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Abstract—In this paper a finite strip formulation which allows to treat bridges, axisymmetric shells or plate

structures of constant transverse cross section in an

gasily and unified manner is presented. The formulation is

based on Mindlin's shell plate theory. One dimensional finite efements are used to discretize the transverse section
and Fourier expansions are used to define the longitudinal/circumferential behavior of the structure. The element
used is the simple two noded strip element with just one single integrating point. This aliows 10 obtain all the

element matrices in an explicit and economical form.
bridges. axisymmetric shells and plate structures which
Hinear strip element are given.

INTRODUCTION

It is well known that the analysis of structures which
present constant material and geometrical properties
along a particular direction, can be extremely simplified
by the combined use of finite elements and Fourier
expansions to model the transversal and longitudinal
behaviour of the structure respectively. This procedure
was first used in the context of plate bending analysis by
Cheung{1,2}, who named it “the finite strip method”.
Later Cheung[3-6), Loo and Cusens(7, §] amongst many
others, extended the applications of the strip method to
cover the analysis of folded plate and bridge
structures[9). The original “plate strip elements”
developed by the referred authors were based on Kirch-
hoff’'s plate theory[1]. Therefore, the range of ap-
plicability of the method was restricted to structures
composed of “thin” elements only.

Many reinforced and prestressed concrete bridges
present components which can not clearly be classified
as “thin™ within the context of Kirchhofi's hypothesis
and the use of this theory can produce inaccurate
numerical results. This fact, together with the need of
overcoming some of the problems which Kirchhoff’s
theory presents in the finite element context (i.e. the
requirement of C(I) continuity for the displacement
variables){9], has progressively encouraged many
researchers to use Mindlin's plate theory[10} for the
development of simpler and more accurate elements for
the analysis of shell and plates. Mindlin's theory takes
into account the effect of transverse shear deformation
which it makes it valid for thick plate situations, requires
only C(0) continuity for the variables and it allows an
independent interpolation of displacemeats and slopes.

Benson and Hinton[11] extended this theory in the con~ -

text of the finite strip method for the static and dynamic
analysis of plates using the 3-noded strip element.
Ofatel12] extended the same element to deal with
straight box girder bridges.

Mindlin’s plate and shell elements worked originally
well for thick or moderately thin structures. However,
some deficiences were found when they were used to
deal with very thin situations. These problems, nowadays

Numerical examples for a variety of straight and curve
show the efficiency of the formutation and accuracy of the

fully understood, are due to the numerical overstifiness
effect (commonly known as “locking™) induced in the
stiffness matrix by the shear terms as the thickness of
the plate reduces. The simplest artifice to overcome this
problem seems to be the use of “reduced integration”
technigues by which the parasitic effect of shear is
eliminated via a subintegration of the terms of the
stiffness matrix due to shear. Applications of these ideas
have produced a wide range of new successful finite
elements for the analysis of thick and thin plate and shell
structures [13-16]. '

Suarez{17] and Ofate ef al[18] have recently studied
the reduced integration family of Mindlin plate strip
elements. They show how the finear strip element with
just one single integrating point to evalvate all integrals is
extremely simple and accurate for the static analysis of
both thick and thin plates. The objective of this paper is
to show how the linear strip element can be similarly
used with success for both straight and curved bridges
and axisymmetric shell analysis. The paper is structured
in two parts. In the first, the general strip formulation to
deal with curved and straight bridges and plates is
presented. The second part of the paper deals with
axisymmetric shell structures under arbitrary loading as
a straightforward extension of the formulation presented
in the first part.

Special attention is focused in showing the analogy
between the formulations for the different stroctural
topologies and how the strip approach allows to treat
them all in a simple and unified manner. Finally,
numerical examples which show the adequacy of the
formulation and the accuracy of the linear strip element
for the static analysis of plates, bridges and axisym-
metric shells are given.

BRIDGES AND PLATES

We will start from the most general case of a curved
bridge with circular plant formed by tronconical shell
elements like the one shown in Fig. 1. It will be shown
how the formulation for straight bridges and plates can
be considered as a particular case of the formulation
presented here below.
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1H Sign convention for resultant stesseg

Fig. 1. Sign conveation for displacements and resultant stresses in a troncoconical shell,

L1 Curved bridges

Displacement field. Consider the tronconical shell
element of Fig. 1. The three displacements of a generic
point across the wall thickness can be easily expressed in
terms of the three displacements and two rotations of the
comesponding point in the middle surface as

u(s, 8, n} = uys, &+ nd. (s, 6
0(s, 8, n) = vo(s, 6) + nbe(s, 6) (1}
wis, 8, n) = wy(s, 6)

where u,, v, and wy are the displacements of generic
point of the shell middle surface and 6, and f, the
rotations of the normal contained in the planes sn and
respectively (see Fig. 1), In Mindlin-Reissnes theory
these rotations czn be expressed as sum of the change in
slope of the middle surface before and after deformation
and an extra average rotation ¢ due to the effect of
shear[10), i.e.

