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Abstract. In this paper, we are going to present a high-order shock fitting approach based on
a cut-cell method. We formulate a suitable Constraint Optimization Problem and develop an
algorithm aiming to reconstruct the shock front represented by the zero iso-contour of a Level
Set function.

1 INTRODUCTION

In Computational Fluid Dynamics, the Discontinuous Galerkin (DG) method is of current
scientific interest due to its high-order convergence rates enabling running simulations on coarse
grids. In order to work properly, when simulating compressible flows, the method at hand must
be able to deal with discontinuities in the flow field such as shock waves. In the BoSSS-framework
the so called eXtended Discontinuous Galerkin (XDG) aka. unfitted DG (UDG) method is used
for different flows to deal with different types of discontinuities [1]. There, a Level Set function
is used to represent the discontinuity surface adding further degrees of freedom (DOF) to the
method.

Shock waves are physical phenomena that naturally arise in trans-sonic flows, where the local
Mach number exceeds 1 in certain regions [2]. The transition from super- to sub-sonic flow is a
very thin layer in the flow field in which scalar properties change drastically and are therefore
numerically challenging, especially when using high-order schemes like the DG-method. Because
of their thinness they can be modelled as discontinuity surfaces along which scalar quantities
jump.

One way of dealing with shock waves is trying to align the computational mesh with the
shock, making use of the discontinuous nature of the DG-method, which is called shock fitting.
The advantage of this approach is the preservation of high order convergence, which for some
other methods e.g. those based on artificial viscosity is not given [3]. One difficulty in this
approach is, that the position of the shock wave is generally not known and can change or
develop in time. Also complex patterns can form due to interactions of different shock waves or
reflections, thus shock fitting played a minor role in the simulation of trans-sonic flows. Recently,
new shock fitting approaches are being developed and successfully applied to 2D flows in the
context of DG methods. There ([4], [5]) implicit methods are proposed which simultaneously
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compute the numerical solutions of conservation laws and align the mesh with discontinuities.
This is achieved by an optimization algorithm and doesn’t require explicit knowledge of the
position of the discontinuity.

In our work we use a similar approach in the context of the XDG method, where we represent
the discontinuity’s position by the zero iso-contour of a Level Set function leaving the background
mesh fixed. By doing so we avoid some of the computational difficulties since we do not have to
worry about ill-shaped cells. Also for XDG methods there exists a wide range of methods [6] of
evolving interfaces in time (e.g. moving shock fronts), therefore the XDG method might have a
general potential for moving shocks.

2 Preliminaries

Our goal is to numerically solve hyperbolic PDE’s, such as e.g the Euler Equations, in the
vicinity of shocks. In order to do so we consider a general system of m ∈ {2, 3, 4, 5} inviscid
conservation laws defined on a physical domain Ω ⊂ RD

∇ · f(U) = 0 in Ω (1)

subject to appropriate boundary conditions. Here U : Ω → Rm denotes the solution of the
system and f : Rm → RD denotes the physical flux. We define the background grid as

Kh = {K1,K2, . . . ,KJ} (2)

covering the whole domain, with non-overlapping cells e.g.
⊔J

i=1Ki = Ω. Furthermore, we
denote by nΓ the normal field on the set of all edges Γ =

⋃
j∈J ∂Kj . The edges can be divided

into the inner edges Γint and outer edges Γout and the latter are further subdivided into those
where we have Dirichlet Boundary Conditions and those where we have Neumann Boundary
Conditions,

Γ = ΓN ∪ ΓD ∪ Γint, Γint = Γ \ ∂Ω. (3)

Furthermore we subdivide depending whether we have inflow or outflow Neumann Boundary
Conditions:

ΓN = Γin ∪ Γout. (4)

Using this one can then define the vector valued DG Space:

Vm
P := [PP (Kh)]

m =

{
f ∈ [L2(Ω)]m;∀K ∈ Kh : f |K ∈ [PP (K)]m

}
. (5)

in which we will approximate the solution U of our conservation law. For a field ψ ∈ C0(Ω\Γ) ⊂
V1
P we denote by

ψin := lim
ϵ→0+

ψ(x− ϵnΓ), ψout := lim
ϵ→0−

ψ(x− ϵnΓ), ∀x ∈ Γ (6)
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the inner and outer values and the jump operator by

[[ψ]] :=

{
ψin − ψout on Γint

ψin on ∂Ω
. (7)

For every cellKj one can define by {ϕj,n}1≤n≤NP
a basis of PP (Kj) and introduce the polynomial

basis vector ϕ:

ϕj = (ϕj,n)1≤n≤NP
∈ (VP )

NP , ϕ = (ϕj)1≤j≤J , Φ = (ϕ . . . ϕ︸ ︷︷ ︸
m times

)T (8)

Then the unique coordinate vector of an element g ∈ Vm
P is given as :

g ∈ Rm·J ·NP s.t. g = g · Φ (9)

In the course of this work the DG-method will be extended using a continuos Level Set φ ∈
VP ′(Ω) with polynomial degree P ′. Let ϕΩ be a polynomial basis vector of VP ′(Ω) and φ ∈ RNP ′

such that

φ = φ · ϕΩ. (10)

With this Level Set one can define the (Level Set dependent) sub-domains of our physical domain

A = Aφ := {x ∈ Ω : φ(x) < 0}
I = Iφ := {x ∈ Ω : φ(x) = 0} (11)

B = Bφ := {x ∈ Ω : φ(x) > 0}.

The (Level Set dependent) cut cell grid is then obtained by:

KX
h (φ) = {K1,Aφ ,K1,Bφ , . . . ,KJ,Aφ ,KJ,Bφ}, Kj,sφ := Kj ∩ sφ, sφ ∈ {Aφ,Bφ}. (12)

Using the above, the vector valued XDG space can be defined as:

VX,m
P := [PX

P (Kh)]
m =

{
f ∈ [L2(Ω)]m;∀K ∈ Kh : f |K∩sφ ∈ [PP (K ∩ sφ)]

m, ∀sφ

}
. (13)

For the XDG Space VX
P one obtains a basis for each sub-domain (and dependent of the level Set

φ) by multiplying every basis function by an indicator function:

ϕA = ϕ · 1A, and ϕB = ϕ · 1B (14)

Then one can write:

ϕX =

(
ϕA
ϕB

)
, and ΦX = (ϕX . . . ϕX︸ ︷︷ ︸

m times

)T . (15)

Similarly, the coordinate vector of an element g ∈ VX,m
P is given as:

g
X

∈ R2m·J ·NP s.t. g = g
X
· ΦX . (16)
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3 XDG-Method and Error Function

In the following we will define an Error Function based on the residuals obtained from the
XDG method. To obtain a XDG method one needs to first multiply every component of our
system (1) by suitable test functions v ∈ VX

P and integrate by parts in order to obtain:∮
Γ
fi(U)nΓ[[v]] dS −

∫
Ω
fi(U)∇hv dV = 0. (17)

Next, a discrete state vector and its coordinate vector can be defined as

U ≈ Uh := UX · ΦX (18)

Inserting the discrete state vector into (17), introducing a numerical flux

F̂i(U
+, U−, nΓ) ≈ fi(U) · nΓ (19)

for every component 1 ≤ i ≤ m and inserting a specific basis function ϕj,n,s one obtains the
respective residual:

ri,j,sn (Uh, φ) :=

∮
∂Kj,s

F̂i(U
+
h , U

−
h ,nΓ)[[ϕj,n,s]]dS −

∫
Kj,s

fi(Uh)∇hϕj,n,sdV = 0. (20)

Collecting all of these local residuals leads to an algebraic system

rP (Uh, φ) :=


...

ri,j,sn (Uh, φ)
...

 = 0. (21)

Let us fix the P for notational purpose and define the residual in coordinate form. Set NU :=
2 ·m ·NP · J , then r : RNU × RNP ′ → RNU ,

r(Uh, φ) := rP (Uh · ΦX , φ · ϕΩ). (22)

In an XDG method one typically wants to find a discrete solution where the residual vanishes.
As shown in [5] the residual of an DG method can vanish without having fit the interface why we
won’t use it as our primary objective function but as a constraint to our minimization problem.
As our objective function we use the so called Enriched Residual of higher degree P∗ > P
which is also used in [4] and has more sensitivity to non-aligned interfaces. So let us consider
Uh ∈ VX,m

P and the canonical injection i : VX,m
P → VX,m

P∗ . Then one can define the Enriched
Residual R : RNU × RNφ → R2·m·NP∗ ·J in coordinate form using the residual of degree P ∗

R(Uh, φ) = rP ∗(i(Uh · ΦX), φ · ϕΩ). (23)

Let us from now on start omitting the underlines and define the non-linear error function which
will serve as our objective function f : RNU × RNφ → R

f(U,φ) :=
1

2
R(U,φ)TR(U,φ) =

1

2
∥R(U,φ)∥2. (24)

Using this one can formulate the following non-linear constrained optimization problem. Find
(U,φ) such that:

f(U,φ) → min! (25)

subject to r(U,φ) = 0.
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4 Solving the Optimization Problem

