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RESUMEN

Se presentan -en este trabajo distintos métodos, basados en transformaciones de
coordenadas no-lineales, para la evaluacién de las integrales singulares y cuasisingulares que
aparecen en el Método Directo de los Elementos de Contorno. Se detecta un error inherente a
algunas de las transformaciones propuestas y finalmente se sugieren dos nuevas transformaciones
que mejoran las actualmente disponibles. -

SUMMARY

We discuss several methods, based on nonlinear coordinate transformations, for the
evaluation of the singular and quasisingular integrals that appear in the Direct Boundary
Element Method. An intrinsic error of some of these methods is detected. Two new
transformations are suggested which improve on those currently available.

INTRODUCCION

Uno de los aspectos esenciales para la aplicacién del Método de los Elementos
de Contorno (M.E.C.) en su versién “directa” lo constituye el calculo preciso de las
integrales que aparecen en los coeficientes del sistema de ecuaciones resultado de la
discretizacién del problema. Este célculo exigié desde el principio la utilizacién de
técnicas especiales, debido a las singularidades inherentes al integrando (débilmente
singulares o singularidades en el sentido de Cauchy).
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En el caso de discretizarse con elementos rectos con aproximacién constante o lineal,
es posible realizar estas integraciones analiticamente'?. Sin embargo, la extensién a
elementos curvos es, en general, inviable. Otras muchas técnicas semianaliticas, como la
suma y resta de la singularidad esencial, pueden utilizarse con una precisién aceptable.
Naturalmente, en este caso es necesario conocer el coeficiente de la singularidad para
cualquier tipo de problema e interpolacidon, lo que exige un esfuerzo analitico inicial,
y sobre todo la necesidad de incorporar programaciones diferentes para cada tipo de
problema perdiendo sistematizacién®#*.

Otra alternativa seria utilizar cuadraturas ad hoc®, o técnicas particulares, siendo
posible por ejemplo obtener ciertos elementos singulares mediante la consideracién de
casos especiales (potencial constante en teoria del potencial o desplazamientos como
sélido rigido en elasticidad). De nuevo nos encontramos con dificultades que surgen
de la necesidad de utilizar distintos tipos de cuadraturas en un mismo programa, y a
veces la imposibilidad o dificultad (caso axisimétrico) de encontrar o programar dichos
estados especiales de “deformacion”. Esta alternativa ha sido la mas utilizada.

Es de resaltar que la necesidad de este tipo de técnicas se ha hecho aun mas
imperiosa debido al salto cualitativo que han supuesto las técnicas de elementos de
contorno adaptables®’®, que imponen funciones de aproximacién de alto grado y un
gran numero de nudos situados en el interior de los elementos.

Finalmente, seria deseable la extensién de estas técnicas a situaciones
cuasisingulares como las que se producen cuando el punto de colocacién estad muy
préximo al intervalo de integracidn, lo que ocurre en los casos de elementos contiguos
con longitudes muy distintas, en el cdlculo de variables en puntos internos préximos
al contorno y sobre todo en la versién p-adaptable donde los puntos de colocacién
pueden ubicarse muy préximos a los extremos. La deseable completa libertad en la
discretizacién hace necesario pues el plantearse también este problema como uno de los
mas interesantes a resolver.

Por consiguiente, parece necesario buscar una cuadratura suficientemente robusta
capaz de acometer de forma precisa y eficiente la integracién de los términos
singulares de diversos tipos que aparecen en la formulacién del M.E.C., como los
correspondientes a las situaciones apuntadas anteriormente. En realidad, existen
cuadraturas especialmente indicadas para la integracién de distintos tipos de integrando
singular (In(r},1/7,...)°'°; sin embargo, seria necesario incluir gran cantidad de
férmulas de este tipo ya que en las mds precisas de ellas los pesos y abscisas dependen de
la posicién de la singularidad en el interior del intervalo, que es variable en la versién p-
adaptable. Ademads la dificultad de expresar ciertos integrandos (caso axisimétrico) en
la forma estandarizada para estas integrales (independientemente de que su singularidad
asintética sea conocida) hace atin menos deseable la utilizacién de estas férmulas.

