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Summary. Additive manufacturing (AM) is a production method with great potential
for creating complex geometries and reducing material and energy waste. Numerical
simulations are crucial to minimize fabrication failures and optimize designs. Nevertheless,
the high computational cost of simulating the multi-scale behaviour of AM processes is a
challenge. To address this, an Arlequin-based method is proposed, which uses two distinct
meshes to capture the high thermal gradients near the melt pool: a coarse mesh for the
entire domain and a fine mesh that moves with the heating source. Additionally, a change
of variable simplifies calculations on each time step by transforming the moving fine mesh
into a fixed mesh. The proposed methodology has the potential to reduce computational
costs and improve the efficiency of AM simulations.

1 INTRODUCTION

Additive manufacturing (AM) is a new production method based on material addition.
AM brings new possibilities in geometries and shapes, as well as reduction on material and
energy wastage, which places it in an advantageous position for a sustainable industry.
AM is based on a heat source melting metal in order to form the desired geometry. Direct
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energy deposition (DED) methods are a type of AM procedures, based on continuous
addition of material powder as the heat source melts it. DED methods do not need a
closed environment to work so the size of products is only limited by the range of the
robotic tools. These processes have two main physical behaviours, each at different scales:

The micro scale refers to the behaviour near the heat source. The heat source creates a
melt pool that moves along the piece adding new material to it. This coupled fluid-thermal
physics takes place in a short time period in a small area.

The macro scale refers to the thermo-mechanical behaviour of the full piece. As the
piece is being fabricated, high thermal gradients can produce deformations. This thermo-
mechanical behaviour takes place in a long period of time and over the whole piece.

Numerical simulations are required by the AM industry in order to reduce failures in
fabrications. Simulations, both in advance and in real time, simulations can save time
and money in the design and fabrication of pieces by AM processes. The main challenge
that AM DED processes simulations pose is their computational cost, due to the intrinsic
multi-scale of the processes and the continuously growing physical domain.

The state of the art in numerical procedures for dealing with the material addition is
the use of the quiet element method or the inactive element method [1]. Both methods
use a unique mesh for the planned end piece and activate elements as the heat source
moves above them. The main disadvantage of these methods is the mesh size. As the
critical micro scale behaviours go over the whole domain, changing the zone depending
on the advance of the heat source, the mesh must be fine enough to capture them. But,
away from the heat source, there is no need for a fine mesh, so it could be coarser, what
will lead to remeshing and its subsequent problems.

To reduce the computational costs, an Arlequin [2, 3] based method is presented. To
deal with the multi-scale of the problem, the Arlequin method uses two distinct meshes:
A coarse mesh of the whole domain and a fine mesh that moves along with the heating
source to capture the high thermal gradients near the melt pool. In addition to the
Arlequin method, a change of variable is introduced to transform the moving fine mesh
in a fixed mesh so the calculations on each time step are simplified.

2 MATHEMATICAL MODEL

AM processes are driven by the effect of a strong heat source, which melts the material
in powder or wire form. The molten material cools down to solidify and forms the desired
shape. In DED processes, material and heat are supplied at the same time. This feature
brings new possibilities, as a container to build the piece is unnecessary.

The heat source affects directly to a small part of the piece, heating and forming a melt
pool. As the source moves, the melted material cools down and solidifies. In these scales,
the main physics involved in the process are heat conduction, convection and radiation,
fluid dynamics and phase change phenomena.

In a greater scale, the heat introduced by the source spreads by conduction to the whole
piece and it dissipates through its surface. This phenomenon produces heat variations
throughout time that induces deformations in shape. This mechanical behaviour coupled
with the heat variation are the main physics to consider in the macro scale of the problem.
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Different combinations of the physics involved in the process can be chosen to make a
model of the AM process. Its objective is to simulate the behaviour of a full piece over
a long time period. The multi-scale, both physical and temporal, make these simula-
tions very computationally expensive. To do affordable simulations, a simplified model is
needed.

For this macro model, only the thermo-mechanical behaviours will be taken into ac-
count. In addition to that, the thermal and mechanical problems can be decoupled. As a
starting point, only the thermal model will be considered, as the main challenges of the
problem are already faced by the thermal problem.

The partial differential equation for the thermal model can be written as follows:

ρCp
∂u

∂t
−∇ · (k∇u) = Q, (1)

where ρ, Cp and k are the material density, heat capacity and conductivity, u is the
temperature distribution solution and Q is the supplied heat source distribution. To
model heat lose through the surface of the piece by radiation and convection, the boundary
condition for the differential equation is set as:

−k ∂u
∂−→n

= (hrad + hconv)(u− uext), (2)

hrad = σε(u+ uext)(u
2 + u2

ext),

where hconv is the coefficient for convection, ε is the emissivity of the material and σ is the
Stefan-Boltzmann constant, −→n is the outwards normal vector and uext is the temperature
in the exterior. Although the term hrad depend on the solution of the problem, a classical
linear approximation will be done using the previous time step temperatures to compute
it.