Next, a method, which aims to solve the optimization problem (25) will be presented. Utiliz-
ing the theory of non-linear constraint optimization and using Lagrange multipliers one obtains
the functional L : RNU × RNφ × RNU → R which writes

L(U,φ, λ) = f(U,φ)− λ⊤r(U,φ). (26)

Then U∗, φ∗ is a first order solution if there exists a λ∗ ∈ RNU such that

∇L (U∗, φ∗, λ∗) = 0 (27)

which in more detail writes as:

∇Uf (U
∗, φ∗)− ∂r

∂U
(U∗, φ∗)T λ∗ = 0,

∇φf (U
∗, φ∗)− ∂r

∂φ
(U∗, φ∗)T λ∗ = 0,

r (U∗, φ∗) = 0

(28)

For notational purpose we write

z :=

(
U
φ

)
∈ RNz , Nz = NU +Nφ. (29)

In order to solve (27) one can apply Newtons’s method, for which the Hessian of L is needed.
The Hessian writes as

HL =

(
A(z, λ) JT

r (z)
Jr(z) 0

)
, where A(z, λ) := Hf (z)−

NZ∑
k+1

λkHrk(z) (30)

andHf , Hrk denote Hessian matrices and Jr denote Jacobian matrices of the respective functions.
Computing those Hessians is a very challenging task involving second order derivatives that are
hard to approximate. In order to circumvent this issue we follow [4] and use the Levenberg-
Marquardt method [7], replacing the Hessian with an regularized approximation:

A(z, λ) ≈ ∂R

∂z
(z)T

∂R

∂z
(z)T + γI (31)

where γ ∈ R+ is an regularization parameter. Furthermore, we only regularize the components
corresponding to Level Set DOFs, so that the approximation of the Hessian becomes

B(z) :=

(
BUU (z) BUφ(z)
BUφ(z)

T Bφφ(z)

)
(32)

where

BUU (z) =
∂R

∂U
(z)T

∂R

∂U
(z) (33)

BUφ(z) =
∂R

∂U
(z)T

∂R

∂φ
(z) (34)

Bφφ(z) =
∂R

∂φ
(z)T

∂R

∂φ
(z) + γI. (35)
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Using this approach one obtains the linear system(
B(zk) JT

r (zk)
Jr(zk) 0

)(
sk
δk

)
= −

(
∇f(zk)T + JT

r (zk)λk
r(zk)

)
(36)

where the current iterate is updated via(
zk+1

λk+1

)
=

(
zk
λk

)
+ αk+1

(
sk
δk

)
(37)

and where α ∈ [0, 1) is a step length parameter which is computed via an inexact line search
algorithm.

Line search globalization As commonly done in non linear solvers we implement an inexact
line search algorithm to find a suitable step size αk. That is, we iteratively search for the
maximal

αk ∈ {1 = τ0, τ−1, . . . , αmin}

(for some τ ∈ (0, 1)) that satisfies the condition of sufficient decrease

θk(αk) ≤ θk(0) + αkβθ
′
k(0). (38)

We use the merit function

θk(α) :=
1

2
∥R(zk + αsk)∥2 + µ(zk)

1

2
∥r(zk + αsk))∥2 = f(zk + αsk) + µ∥r(zk + αsk))∥2. (39)

Here the standard β = 10−4 is chosen and µ(zk) := 2∥ ∂r
∂U

−T
(zk)

∂f
∂U

T
(zk)∥∞ which controls how

much we want to weight the constraint.

Adaptive choice of regularisation parameter The regularization parameter γ in turn
controls how much we want to regularize our system and therefore it should be adaptive to the
change in the interface position. In other words, if we consider the last computed step as ”too
big” (∥sk∥ > σ2L) we want to have more regularization, if it we consider it ”too small” we want
less regularization. This can be achieved by the following approach

γk+1 = min{max{γ̂k+1, γmin}, γmax}, γ̂k+1 =


κ−1γk if ∥∆φk∥2 < σ1L

κγk if ∥∆φk∥2 > σ2L

γk else

. (40)

Here σ1, σ2, L need to be chosen depending on the length scales of our problem and on the basis
we use for φh. The parameter κ > 1 in turn controls how aggressive the adaptation is.