La dltima posibilidad consiste en utilizar cuadraturas estdndar y transformaciones
no lineales del intervalo de integracién que conduzcan a integrandos mejor
condicionados o regulares. Varias de ellas han sido ya propuestas'!'?!*  siendo el
objetivo de este trabajo demostrar el por qué de su funcionamiento en algunos casos y
la presentacién de una propuesta consistente.
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TRANSFORMACIONES NO LINEALES EN EL CALCULO
DE INTEGRALES SINGULARES BIDIMENSIONALES

Al margen de otro tipo de posibilidades para la integracién de integrales con
singularidad tipo Cauchy, algunas de las cuales se desarrollan en °, iltimamente se
han propuesto distintos tipos de transformaciones no lineales en la idea de regularizar
el integrando en las proximidades de la singularidad!*#*3,

Las tres realizan una transformacién del espacio de integracién (7) en otro espacio
de integracién (£) sobre el que se integra.

Segiin los autores, las transformaciones tienen los siguientes objetivos:

- Agrupar los puntos de integracién en torno a la singularidad (7,), para asi evaluar
mejor las contribuciones mayores de la integral.

- Aproximar el jacobiano a cero en puntos préximos al punto singular (7,).

— Obtener variaciones suaves del jacobiano en el entorno del punto singular (,).

Analicemos dichas transformaciones, para lo cual definamos un espacio de
_ integracién (n) en un intervalo (—1,1) y un punto singular 7,, dentro de este intervalo.

Los dos tltimos tipos de transformacién'?'® exigen subdividir el intervalo de
integracién numérica (—1,1) en dos subintervalos de integracién dados por (—1,7,) ¥
(ns,1) y definir en cada uno de estos subintervalos una transformacién a otro intervalo de
integracién, de forma que £ varia entre (—1,1) cuando 7 lo hace en distintos intervalos.
En la Figura 1 se muestran las dos transformaciones indicadas.
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a) Transformacion de Telles. b) Transformaciones de Cerrolaza y Alcantud.

Figura 1. Transformaciones no lineales.

Con estas condiciones se definen las transformaciones de los subespacios de
integracién (£) a () de la forma:

n(€) = af> + b€* 4+ c£ + d para las transformaciones (11) y (12)
n(€) = af + b.tg[¢p(€)] + ¢ parala transformacién (13)
con (1)

#(6) = n.g (65 + 1)
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S = +1, sila integracién es por la derecha de 7,.

S

—1, sila integracién es por la izquierda de 7,.

Las condiciones de contorno que se imponen a cada una de las transformaciones
estdn definidas por:

CUBICA (11) BICUBICA (12) BITANGENTE (13)
??(6:5)25 73(£=S)=S ’{}(EZS):S
n(§=-5)=m n(é=-S)=mn n(§=-S)=mn
(8_”6;9-(59)“5:_5:0 (?%(fg)fz_szo n(E:_Ssa):"h‘FSE

=5 0 (€= —5&)=mn, + Se (2)

2
(%)
con £, la abscisa de Gauss de mayor valor absoluto.

Por otro lado, se define el valor de £ como la distancia al punto 7, a la que se desea
quede después de la transformacién el punto de integracién mas préximo a 7,, tanto
por la izquierda como por la derecha.

El efecto que se pretende conseguir con esta condicién es que, al integrar
singularidades del tipo (1/7), la suma de los valores de la integral por la izquierda
y por la derecha para el primer punto de integracién (que son los puntos de mayor
valor de la integral y de mds dificil precisién), tienda a anularse. En definitiva simular
la simetria implicita en la definicién de valor principal de Cauchy.

Si se representa graficamente el efecto conseguido por los tipos de transformacién
aqui definidos, se tiene la Figura 2.

Como se observa, todas las transformaciones tienden a acercar los puntos de
integracién al punto singular 7, y las transformacines del tipo cubica y bicubica hacen
que el valor de la derivada de 7{£) sea igual a cero en el punto 7,.

Por otra parte, la transformacién cdbica exigird que en el punto 7, la derivada
segunda sea igual a cero, con lo que se asegura que el punto 7, sea siempre un punto de
inflexién, aprovechando asi otra ventaja de esta transformacion, y es que el jacobiano
es aproximadamente constante en las proximidades de 7,.