v
==t

d
b=t o @

Strain field. For the definition of strains we will adopt
Washizu’s tronconical shell theory[19] which defines the

relevant strains in the local system s, 1, n (see Fig. [) as

. %
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Substituting the displacement field of eqn {1} in eqn (3) we
can write the strain vector of eqn (3) as

{5 (] @
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duy
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£y =

are the generalized strain vectors due to membrane,
bending and shear effects respectively. We have to note
that in obtaining expressions (5} we have taken:

n
(1+g)=1

and r=R, cosé.
Stresses. The resultant stresses vector corresponding
with the generalised strains of eqn (5), can be written as

ﬂz 635 =0

R, 3s

T
g={ 0 6}
Ts
where
N, M, Q
B B/ Tt o) O
Nsﬂ M\'ﬁ‘ ¢

are the resultant stresses vectors due to membrane,
bending and shear effects respectively. (For sign con-
vention see Fig. 1b.)

Stressstrain relationship. For an elastic material the
relationship between generalised strains and resultant
stresses can be easily written as

o=De (8)

with
D. 0
D= D, &)
0 D,
where for an isotropic material
1 0
_ Et v 1 0 .
Dm - 1 _ Vz 0 1 -y N
2
1 v 0
D, = Et v 1 0 .
BRIy 0 0 I-w i
2
_ EK f1 0
D=3+ n [0 1} (10)

where E is the Young modulus, » the coefiicient of
Poisson, f the shell thickness and K a coefficient to take
into account the warping of the section (K =3/6 in
rectangular sections),

Total potential energy of the sheil 1t is easy to show
that the total potential energy of the shell can be written
as

H:%”AeTadA—”Au’"bdA—”AuTtdA

—J‘Ikurpdr (11)

where u is the displacement vector of a generic point of
the shell middle surface. b and t are the body force and
distributed loading vectors acting per unit area, p is the
vector of point loads acting along a line I'and A the area
of the shell middle surface.

Finite strip formulation for curved bridges. The bridge
is divided into curved strips (see Fig. 2a). If we take k
noded strips, the displacements field inside the strip, e,

Linear strip

2. Curved bridge strip

2b Straght bridge strip

Fig. 2. Curved and straight bridges. Finite strip discretisations and local element coordinate axes.
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can be expressed as products of polynomical shape
functions in the transversa! direction and Fourier
expansions in the circular direction as

{e) o
=

where N;' and a,' are, respectively, the generalised shape
function matrix and the nodal displacement amplitudes
vector associated with node i for the fth harmonic term.
This matrices have the following form

n

E Nf[ aii

=1

(12}

" = [ug, vo, Wo, 6, 69]T (13)
NS ,
NG 0
Nif - MS{ (M)
NS
0 NG
a;! = [U:).'s U:)i-n w:?iv ﬁtSiv BIBI]T (15)

where S =sin{(([n8)/a), C =cos({(i76){e) and « the
bridge angle (see Fig. 2a).

It can be easily checked that the armonic expansions
chosen satisfy the conditions of simply supported strip
for 8 =0 and 6 = a. Thus, this formulation is valid for
simply supported bridges with rigid diaphragms at the
two ends.

The generalised strain vector can be obtained in terms
of the nodal displacement amplitudes substituting egn
(12) in (4) to give

and B. Suarez

effects for the node i and the /th harmonic term.
Expanding the force vectors in the same way as the
displacement field we can write

(b.t,p)= = g' (8'b', §'t', §'p" (19

where

S
C, 0

S" = S.' {20)
S

G

and b', t' and p' are the force amplitude vectors for the
Ith harmonic term.

Substituting eqns (8), (16), and (19) in the expressions
of the total potential energy of the strip we can write

n K
2 2 BTa"

1 r K T
i =_J’f (2 2 Bilai‘) D( )dA
2 AfNI=11=1 pr=1 =1
n K n
—” ( Y Nad )Y b dA
Af N=ii=1 =
n K T =n
_f] ( 5> N,—’ai’) S " da
At A= =) )

M=

p™dr 1)