5 Results

In this section we show results for two conservation laws with a discontinuity in the solution.
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5.1 Scalar Advection

First we will showcase our method for the Space-Time formulation of the linear advection
equation which writes

∂u

∂t
+ a(t)

∂u

∂x
= 0 in Ω = [0, 1]× [0, 1], (41)

where a : [0, 1] → R is the time dependent velocity and

f(c) =

(
a(t)c
c

)
(42)

the corresponding flux. We augment this with a discontinuity in the initial value

c(x, 0) = H(0.25− x), (43)

where denotes H the Heaviside function, and we obtain a problem in which a discontinuity is
advected in time. Further, we prescribe Dirichlet boundary conditions using the exact solution

cEx(x, t) = H(s(t)− x) (44)

where the function s is given as

s(t) = 0.25 +

∫ t

0
a(t′)dt′. (45)

We will discretize this equation by using a Cartesian 10x10 background mesh. As a numerical
flux we choose the upwind flux

F̂ (c+, c−, nΓ) =

{
c−(a(t), 1)T · nΓ if (a(t), 1)T · nΓ < 0

c+(a(t), 1)T · nΓ if (a(t), 1)T · nΓ ≥ 0
. (46)

In the following we will show results for a case where a(t) is chosen as

a(t) = 3t2 − 3t+ 0.5. (47)

Thus, the exact solution features a shock. In a XDG space of order P = 0 it can be represented
exactly using the Level Set

φ(x, t) = x− s(t) = x− t3 +
3

2
t2 − 1

2
t− 1

4
, (48)

which is curved.
As the solution is constant we set the polynomial degree to P = 0 and use an ansatz for the
Level Set with 5 DOFs (x, t3, t2, t , 1). For the initial guess we use the Level Set

φ(x, t) = x− s(t) = x− 0.7t3 + t2 − 0.7t− 0.1, (49)

and compute a P = 0 solution as a starting guess which is plotted in Figure 1 (a). We run 30
iterations and observe convergence of our method. Note that we start from a zero residual while
the level Set is clearly not aligned. This is only achieved by the simultaneous minimization of
the Enriched Residual.
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(a) Iteration 0 (b) Iteration 5

(c) Iteration 10 (d) Iteration 15 (e) Iteration 20

Figure 1: Selected iterations for the scalar advection equation and opt. history.

5.2 Inviscid Burgers equation

Lastly we will apply out method onto the non-linear Space-Time formulation of the inviscid
Burgers equation which writes

∂c

∂t
+ c

∂c

∂x
= 0 in Ω = [0, 1]× [0, 1], (50)

where

f(c) =

(
1
2c

2

c

)
(51)

is the corresponding flux. Like before we augment this with a discontinuity in the initial value

c(x, 0) = 0.75H(0.25− x) + 0.25H(x− 0.75). (52)

8



Jakob Sebastian, Florian Kummer

From the Rankine Hugoniot Conditions the shock speed immediately follows to be constantly
0.5 which leads to a linear shock profile and a known Exact solution

cEx(x, t) = 0.75H(0.25 + 0.5t− x) + 0.25H(x− (0.25 + 0.5t). (53)

Using this, we prescribe Dirichlet boundary conditions. The solution can be represented in a
XDG space of order P = 0 using the Level Set

φ(x, t) = x− s(t) = x− 0.25− 0.5t. (54)

Again, we we use a 10x10 background mesh and choose the upwind flux

F̂ (c+, c−, nΓ) =

{
c−( c

++c−

2 , 1)T · nΓ if ( c
++c−

2 , 1)T · nΓ < 0

c+( c
++c−

2 , 1)T · nΓ) if ( c
++c−

2 , 1)T · nΓ ≥ 0
. (55)

We use an ansatz for the Level Set with 4 DOFs (x, t2, t , 1) in order to show that that method
is capable of finding the straight shock even though we start from a curved first guess. Thus for
the initial guess we use the curved Level Set

φ(x, t) = x− s(t) = x+ 0.2t2 − 0.6t− 0.4, (56)

and compute a P = 0 solution as a starting guess which is plotted in Figure 2 (a). We run 30
iterations and observe convergence of our method.

6 Conclusion and Outlook

Concluding, we presented an optimization algorithm which aligns a Level Set function with
the shock while simultaneously computing the solution to the problem at hand.
The algorithm was implemented for two different Space-Time problems and for each a test run
was presented. The preliminary results look promising as convergence to the desired solution
was achieved from an initial guess which was not even sub-cell accurate. We demonstrated that
the algorithm is able to detect the surface of unknown discontinuities. In future work we will
extend this method to the steady Euler Equations in 2D.
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(a) Iteration 0 (b) Iteration 5

(c) Iteration 10 (d) Iteration 15 (e) Iteration 20

Figure 2: Selected iterations for the inviscid burgers equation and opt. history.
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