En la transformacién tipo {13) no se ha utilizado la condicién de que la derivada
sea igual a cero en 7,, pero si se impone un valor de ¢ lo suficientemente pequefno
se obtiene un valor de dicha derivada préximo a cero en el entorno de n,. Tanto en
la transformacién biciibica como bitangente se han conseguido buenos resultados con
valores de ¢ del orden de

£ = 1_31661 conR = 100 a R = 1000 (3)

aunque las variaciones de R para el caso de la transformacién bitangente no son tan
decisivas como en el caso de la bicibica.
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Figura 2. Diferentes transformaciones no lineales.
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APLICACION DE TRANSFORMACIONES NO LINEALES
A INTEGRALES DE TIPO LOGARITMICO Y 1/»

En el caso de una singularidad de tipo logaritmico, el integrando puede siempre
expresarse como

I =alnr + 1, (4)

con I, una funcién regular y a el coeficiente de la singularidad intrinseca del integrando.
Si se realiza esta descomposicidn, lo que se consigue sin mas que conocer el coeficiente
de la singularidad a, la evaluacién numeérica de la integral es simple ya que I, se
integra mediante una férmula estandar de Gauss-Legendre y el término logaritmico,
bien analiticamente, bien numéricamente mediante una cuadratura tipo Berthold-
Zaborowski'?. El problema, como se indicé, es la evaluacién del coeficiente a.

Una alternativa consiste en utilizar una cuadratura de Gauss-Legendre y una
transformacién no lineal que mantenga el intervalo de integracién y que dé lugar a
jacobiano nulo en la singularidad. Efectivamente, consideremos una transformacién
cualquiera, tal que su desarrollo de Taylor alrededor de la singularidad pueda expresarse
como

n(€) = m + A(E-6&) + A(6-6) + ... (5)

de forma que el intervalo de 7 coincida con el de Gauss-Legendre (—-1,1). Con ello, el
integrando en { sera

I(§) = alnr(§)241(6 - &) + . + L(§)241(E-&) + ... (6)

Esta integral naturalmente es regular, ya que el término logaritmico estd
multiplicado por un factor potencial que se hace nulo en el mismo punto que r.

Es necesario ahora hacer la salvedad de que el integrando se ha modificado
ligeramente, al incluir el jacobiano de la transformacién n(¢). Sin embargo, el término
I, sigue siendo regular si bien quizas sea necesario un nimero de puntos de Gauss algo
superior para conseguir una precisiéon similar a la obtenida en la I, inicial.

Naturalmente, los razonamientos anteriores explican el por qué del buen
funcionamiento de todas las transformaciones anteriores ya que todas ellas o bien
obligan a un jacobiano nulo en la singularidad (Telles y Cerrolaza) o bien lo consiguen
muy aproximadamente con la condicién de ¢ bajos (Alcantud).

En la misma forma que en el caso logaritmico, un integrando con singularidad tipo
Cauchy puede escribirse siempre como

a
I = - + I, (7)
con I, regular y a el valor de la caracteristica de la integral en el punto singular (r = 0).

De nuevo ello se consigue sin mds que sumar y restar a/r al integrando. Vamos pues a
centrarnos en el calculo de la integral de 1/ o mejor ain de la integral
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1
d
I=/ 7 con-1<p<1 (8)
m—1
-1

donde ya se ha incorporado la transformacién de r al intervalo (—1,1) y se supone que
el jacobiano de la transformacién ha sido tratado, de tal forma que se incluye en el
valor de la caracteristica.

Consideremos ahora una doble transformacién no lineal a cada lado de la
singularidad (al estilo de las de Cerrolaza y Alcantud), en la forma siguiente:

m=m() = n + ar(6-1) + bi(6-1)% + c1(6-1)° + ... o)
M= m(n) = M + af+1) + b2(6+1)° + c2€+1)° + ...

Incorporando estas transformaciones a la evaluacién de (8) y utilizando la definicién
de valor principal de Cauchy de dicha integral, ésta quedara

Ns—e 1 n 1 (na—e) 1 ’
dn dn n(§)dé n2(£)d€
I = = /ALY L A
*[ —— [ = s / GEL _(/an(f)-n, (10)
Nave - 1y (ns+te

Sustituyendo (9) en (10) ésta queda

. "‘_7‘_’) (ar +2by( = 1)+ )dE /1 (az+2b,(E+ 1)+ .. )d¢
B a(§-1)+b(6-1)2+... ax(E+1)+b(E+1)2+...