S

where all the integrals are evaluated over the sirip area,
AS, or length T

Taking into account the orthogonal properties of the
functions §; and ¢ we can rewrite eqn (21) in a sim-

f=1i m=1

H

€= Z E, B/ a/ (16) plified form,
° ' ) R ’ n n K n K
where B/ is the generalised strain matrix for node i and 1 _1 (a YK a, - a/ Y [
the /th harmonic term, which it can be written as iy m§=:l i=1 1§=:1 R 2“1 le @)1t
22)
B where
B/ =1{ Bi, 7 a [ _
B s /5"; (B/)"DRB/rds for {=m
with Kir=""9 for 1+ m @3)
aN;
75""& 0 0 0 0
i N.' IJ -
B,.= - senags, " :Sl ——;fcosng, 0 0
N,' l'ﬂ' EN. N,‘
T o (as v senqS)C, 0 0 0
0 0 o Mg 0
as
Bii=1 0 U 0 %semﬁ& _,1_:’1115, (18)
o
IN;cos @ Nila IN; N,
_E— ; G o “r"—‘a— (E”__“COS‘t')Ci
N
0 0 Ms NS0
BL, = ds
i M :
—cos ¢ &l’iq 0 NG
r r oo
where B,.;, B,; and BY; are respectively, the generalised s the stiffness matrix of the strip ¢ of width a° connect-

strain matrices due to membrane, bending and shear

ing nodes i and j for the Ith harmonic term and
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[t/]° = J L(NJ)‘r b dA+ j J;c(N;')T t'dA
+L(N.~‘)Tp‘ ar - (24)

is the vector of forces for node, i, for the Ith harmonic
term. For more details about the load vector for different
loading cases se¢ Appendix 2.

In eqn (23) the matrix B, is identical to that of eqn (i8)
making Sf = CI ='I.‘

We can see from eqns (23) and (24) that there is not
coupling between the different harmonic terms and
therefore the stiffness matrix and Joad vectors of the
strip can be computed separately for each hormonic.

The discretised equilibrium equations for the whole
structure can be easily obtained by minimising the total
potential energy with respect to the nodal amplitude
parameters which it leads to a system of equations of the
form

K'E 1 al fl
K SRR L
K™ ila" £

Therefore, the stifiness matrix K and the load vector
f' can be computed separately for each harmonic
assembling the contributions from the different strips in
the standard manner[31] and the system of equations for
the /th harmonic term can be solved independently for
the nodal amplitudes a'. Repeating this process for all the
harmonics, the different nodal amplitude parameters can
be obtained and, subsequently, the displacements in each
point of the structure can be computed by egqn (12) and
the stresses by egns (16) and (8). ‘

Assembly of the stiffiness matrices: Coordinate trans- .

formations. The assembly of the. different stiffiness
matrices for the strips must be made in a global coor-
dinate system. This can be easily done using the coor-
dinate transformation matrix which relates the dis-
placement and forces in the local and global systems as

1!

a; T,‘da,'
—f,' = T,'Zf,'

(26)
where the bar indicates the global system and T, is the
coordinate transformation matrix which expression can be
seen in Fig. 3.

Thus, the different components of the strip stiffness
matrix in the global system can be obtained as

(K41 = TAKI T @n

or

wy =2 moToByrer 09
0

+This approximation implies that the logarithmic terms like
log rjr; which appear from the integration of some terms of the
stiffness matrix have been approximated by ((r— i+ r)
where r; and r; are the radial distances of nodes i and j of the sirip.
Use of this approximation has given excellent results in practice as
can be seen in the examples shown in this paper.

with
B¥ =BT/ 29)
Matrix B*' allows to evaluate directly the local resul-
tant stresses from the global displacements as

mn K
o= > DB¥a/

{=1i=1

(30

The “reduced integration” two noded strip element for
curved bridges. Tt is well known that to extend the
applicability of Reissner-Mindlin  theory for thin
plate/shell situations the numerical overstiffening of the
solution due to the shear effect as the thickness reduces
must be eliminated. It has been extensively shown by
many authors[11-17] that this can be easily done simply
underintegrating the terms of the stiffness matrix due to
shear using a numerical integration quadrature less than
that needed for its exact integration, the remainder of
the stifiness matrix being exactly integrated (selective
integration). In a previous publication of the authors[18]
it was shown how the linear strip plate element with just
ope Gauss point integration rule for the numerical in-
tegration of all terms of the stiffness matrix (reduced
integration) behaves weli in comparison with higher
order strip elements for the static analysis of thick and
thin plates.

Following these ideas, the reduced integration two
noded strip element for curved bridges can be derived in
a similar manner. From eqns (18) and (23) we can deduce
that for an “exact” integration of the terms of the
stiffness matrix a two points Gaussian integration rule
should be used.t

Thus, for the reduced integration linear strip element
one single integrating point suffices for 2ll terms. This
allows the stiffness matrix of egn (23) to be obtained in a
simple and explicit form a5

(K4 =5 (B1)" DBY7 G1)

where the " indicates that the different terms are

evaluated at the strip mid-point. An explicit form of
matrix B¥ is given in Appendix 1.

1.2 Straight bridges

The formulation can be easily derived from that for
curved bridges presented in the previous section. Only
details of the main differences between the two for-
mulation wiil be given here.

