; �) is symmetric

positive de�nite the reference error e~h computed using Eq. (32) is the projec-

tion of the actual error e on V~h following the scalar product a
T
(uh; �; �). Thus,

the norm induced by a
T
(uh; �; �) is taken to measure the error.

Remark 7 The norm induced by a
T
(uh; �; �) is analogous to the linear energy

norm de�ned in Eq. (3) and is also interpreted, from a physical viewpoint,
as an energetic quantity. The measure of the error can be understood as the
energy needed to move the system from the state described by the approximate

solution uh to the state associated with the actual solution u.

As already remarked, tangent matrices may be computed straightforward,

consequently, the tangent versions of the local problems of Eq. (9) and Eq. (15)

may be naturally implemented in the �nite element code. It is worth noting

that, in the patch estimation phase, the orthogonality condition of Eq. (19)

must be replaced by its tangent version:

a
T
(uh; �l; ") = 0 : (33)

This linear restriction can also be easily implemented using the Lagrange

multiplier technique.
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Note that the structure and the rationale of the linear estimator is fully re-

spected and, consequently, the nonlinear generalization inherits all the prop-

erties of the linear counterpart.

5 Examples

This section shows the application of the presented estimator to a highly

nonlinear softening mechanical problem. Perzyna viscoplastic model [23] is

used to obtain a regularized softening behavior. The computations account

for both material nonlinearity and geometrical nonlinearity. Strain softening

is associated with strain localization and, consequently, the use of adaptive

techniques to capture the two scales of the problem is practically unavoidable.

In the adaptive processes shown here, the Li and Bettess [20] criterion is used

as a remeshing strategy. This criterion is optimal in the sense that minimizes

the number of elements in the mesh ensuring that the global error is below a

prescribed accuracy. The quadrilateral meshes have been obtained using the

mesh generator introduced by Sarrate [25]: the resulting meshes verify the

element size prescriptions without having distorted elements.

The in
uence of pollution errors is discussed in the �rst example. The pol-

lution errors are expected to become negligible along the remeshing process

because the problem is elliptic. In the successive meshes, elements are con-

centrated in the singularity zones and, consequently, the singularities do not

pollute anymore the solution. Thus, as expected, this example shows that tak-

ing into account the pollution or not does not make a signi�cant di�erence in

the �nal results. The second example is used to show the ability of adaptive

strategies to capture unexpected solutions (complex failure mechanisms). Both

examples reproduce the compression of a plane strain rectangular specimen.

In order to induce the strain localization in the specimen, circular openings are

introduced, playing the role of imperfections. The di�erence between the two

presented examples is the number and the location of these circular openings.

In both examples the tests are driven by imposing the velocity at the top of

the specimen.

5.1 Example 1: specimen with one centered imperfection

In this example the specimen has one centered circular opening and, con-

sequently, the two axes of symmetry allow to study only one fourth of the

specimen, see Figure 5. Figure 6 shows the behavior of the tested specimen:

the collapse mechanism is formed by two symmetric strain localization bands
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and softening is observed in the macroscopic reaction-displacement curve.

An adaptive procedure has been used. First the computations are carried

out with a coarse almost uniform mesh, see mesh 0 in Figure 7. Then the

error is estimated at the end of the loading process. Using the estimated error

distribution, a remeshing criterion and a mesh generator, a new mesh is created

and the computations are carried out from scratch. This is repeated until the

estimated error is below some acceptability requirements.

Two series of adapted meshes are presented. In the adaptive procedure of

Figure 7 the error is estimated only locally (interior and patch estimate), in

the series shown in Figure 8 pollution errors are also taken into account. The

goal in both examples is to obtain an error below the 0.5%. Discretizations

corresponding to the local estimate have less elements than the ones obtained

considering the pollution error. This is because the local error is lower and,

consequently, a mesh with less elements su�ces. However, the �nal distribu-

tions of elements are very similar. In fact, the pollution error is only relevant

in the �rst mesh which is coarse and roughly uniform. Once the discretization

is re�ned where it is needed (in particular in the vicinity of the singularities)