7]3—1(’75+5)
(11)
Pero esta integral puede disponerse en la forma
-1
ny  (ns—e) 1
d¢ d¢
I = — — I, = , 12
/ 1 / o tha L+ I (12)
-1 n; ' (nate)

con I, de nuevo una integral regular. Si ahora se realiza la integracién numérica de I,
con intervalo de £ entre (—1,1) el resultado (en el caso de utilizar el mismo nmimero
de puntos de Gauss) es nulo debido a la simetria de ambas integrales. Sin embargo, el
valor analitico de la sumna de ambas es de forma inmediata

-1 _ _
n; (ms +€)+ 1

Si ahora calculamos el valor del limite del resultado anterior cuando ¢ — 0 es
inmediato obtener el resultado siguiente




130 E. ALARCON, M. DOBLARE Y J. SANZ-SERNA

limI, = In|2 (14)
¢—0 ay

es decir, el logaritmo neperiano del médulo del cociente entre los coeficientes del término
dominante (cuando ¢ — 0). Si por ejemplo a; = 0 el limite anterior quedaria en funcién
del logaritmo del médulo del cociente de los términos b; y asi sucesivamente. Con ello
es claro que el valor analitico de I, coincidira con el valor numeérico tan sélo cuando
los coeficientes de los términos dominantes de ambas transformaciones coincidan. En
caso contrario, existird un error en el calculo de la integral debido a la no inclusién del
término (14).

Las transformaciones de (11), (12) y (13) presentan errores de formulacién para la
integracién de la integral 1/(n—7,). Sin embargo los autores'*** incluyen para algunas
de estas integrales unos resultados con una precisién mas que aceptable. Se ha de
concluir de lo anterior que en este caso el término In |a;/a;| ha de ser pequefio.

En el caso de la transformacién de Telles la transformacién puede expresarse
también como n(€) = 7, + A( - &,)° con

1 -1
= Ty3e Y & = 1" ()
de forma que £, se obtiene invirtiendo la relacién 7, = f—'}f_—g—p
Con esta transformacién la integral singular queda como
1 1 1
dn [ 3A( - &)’ d¢

I = / — = | ——df = 3 / 15
T A AL | &g (15)

de forma que no se ha conseguido nada con esta transformaciéon respecto a una
integracién de Gauss-Legendre, salvo que £, sea nulo y se integre con un ndimero par
de puntos, pero al venir £, impuesto por la posicién de 7, no es posible conseguir esta
situacién salvo en el caso trivial de 5, = 0 que implica § = 0. Ello explica por qué
no se consiguen resultados mejores con esta transformacién que con la regla usual de
Gauss-Legendre.

En cambio, en el caso de la integracién bicibica se tiene que el cociente de los
coeficientes de los términos dominantes (cuadraticos en este caso al incluir la condicién
de jacobiano nulo en 7,) viene dado por

by (L)1 &) 8
b T (14 m)(1-&)* -8

de tal forma que cuando §, tiende a 1, lo que se consigue muy rapidamente al
incrementar el orden de la cuadratura de Gauss-Legendre utilizada, el cociente tiende
a un valor de médulo unidad. Ello explica que para cuadraturas de alto orden se
consigan resultados muy buenos, a pesar del error en la formulacidn, ya que el término
a afiadir In|by/b| tiende a ser nulo. También explica el por qué para £ creciente se
consigue antes este efecto, si bien si se incrementa sustancialmente el valor de ¢ se
compensa esta ventaja por el hecho de que la parte regular de la integral, consecuencia

(16)
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de la transformacién, se integra mucho peor al distorsionarse mucho la funcién de
transformacién.

En cuanto a la integracién bitangente, si se realiza un desarrollo en serie de Taylor
alrededor del punto 7, de la transforrnacién correspondiente, los términos dominantes
son lineales al no incluirse la condicién de jacobiano nulo. En este caso, el cociente
entre estos términos viene dado por

ay _ etgng + (b= 1)(1 - no)tgng + (1 — m,)tg[ng (L — 1))
a1 —etgnf 4 (€ — 1)(1+ no)tgng + (1 + ns)tg[nF(éa — 1))

(17)

con el mismo efecto que en el caso anterior, si bien ahora puede aumentarse mucho
més el valor de £ obteniéndose cocientes de médulo mucho més préximos a 1, sin que
se distorsione tanto el jacobiano. Finalmente, también se explica que para valores de
n mas cercanos a la unidad se consiga que los términos etgnw /2 sean mucho mayores
y con ello una cuadratura més precisa.