Displacement field. For a plane “shell” element the
three displacements of a point across the thickness can
be expressed in terms of the displacements of the middle
surface as

u(x, y, 2) = uolx, y) + 26:(x, y)

o(x, v, 2) = vo(x, ¥) + 26,(x, ¥}
W(-x, ¥ Z) = WO(I: y)

(32)

where all terms have the same meaning of those of eqn
(1) the only difference being that now the constant local
axes (x, y, z) replace the variable ones (s, 1, n)

Strain field. The strain vector can be easily obtained
from standard elasticity theory as

~{5)- {2l

(33)
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Fig. 3. Transformation matrix for curved and straight strips.
where repiacing s, 8 and n by x, v and z respectively. Also the
same sign criteria of Fig. 1b have been followed. The
Gty il stress/strain relationship is identical to eqn (8),
ax ax Finite strip formulation for straight bridges. The dis-
B At _ a6, ) placement and strain field is expressed exactly in the
€n = ay 1 &= ay ’ same way as for curved bridges (see eqn 12) and eqn (16)
Iy dv, 36, , 36, stmply replacing .the angles o and ¢ for the b_rldge length
ay | ar 6‘_y+ ax b a{td the poordxnate_ y respectively. (See Fig, 2b.) The
strain matrix B, obtained from eqns (12) and (33), takes
aw +8 now the following form
e 34)
71 aw B/=[Bl..B,,B]" (35)
B_y + 6).
where
are the corresponding generalised strain vectors for aN.
membrane, bending and shear. Note the decoupling of — 5 0 000
membrane and flexural effects at the element level, ox
which it did not occur in the curved bridge formulation B, = 0 - N_IE S 0 0 0
(see eqn 5). ‘b
Stresses. The expressions for the resultant stresses are Iz c N, C 00 0
identical to those of curved bridges (see eqn 6) simple B dr !
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00 0 °
X
B.=l 000 0 —N.-%"s, (36)
I7 aN;
0 0 ON,_b"C: -‘B_I_C‘
0 0 Mg NS 0
' ax
Bs.= Ix
00 Ni?c! 0 NG

are respectively the membrane, bending and shear strain
matrices for node i and the ith harmonic term.

It is worth noting that matrix B! for straight bridges
can be directly obtained from that for curved bridges {see
egn 17), simply substituting in eqn (18) by blr, with r
being now a large number.

Foliowing the same steps that for curved bridges the

decoupled stiffness matrix for the /th harmonic term can
be obtained by

K3 = % L {B/1” DB/ dx. @7

The expression for the Joading vector £/ is identical to
that of eqn (24). :

Transformation of the stiffness matrix to the global
axes can be done exactly in the same way as explained
for curved bridges. Moreover, if linear reduced in-
tegrated strip elements are used, the stiffness matrix can
be evaluated explicitly with just one ‘integrating Gauss
point to give v

K4 = 92—” (BT DB (38)

where the ***" indicates again values at the center of the
strip and B%' is obtained by eqn (29).

An explicit form of matrix B* can be seen in Ap-
pendix 1. Note the useful analogy, already mentioned,
which it allows to derive all the relevant matrices for
straight bridges from the corresponding expressions for
curved bridges.

1.3 Curved and straight plates

The general formulation for the analysis of curved or
straight plates can be directly derived from the for-
mulation for curved and straight bridges presented in 1.1
and 1.2 simply neglecting in all equations the membrane
behaviour of the structure. Therefore, expanding the
three main displacement variables, W, g, and 6, in the
same way as described for curved and straight bridges in
eqns (12) and (16), the corresponding finite strip plate
formulations can be obtained in a straightforward
MANNET.

Details of the formulation follow precisely the same
steps explained in 1.1 and they will not be repeated here.
The global strip stiffness matrix and load vectors for the
ith armonic term are obtained by eqn (23) or (37} with
the strain matrix B/ being now given by

Curved piate

( 0 a—af— 0

0 -ﬁi sing - —'}%%

B/= 0 -{\;L%T* %—%sinq& :
2 N 0

Straight plate

0 E;—;ri 4] A
0 0 N

B/=| 0 N & 39)
woow

If again the one point reduced integration two noded
strip is used an explicit form of all the matrices can be
easily obtained (see Appendix 1).

2. AXISYMMETRIC SHELLS

The formulation for axisymmetric shells follows very
closely the steps of Section 1 for curved bridges. For
shells under arbitrary loading the displacement, strain
and stress fields are identical to those expressed in eqns
{(1)=(10) and the total potential energy expression COrI-
responds with that of eqn (11), the only difference being
that the integrals are now taken over a whole circum-
ference.