the pollution e�ects are attenuated and become negligible. This is show in Fig-

ure 9 where the distribution of the index rk is plotted. The index rk, de�ned

as

rk :=
ke

L
kq

ke
L
k2 + ke�

G
k2
;

is close to 100% if the in
uence of the pollution error is negligible. Figure 9

shows how rk tends to be uniform and close to 100% along the remeshing

process. Thus, considering pollution error does not make a big di�erence in

the �nal results. This result was expected given the strong ellipticity of the

problem [28]. Figure 8 shows also the evolution of the error distribution along

the adaptive procedure. The distribution of the error tends to be uniform, as

expected. In the sequence of meshes of Figure 8 the prescribed accuracy is

attained in mesh 3. It is worth noting that mesh 3 has less elements than the

previous one (mesh 2) but also a lower error. In fact, although the remeshing

process can be stopped at mesh 3, a further step is carried out to show that

the remeshing criterion optimizes the mesh indicating both where the elements

must be located and how many elements must be used. Using the information

of the error distribution over mesh 3, mesh 4 is build up. Mesh 4 has 8% less

elements than mesh 3 but also an acceptable error (under 0.5%). Recall that

the remeshing criterion has a goal of 0.5%, thus, in a general sense, mesh 4

proves that the process has converged.
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5.2 Example 2: specimen with two symmetric imperfections

In this example, the specimen has two circular openings symmetric with re-

spect to the center. That allows to study only one half of the specimen, see

Figure 10. Thus, the specimen is divided in two parts by a symmetric line

containing the center (the easiest option is to choose a horizontal straight line

but many others could be employed). The symmetry conditions prescribe that

the nodes on the cut line are homologous with respect to the center point and

have opposite displacements. In order to be able to impose these conditions the

restriction of the mesh to this cut line must also be symmetric. The number

of nodes in each part of this line must be the same and their position must be

symmetric: this is an additional restriction for the remeshing procedure that

has to be prescribed along the process. Moreover, the nonlinear solvers must

be adapted to deal e�ciently with these boundary conditions, see [24].

Since the previous example demonstrates that the in
uence of taking into

account pollution errors is negligible, in this example only local estimates are

computed.

The mechanism of failure in this case is muchmore complex than in example 1.

In fact, it depends strongly on the position of the circular openings. Two cases

are examined with di�erent horizontal gaps between the openings: example 2a

and example 2b, see Figure 10.

Example 2.a (distant openings)

If the horizontal distance between the circular openings is large enough, the be-

havior is similar to the previous case. One shear band is developed aligned with

the two openings. The remeshing process, see Figure 11, leads to a mesh with

a large number of elements concentrated along a single shear band. Figure 12

shows the general behavior of the solution: the softening force-displacement

curve is similar to the previous case and the equivalent inelastic strain is con-

centrated along the shear band, both in the original and the �nal meshes of

the remeshing process. That is, the captured collapse mechanism is the same

in both meshes.

Example 2.b (close openings)

On the contrary, if the circular openings are closer, the behavior of the solution

is much more complex and the original mesh is not able to reproduce such a

mechanism.

Figure 13 shows the succession of meshes in this case. It is worth noting that,

in the �nal mesh, according to the concentration of elements, two bands are

developed. In fact, the resulting bands are not aligned with the imperfections,
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as in example 2.a, but have opposite inclination. Meshes 0 and 1 are not able to

reproduce the behavior of the actual solution because the elements in the zone

of the second band (which, as shown below, develops in a further stage of the

loading process) are too large and, consequently, the model is too sti�. Then,

the size of the elements in this zone does not allow the inception of softening.

However, the error estimator indicates that the elements must be reduced in

the zone of the second band. Thus, once the remeshing process introduces

small enough elements along the second band, in meshes 2 to 5, a second

mechanism can also be captured. Figure 13 shows also the distribution of the

error along the remeshing process, which tends to be uniform, as expected.

In the �rst meshes, the error is larger along the bands and, consequently, the

successive discretizations concentrate elements in these zones. Notice that in

the �nal stages the elements are, in fact, concentrated along the edges of the

bands, where the gradients of the displacements are large.