TRANSFORMACIONES PROPUESTAS

De todo lo anterior, buscamos una transformacién no lineal general que cumpla
los requisitos siguientes: 1) jacobiano nulo para tratar satisfactoriamente integrandos
con singularidad logaritmica; 2) transformaciones sobre doble intervalo con el mismo
valor de los coeficientes dominantes; 3) se integre en ambos intervalos con una misma
cuadratura para que se anule numéricamente las diferencias de los términos singulares
cuyo resultado analitico es el cociente (14); 4) no posea una gran distorsién, de forma
que se consiga una precisién suficiente en el cilculo de los términos regulares.

Naturalmente podemos pensar en este momento ;por qué no utilizar una tnica
transformacién para todo el intervalo en vez de una doble transformacién?. La respuesta
es que esto es posible siempre que £, = 0 y se integre con una cuadratura simétrica, de
forma que el resultado numérico de la integral I, en (12) sea nulo, como de hecho lo
es el resultado analitico al ser ahora los términos dominantes obviamente nulos por ser
una tnica transformacién. _

Pensemos, por ejemplo en una tunica transformacién cubica que cumpla las
condiciones anteriores 1) - 3). La tnica transformacién de esta forma viene dada por
n(€) = n,(1 — €%) + €3, que sin embargo produce una importante distorsién en las
proximidades de la singularidad (véase Figura 3a) debido a que presenta un extremo
en esa zona. Ello implica unos resultados muy malos por no cumplir la condicién 4)
de las expuestas. Una alternativa seria utilizar una transformacién de orden 4 con un
término libre que tienda a cumplir dicha condicién 4). De las distintas alternativas
probadas la transformacién

7€) = ne(1-€) + € (18)

ha demostrado un muy buen comportamiento ain en los casos con 7, > 0.75 para los
que se produce un maximo en el interior del intervalo (véase Figura 3b).



132 E. ALARCON, M. DOBLARE Y J. SANZ-SERNA

10 I
Transf. ciibica
(L
06 -
054
-1,0 v v v
-1,0 -0,5 0,0 0.5 1,0
Xi'
10
Transf. fe grado 4
054 o - A_/
a
5 0,0
€ Sing.=02
-1 Sing.=05
- Sing.=08
-0,54
-1 v v v v
-1,0 -0,5 0,0 0,5 1.0
Xi
1,0
Transf. piciibica
0,5
g o0
| Sing.=02
<] Sing.= 05
| Sing.=08
0,5
-1,0 v v
-1,0 -0,5 0,0 0.5 1,0
Xi

Figura 3. Transformaciones propuestas.
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Una situacién alternativa consistiria en utilizar una doble transformacién cibica,
en la linea de las transformaciones (12) y (13), pero con el término dominante igual
para ambas, es decir transformaciones del tipo

m(€) = m + B(E-1) + C(£-1)°

m(€) ¢ BE+1? + D+ PSSt (19)

Si incluimos las condiciones de contorno para 7; y 7, se pueden obtener C y D en
funcién de B, teniéndose

mE) = m + —SE-1 ~ D=1 +8) 2
m(@) = m + O - T e 1)

Si de nuevo queremos que 7; y 72 sean crecientes seria inmediato demostrar que
ha de cumplirse que

B>0 y B < -] (21)

Se han obtenido resultados precisos con B = 3[1 — |n,|]. Dicha transformacién se
muestra en la Figura 3c.

RESULTADOS

En la Figura 4a se muestran los resultados obtenidos con distintas transformaciones
para una singularidad de tipo logaritmico con 8 evaluaciones (4 puntos de Gauss para
transformaciones bicibicas y bitangentes y 8 para el resto).

De lo anterior se observa que para la integral del tipo logaritmico se obtienen
buenos resultados con cualquier tipo de transformacién, pero podemos apreciar una
mayor estabilidad de las transformaciones bictubicas qmzas debido al menor grado del
Jacobiano que incluyen en la transformacidn.