The discretized displacement field inside each sheli
strip can be expressed in terms of the symmetrical and
anti-symmetrical contributions of the deformation as

w=3 i (N/ +N)ai

(40)
f=0i=1
where
u= [uoa Ug, Wo, gsa GB]T (41)
ail = [,qu Dg;y Wa; asp 68;]T (42)

are the displacement and nodal parameter vectors, and

N;Cf
NS, 0
N,-I = N:.C 3
0 NG
N:Si
NS,
_ NG 0
Ni' = NS 43)
0 NS
NiCe
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are the shape functjan matrices corresponding 1o Sym-
metrical and anti-symmetrical displacement fields, S =
sinlf and C; = cos /6,

To simplify the computations it us usual to evaluate
the contributions of an arbitrary non-symmetric load as
sum of a symmetrical and an anti-symmetrical part,
Therefore, we will restrict ourselves here to the study of
the case in which alf the loads are symmetrical with
respect to a plane (which for simplicity we will take as
that of 6 = 0 in Fig. 12) which implies that only matrix N/
of eqn (43) will be used. The study of the anti-symmetric
case would be identical taking matrix N;' instead of N/
and will not be presented here.

Therefore, the symmetrically acting loads will be
expanded in the form

b.t.p)= 3 (Sib,S,t,5,p") (44)
i=0
where
G
§ = G {45)
0 G
S

and all the other vectors have been defined previousiy.

Following exactly the same steps that those explained
in eqns (12)-(24) for the curved bridge case, we can
arrive easily to the decoupled system of stiffness equa-
tions for each harmonic term where the stiffness matrix
1s now given by

4]

K= wf B/"DB/rdr  for {0 (46)
i

with the generalized strain matrix defined by

B/ =[B.,.B,,B.]" @
where
N, ¢ 0 00
as
i lein M‘I _N_cosqﬁ 0 0
i “or r Yor
N, (N, N, )
. (ués— e sin ¢ 0 00
) aN;
0 0 P ]
O N ~!sin ¢ q—"! (48)
_0N:icos ¢ N, (gﬁ_]\i )
0 as  r 4 ! s r sin ¢
. VI
= ds
B_gi= N
0 —cos¢ -=f1 ¢ N

are the corresponding membrane, bending and shear
strain matrices,

Transformation of the element stiffness matrix into a
global coordinate system follows precisely the same
steps than those explained in eqns (26)-(30) for curved
bridges, with the transformation matrjx T being iden-
tical to that defined in Fig. 3, and they will not be
repeated here.

If the reduced integration two noded Strip element ig
used, one Gauss point again suffices for the evaluation, of
all integrals and an explicit form of the stiffness Matrix
can be'simply obtained. Detajis of these expressions and
of those for the loading vector t,' for different load cases
are given in Appendices | and 2. |t is interesting to note
that eqns (48) for the different components of matrix B,
can be directly obtained from the analogous expressions
for curved bridges, simply substituting, in eqn (18} Infa
by —! and making 8 =, =1, This shows again the
versatility of the general formulation and how it allows
to treat bridges, plates and axisymmetric shells in z
unified manner.

If the loading is also axisymmetric the same for-
mulation is directly applicable simply evaluating the
contribution of the zero harmonic term (i.e. making [ =Q
in eqns 48). However, a simpler formulation can be
aufomatically derived taking into account only the con-
tributions of the non zero displacements u, w and s In
matrix B,". This formulation was originally presented by
Zienkiewicz ef al [20] who were the first in suggesting
the use of the reduced integration linear axisymmetric
sheli element for this kind of probiems.

Zero energy nodes. It is well known that the use of

‘reduced integration techniques can, sometimes, excite

Spurious zerp energy modes in a single element which, if
they are compatible within a certain mesh they cap
propagate and polute the numerical solution, This fact is

of extreme importance, in particular for dynamic prob-

lems where small oscillations in the solution, not always

detectable in the static case, can be largely amplified.

One of the ways of detecting if a single element, or mesh
of elements, has SPurious zero energy nodes is perform-
ing a check in the number of zero eigenvalues of the
stiffness matrix. Any extra zero eigenvalue over the
number of degrees of freedom needed to restrain the
element from rigid body movement, is associated with a
possibly propagable zero energy mode,

In Table 1 the number of extra zero eigenvalues of
matrix K'' and K® over the number of rigid body modes
for a single linear, quadratic and cubic bridge, plate and
axisymmetric shells Strip element using different in-
legration rules are presented. We can see that for the
bridge and plate strip {both straight and curved) only the
linear strip element with the reduced integration ruje
Presents a spurious zero mode. This mode, however,
disappears if a mesh of two or more elements are cor-
sidered and the element can be considered as “safe” in
this context. For axisymmetric shells, however, the
linear element bresents with all integrating rujes a
spurious zero mode. It has been checked that for the static
case this mode is not Propagable in a mesh of two or more
elements. This is not so in the dynamic case and Wrong
oscillatory solutions can sometimes be obtained. Use of
the quadratic or cubic elements in this case overcomes this
problem.