The evolution of the meshes in the remeshing sequence of Figure 13 suggest

that the actual complex failure mechanism is ignored by the �rst discretiza-

tions and can only be captured using the adapted meshes. This is con�rmed

comparing the deformation patterns and the force-displacement curves ob-

tained with di�erent meshes.

Figure 14 shows for the �nal situation (maximum displacements) the com-

puted equivalent inelastic strain and the deformation for di�erent meshes.

Only after two remeshing steps the mesh captures two bands. In the previous

meshes the discretization is not accurate enough and only one band is com-

pletely developed. Since large deformations are considered, once the �rst band

is completely generated, its kinematic mechanism locks; then a second band

appears as a new deformation mode with less energy. Figure 15 shows how the

force-displacement curves for meshes 0 and 1 of Figure 14 are qualitatively dif-

ferent from meshes 2 to 5. In fact the shapes of the force-displacement curves

for meshes 2,3,4 and 5 are practically identical and have two in
ections in

the descending branch. The solution given by the last mesh is obviously more

accurate than the original one because the energy of deformation (area under

the force-displacement curve) is lower. In fact, since the error is controlled in

energy norm, one can be sure that the actual curve, associated with the exact

solution, is not too far from the obtained curve (the error in energy norm is

less than 1.5% for the last mesh, thus, the di�erence of the area under the

plotted curve and the exact one would be less than 1.5%).

Thus, this example demonstrates that adaptivity based on error estimation is

an essential tool for the determination of a priori unpredictable �nal solutions.

Without this adaptive strategy, the initial mesh (mesh 0 in �gure 13) and the

resulting solution could be regarded as correct, and the second mechanism

would not be detected.
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6 Concluding remarks

A residual type a posteriori error estimator for nonlinear �nite element analy-

sis is introduced. This estimator is a straightforward generalization of a linear

residual type estimator. The nonlinear version inherits all the properties of

the linear counterpart. Thus, the obtained estimate is a lower bound of the

actual error, that is, a systematic underestimation of the error is introduced.

However, this underestimation has been found to be small. On the other hand,

this estimator can be applied to a wide range of problems discretized by gen-

eral unstructured meshes, even with di�erent element types. Moreover, the

e�ciency of the estimator does not depend on superconvergence properties

and may include the assessment of the pollution errors with a little supple-

mentary computational e�ort. The implementation of the estimator in a �nite

element code is simple because the basic operations are performed by standard

routines.

Numerical examples demonstrate the e�ciency of the estimator. The adaptive

process yields good meshes and equidistributed error. As expected for elliptic

problems, the in
uence of the pollution error tends to be negligible at the end

of the remeshing process. Moreover, adaptivity using this estimator allows to

capture complex solutions that are ignored by a �rst mesh. Only the adapted

meshes are able to properly describe the complex failure mechanisms.
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Fig. 2. (a), reference submesh mapped into (b), an element, to get (c), an elemen-

tary submesh



Fig. 3. Set of elementary submeshes and associated reference mesh



Fig. 4. Patch submesh centered in a node of the computational mesh
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Fig. 7. Remeshing process using Li-Bettesss criterion, without pollution errors, for

a prescribed accuracy of 0.5%
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Fig. 8. Remeshing process using Li-Bettesss and considering pollution errors for a

prescribed accuracy of 0.5%: succession of meshes and estimated error distributions
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Fig. 11. Remeshing process using Li-Bettesss for a prescribed accuracy of 1.5%:

succession of meshes and estimated error distributions
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Fig. 12. General solution for example 2a: Reaction versus imposed displacement,

deformation of mesh 5 and inelastic strain contours for meshes 0 and 5
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Fig. 13. Remeshing process using Li-Bettesss for a prescribed accuracy of 1.5%:

succession of meshes and estimated error distributions
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Fig. 14. Deformation ampli�ed 40 times and equivalent inelastic strain contours at

the �nal stage, for meshes 0,1,2 and 3
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