En idéntica forma se muestra en las Figuras 4b y 4c los resultados correspondientes
a las mismas transformaciones (exceptuando la de Telles que da lugar a errores hasta
2 y 3 6rdenes de magnitud superiores) para una singularidad de tipo 1/r. Como
era de esperar de lo anteriormente expuesto, existe un error apreciable para las
transformaciones de Cerrolaza y Alcantud, que se resuelve con las dos transformaciones
aqui propuestas, de las cuales la transformacién dinica de 4° grado parece conducir a
resultados ligeramente mejores. Es de resaltar la gran precisién conseguida con tan solo
8 evaluaciones, con errores maximos del 0,1 %, que se reducen al 0,0002 % cuando se
utilizan 16 evaluaciones.

Finalmente, en las Figuras 5a y 5b se representan los resultados correspondientes
a la utilizacién de la transformacién de 4° grado propuesta para la integracién de los
mismos integrandos aludidos, pero cuando el punto de colocacién se encuentra a una
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Figura 4. Integraciones singulares.
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Figura 5. Integraciones cuasisingulares.

CONCLUSIONES

135

cierta distancia del intervalo de integracién, es decir para integrales cuasisingulares.
Los resultados vuelven a ser de gran precisién, y naturalmente no tan dependientes de
la posicién de la singularidad respecto de los extremos del intervalo y si de la distancia
de dicho punto al elemento sobre el que se integra. De cualquier forma, con tan sélo
8 evaluaciones, se consiguen errores del orden del 2 % para distancias del orden de
1 % de la longitud del intervalo. Con una mejora en el orden de la cuadratura (16
evaluaciones) se consiguen errores del 0,4 % para la misma situacién.

De los resultados anteriores y de los miiltiples experimentos numeéricos realizados,

pueden extraerse las siguientes conclusiones:

— Todas las transformaciones funcionan bien para singularidades de tipo logaritmico,
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si bien seria posible obtener idénticos resultados con una simple transformacién
cuadratica con jacobiano nulo en la singularidad.

Para integrales 1/r es conveniente en cualquier caso utilizar cuadraturas simétricas.
Para singularidades tipo 1/ la transformacién propuesta por Telles no funciona.
Las transformaciones (12) y (13) presentan resultados andlogos, si bien esta dltima
es algo mas precisa y mas estable, consiguiéndose los mejores resultados para valores
de R entre 50 y 100 para esta ultima y alrededor de 1000 para la primera. En
cualquier caso es necesario un nimero importante de puntos de Gauss (84 8) como
minimo para conseguir precisiones aceptables.

Para la transformacién (13) son mejores los valores de n altos (alrededor de 0.9)
pero cuando el numero de puntos de integracién es muy elevado, estos valores de
n tan altos hacen perder precisién para singularidades préximas a los extremos del
intervalo, siendo preferible rebajar algo el valor de n.

Una simple transformacién de orden 4 que traslade la singularidad al centro del
intervalo, con jacobiano nulo en dicho punto, produce muy buenos resultados, para
las singularidades aqui contempladas, con un nimero de puntos integracién bajo
(4+4), salvo para singularidades muy préximas al extremo del intervalo (distancias
inferiores al 20 estas zonas, aunque incluso en dichas zonas los resultados pueden
considerarse aceptables.

Una alternativa asimismo wilida consiste en la utilizacién de una doble
transformacién cibica que mantenga la situacién de jacobiano nulo en la
singularidad y tal que los términos dominantes de ambas transformaciones en las
proximidades del punto singular sean iguales.

Estas dos ultimas transformaciones dan lugar asimismo a resultados muy precisos
para integrales cuasisingulares, como las que se presentan en el M.E.C. al integrar
desde puntos internos cercanos al contorno.

Para puntos de colocacién situados en extremos de elemento basta considerar los
dos elementos adyacentes al mismo como un inico intervalo y trabajar sobre ellos
con la transformacidn elegida, entre la coordenada s y la coordenada de integracién
€, para lo que serd necesario conseguir la parametrizacién en s para elementos
curvos, lo que puede suponer una cierta dificultad.

Es posible en definitiva integrar de forma muy precisa el conjunto de integrales
que aparecen en el M.E.C. con una tnica transformacién, lo que supone un ahorro
importante de tiempo de programacidn, de deteccién de errores e incluso de tiempo
de ejecucién.
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