In conclusion, a]l strip elements can be considered as
safe in the context of the static analysis of bridges,
plates and axisymmetric shell structures. The same ap-
plies for the dynamic analysis of bridges and plates. For
axisymmetric shells, however, the linear element is un-
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Table 1. Integration rules and number of zero eigenvaiues of matrix K” for differeat strip elements

GCAUSSIAN INTEGRATION RULES
FULL (F} | SELECTIVE(S REDUCED (R)
STRIP S EDUCED
ELEMENT 1w i KK K K
o—0 2 2 p 1 1 1
o—0—0 3 3 3 2 2 ?
OO OmmG 4 4 4 3 3 3
NUMBER OF EXTRA ZERO EIGENVALUES IN A SINGLE ELEMENT
STRIP BRIDGE AND PLATE STRIP K" AXISYMMETRIC SHELL ELEMENT K%
ELEMENT F S R F S R
S o D 1* 1 1 T
O0—0—0 0 b} 0 g 0 i
O C—O—O 0 0 0 C 0 0

< Non propagable in a mesh of two or more elements

+ Only propagadble in the dynamic

reliable due to the existence of an easily propagable zero

energy mode. Considerable effort has been put recently.

In trying to “incorporate” the linear element for
axisymmetric shell dynamic analysis. Thus, Ohayon and
Nicollas-Vuilierme have shown how the use of a mixed

formulation can eliminate the spurious oscillations[29]..

Use of other possibilities .within the displacement for-
mulation, like the use of internal hierarchical variables
seem promising and are currently being investigated. The
subject, however, falls outside the objectives of this
paper where we are restricted only to the static case.
Results which show the versatility of the general for-
mulation and the performance of the linear strip element
in thix context for a variety of problems will be shown in
the next sections.

Example 1. Simple supported square plate. Convergence
study '

In this example two simple supported square plates
under uniformly distributed loading with thickness/width
ratios of 0.1 and 0.01 respectively have been analysed
with different meshes of linear strip elements using full,
selective and reduced integration. Only half of the plate
has been znalysed due to symmetry. Numerical results
obtained can be seen in Fig. 4, where the nondimensional
values of the deflection and bending moments at the
center of the plate vs the number of strips have been
plotted. Results obtained using reduced or selective in-
tegration with 9 non zero harmonic terms were identical.
Also, convergence of the solution in this case is very fast
for both plate thickness. Use of full integration,
however, leads to poor convergence in the thick plate
case and to meaningless results in the thin one as expec-
ted. Similar results have been obtained for a wide range
of plate thicknesses (so far il #/L=10"") which prove
the good behaviour of the linear strip element for thick
and very thin plate analysis. More information can be
found in Ref. {18].

case

Example 2. Curved plate: Slab model of Coull and Das

This example shows the accuracy of the linear strip
element for curved plate analysis. The example chosen is
a curved thin plate simply supported at the two ends
under a point load for which experimental and numerical
results are available. The geometry of the plate, material
properties, loading position and finite strip mesh used in
the znalysis can be seen in Fig. 5. Results for the
deflection along the center of the plate obtained with the
reduced integrating linear element using 25 non zero
harmonic terms can be seen in the same figure where
experimental and theoretical results obtained by Coull and
Das[21], finite strip solutions based on Kirchhoff's
theory obtained by Thorpe[22] and Cheung{6} and finite
element solutions reported by Sawke and Meriman{23]
and Fam and Turkstra[24] for the same problem are also
shown for comparison.

Accuracy of the Iinear strip element is again notice-
able.

Example 3. Straight bridge: Simple supported concrele
slablbeam bridge oter the motorway Nueve de Julio
{Buenos Aires)

This example tries to show the adequacy of the linear
strip element for practical bridge deck analysis. The
example chosen is one of the bridges of the urban
motorway Nueve de Julio actually under construction in
the City of Buenos Alres {Argentina). The geometry of
the structure, loading position, material properties and
finite strip discretisation used in the analysis can be seen
in Fig. 6. Numerical results for the vertical deflection;
transverse bending moment and longitudinal resuitant
stress in the slab at the mid section obtained with 15 non
zero harmonic terms have been plotted in Fig. 7. The
comresponding diagrams shown in the same figure have
been extrapolated from the finite strip results which have
been marked with a circle. To assess the validity of the
numerical solution, an equilibriums check has been
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Fig. 8. Curved box girder bridge: Geometry of the structure and finite strip idealisation into 18 sirips,

performed comparing the tofal longitudinal bending
moment in the mid section with the value obtained by
using simple beam theory. The percentape of etror
obtained has been less than 2%, which can be considered
as good for practical design purposes,

Example 4. Curved bridge: Model of Cheung

The example chosen to check the behaviour of the
linear strip element for curved bridge analysis is a simple
supporied box girder bridge of circular plant under a
point load acting in the mid section over one of the webs.
The geometry of the structure, material properties and
finite strip mesh of 18 elements used in the analysis can
be seen in Fig. 8. This problem has also been analyzed by
Cheung using a Kirchhoff strip formulation[6]. Results
for the horizontal and vertical displacements in the mid
webs section for three different positions of the point
load are shown in Fig. 9. In Fig. 10 the axial resultant

stress and the radial and circumferencial bending
moments have been plotted together with some of the
Cheung resufts which are shown for comparison. 15 non
zero harmonic terms have been used in the analysis.

Example 5. Axisymmetric shells: Circular plate under
excentric point load

The reduced integration two noded axisymmetric shell
element has already been proved to behave extremely
well for the static analysis of axisymmetric shells under
axisymmetrical loading [20]. In this paper we have shown
how axisymmetric sheils can be easily treated as a parti-
cular case of a more general curved shell formulation. To
show the accuracy of the element in the context of the
analysis of this type of structures two simple demon-
strative examples have been chosen. The first is a thin
circular plate under a point load acting at a certain
distance from the center of the plate. The example is



A unified approach for the analysis of bridges, plates and axisymmeltric shells 471

.o

0,8C

0.7

W.o?

n_auj
9,40
0.504
o504

530 i .
[rie]
D‘SOJ-

w % 102 .
' 1
: o:w{
0% +”
0,40 j,
850 ]
o‘enl
ored {g-n
g3c
el 1|-:m
4:0',53
_ _ } 086
o Linear strip +ox

|
2087

15 non zero harmonic terms

Fig. 9. Curved box girder bridge: Displacements at the mid section for several loading positions.

fully described in Fig. 11, where results for the
defiection, and radial bending moment along several sec-
tions obtained with the linear axisymmetric element and
with a mesh of 8 noded isoparametric reduced integrated
Mindlin plate finite elements{13] have been shown for
comparison. The Timoshenke “exact” thin plate
solution[32} for the deflection under the load has been
also plotted. Accuracy of the linear element is again
good.

Example 6. Axisymmetric shells: Pinched cylindrical
shell

The Tast example is the classical thin cylindrical shell
under two point loads acting diametrically opposed. The
¢ylinder has rigid diaphragms at the two end sections
(see Fig. 12). This example, well known in the shell

literature, has been solved by several authors. Amongst
others, there is an “exact™ analytical double series solu-
tion due to Fiugge[26], Finite element solutions have
been reported by Ofiate et al.[16], Lindberg et al[27},
Ahmad et al[28], and many others. The sofution here
presented is probably the simplest one using only 20
linear axisymmetric shell elements. Nevertheless is
highly accurate as it is demonstrated in Fig. 11 where the
linear element results for the displacements and axial
forces along several sections using 15 non zero harmonic
terms compare well vs more sophisticated analytical and
finite element solutions.

CONCLUSIONS

In this paper it has been shown how plates, bridges
and axisymmetric shells of uniform transverse Cross




421 E. ORATE and B. Suanez

¢ j’ 2 H E l _\J::\}; ]
01 — oL TTH l
Ne LJ{

5 non zero harmonic terms

i l - | N

Mgr 0™ : zidE S
o Linear strip element

o Cheung™!

Fig. 10. Curved box girder bridge: Circumferencial resultant stress, N,, and bending moments M, and M, at the
central section.



A unified approach for the analysis of bridges, plates and axisymmetric shells

——-—-—--1.0_.—!_0.L‘J ARE E

I
D

Littl

£:10,92 10° T/m?
t= 001 m
vz 0,3

15  elements

15 non zero harmonics

O woe: 14 1072m. (Timoshenkols2])

o Linear strip element

— Finite element solution {8 noded Midlin plate element )

A ;0 A B 0
o [ "
i
1.0
2.0
W10
C ;O 42. \ & o o
T T - £ -0
T Tl T —
' ot ' 119 K—v”/
Ly
on
oo c . :°"‘-<~...~_A_ o r_/a/"’—
A A [»] —\3‘ =
o \Q-—..__H/-/
%3
-0
Mr (Txm/m}

(13}

Fig. 11. Circular thin plate under point load. Vertical deflections w, and radial bending moment, Mr, distributions
along several sections.

423



434 E. ONATE and B. Syargz

D oty C 5
RNs

B \\ liG
- 20

Exact 186
: NI
e 10
~ 20

Eract 1572

0 C
0
vEL 40
P 80
120
J %0
Exact 16424
B C
R ——— 0
vEL
5 1.0
80
120
50
Exact 4014
4
2z
Eract 047
¢
A ‘\// ]
Vit 2
=l

o Lirear element

— Exact soidton [Fiuggcmj
i

~— Reduced int Ahmacd snelt

element [Chate et al ["’3!

Fig. i2. Pincked cylindrical shell. Displacements and axial forces along several sections.

AXISYMMETRIC

]’ BRIDGES

SHELLS

Fig. 13. Different types of loading for bridges and axisymmetric shells.

section can be treated in a simple and unified form using
Mindlin’s strip displacement formulation. Maoreover, the
problem is extremely simplified if two noded linear strip
elements with a single quadrature integrating point are
used. The element, thus formulated, can deal success-
fuily with thick and thin bridges, plates and axisymmetric
shells. The unified character of the general formulation
aliows to implement very easily all the computational
aspects in a single computer program which, thus, can
deal with a wide variety of practical engineering prob-

lems. The one-dimensional nature of the analysis makes
the formulation specially suitable for its implementation
in deck computers. Current lines of research in this area
are the extension of the general formulation to deal with
skew plates and bridges, intermediate diaphragms and
continuous supports. The formulation is alse suvited for
the development of a unified approach for the dynamic
analysis of plate, bridge and axisymmetric shell struc-
tures. Extreme care, however, must be taken when deal-
ing with axisymmetric shells since the reduced integrating
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linear element presents a propagating zero energy mode
in this case. This problem has been the recent subject of
interest of research and alternative mixed formulations
which seem to overcome this difficulty have already been
suggested{259]. However, the displacement formulation
here proposed can indeed produce directly very good
results for these problems if higher order quadratic,
cubic, or hierarchical strip elements are used. Details
about this subject will be presented in a near future.
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APPENDIX 1

Strain Matrix for the linear strip element

We will present here the explicit form of the linear strip strain
matrix [B*'}* which it relates the local strip generalized strains
with the global displacements for the /th harmonic term.

For a linear two noded strip we have

(B*'} = (BY, BY']"

where [B*'}* can be written in the following general form for the
different structures studied in this paper:

Cus o, e ) 0
a a
| A
1 _A 0
27 7 0 0 ¢
A4S (=1 Sy  Ac
= (5w _.0____@___] ’
T
0 o 1 0 (a}) 0 | 0
. |
B = | 5 _AS AC (A1)
0 0 ! 0 2,—_’¢ '2F¢ f 2,’.{
(—1¥C | A (;IX_S) |_("_II__5L)
0 w1 Y aw U ) UE e
_(=1¢ P VR 0 } 0
a‘ a 2
AC c oA s b ¢
T S L N 2 B

CAS Vol. 17, No, 3—H
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where for
Curved bridges

S=sin ¢

( =cos ¢, where ¢ is the strip orientation angle (see Fig. 3)
A= Inia, where o is the angle of the bridge {see Fig. 3}

a* = width of the strip ¢

7 = radius of the center of the strip e

Straight bridges
It coincides exactly with eqn (A1) making

(1) AlF* = A = Infb with b the length of the bridge (see Fig. 1).
{2) 7 =w in the rest of the terms.

Axisymmetric shells
Identical to eqn (Al) with A=—1

Plates

For curved plates the $x 3 FB*']° matrix contains the terms inside
the dotted line in eqn (Al).

Far straight plates the same matrix applies making. A/F = Inib
and 7 == in the rest of the terms.

APPENDIX 2
Loading vectors for the linear strip

(a) Curved and straight bridges
{1y Line load acting along the bridge longitudinal direction at
node i (Fig. 134).

t/ =T (PCPS, PG, PuC Ps 801 (A2)
where
i
. C“zcosiﬁao—coéhal
a a
s .l T
S =sin— o, — sin— ag. (A3)
@ o

For straight bridges ra = b; lnla = luib; e = by and @)= b
{2) Paint load acting at 8 = a. at node i (Fig. 13b)

t/ = (PS5 P.C PS5, Pe. S, P 0T (A4)

where

= . lme
S§ = sin——=
a

and C=cos tr&a— (AS)

For straight bridges Imada = {reb.fb.
(3) Uniformly distributed loading acting in element ¢ (Fig. 13c)

afta‘

=5 .6 1.8 6.8 1.6 1,5, 087

¢ and § like in eqn (A3). o° and 7° are respectively the width
and radius of the strip evaluated at the strip mid point, For
straight bridges 7« = b and l#fa = I=/b.

(4) Self weight.

) = £ (- 00,0, - 1,0,0.07

where p° and * are the density and element thickness respec-
tively. 7, and a* like in (3) and g i5 the gravity acceleration.
For straight bridges a7 = b.

(b) Axisymmetric skells: Symmetric loading

(1) Line load along a circumference (see Fig. 13d) acting at
node i,

£0 = 2raglPun 0, Po Pe,, 0,017

7 = 2isin lag cos talP,. 0. Pon P, 0,017
l' a

(2) Point load acting at node i (see Fig. 13e)at § = ay,.

£9=2[P, 0, P.. Py, 0,017
1) =2 cos frcos legf P 0, Pl Py 0, 0"

(3) Uniformly distributed loading acting in elements {see Fip.

13f}.

£0 = apa {1, 0, ts 15, 017
t?'_f T
sin fag cos lalt, 0.t fe, 01

£l =

Self weight

(2= a“nFpg 0,0, — 1,0,0,0]"
ti=0.