Let Ω(t) be the temporal dependent domain of the piece and Γ(t) its boundary. The
weak formulation for the thermal problem (1)-(2) can be written as follows: For each time
t ∈ (T0, Tfin], find ut ∈ H1(Ω(t)), such that, ∀v ∈ H1(Ω(t)),∫

Ω(t)

ρCp
∂ut

∂t
vdx+

∫
Ω(t)

k∇ut · ∇vdx+

∫
Γ(t)

(hrad + hconv)(u
t − uext)vdΓ =

∫
Ω(t)

Qtvdx, (3)

where the superscript t denotes de temporal dependency and with initial condition uT0 =
uini for the initial time T0.

3 MATHEMATICAL PROCEDURE

The methodology that will be described in this section was developed to address the
multi-scale problem. Firstly, the Arlequin method will be considered. It will allow the
use of different mesh configurations to capture the different areas (even small and evolv-
ing) with different AM process behaviours. Secondly, the other main challenge of these
processes is the continuously growing domain. To deal with it, a change of variable will
be proposed, simplifying the calculations in each time step.
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3.1 Arlequin method

For each time t, only a small part of the domain Ω(t) has a critical behaviour. This
part moves with time, following the heat source. The use of the Arlequin method allows to
use two different mesh refinements without remeshing after each time step. This method
will be introduced hereafter for a fixed time step t. So, to simplify the notation, while
describing the Arlequin method, the temporal dependency of the domains will not be
written.

The whole domain is divided into two overlapping domains, Ω0 and Ω1, called the global
and local domains, respectively. From a function u ∈ H1(Ω), a pair of functions can be
univocally defined, u0 := u|Ω0 ∈ H1(Ω0) and u1 := u|Ω1 ∈ H1(Ω1), such that u0 = u1 in
Ω0 ∩ Ω1. Given the last condition, this process can be reversed so a function u ∈ H1(Ω)
is obtained from u0 ∈ H1(Ω0) and u1 ∈ H1(Ω1), such that u0 = u1 in Ω0 ∩ Ω1.

The Arlequin coefficients, α0 and α1, are functions on the whole domain such that
αi ≥ 0 in Ωi, αi = 1 in Ωi\(Ω0 ∩ Ω1) and α0 + α1 = 1 in Ω.

Using the ingredients introduced before, and to simplify notation, the following bilinear
and linear forms are defined:

Ai(u, v) :=
∫

Ωi
αiρCp

∂u
∂t
vdx+

∫
Ωi
αik∇u · ∇vdx+

∫
∂Ωi∩Γ

αi(hrad + hconv)uvdΓ, (4)

Li(v) :=
∫

Ωi
αiQvdx+

∫
∂Ωi∩Γ

αi(hrad + hconv)uextvdΓ. (5)

The weak form (3) can be written as:

A0(u0, v) +A1(u1, v) = L0(v) + L1(v), ∀v ∈ H1(Ω), (6)

as α0 + α1 = 1 and αi = 0 outside Ωi, and maintaining the condition u0 = u1 in the
intersection Ω0 ∩ Ω1.

This equality condition will be ensured weakly by using Lagrange multipliers. As the
solution is inside a H1 space, seems natural to also use a coupling in H1 sense. The
coupling takes place in the intersection, so the space H1(Ω0 ∩ Ω1) will be used as the
multipliers functional space. For this coupling a new bilinear form is introduced:

C(u, λ) =

∫
Ω0∩Ω1

uλ+∇u · ∇λdx. (7)

With all these ingredients, the classic Arlequin formulation can be presented: Find
(u0, u1, λ) ∈ H1(Ω0)×H1(Ω1)×H1(Ω0 ∩ Ω1), such that:

A0(u0, v0) + C(v0, λ) = L0(v0), ∀v0 ∈ H1(Ω0),

A1(u1, v1)− C(v1, λ) = L1(v1), ∀v1 ∈ H1(Ω1), (8)

C(u0, vλ)− C(u1, vλ) = 0, ∀vλ ∈ H1(Ω0 ∩ Ω1).

The previous formulation is the classic one and it can be refined. For more information
about the topic see [3]. As an intuitive clarification, the idea is to only couple on the
boundary of the intersection so the coupling in the interior comes as the result of solving
the same PDE with the same boundary conditions, saving computations in the coupling.
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3.2 Finite material addition

This method uses two meshes to capture distinct scale behaviours: a coarse mesh for
the whole piece and a local, finer moving mesh. To ensure efficiency, wise mesh selection is
essential. In this section, the use of the global mesh will be explained, while the treatment
of the moving mesh will be addressed in a subsequent section. The physical domain of the
problem grows continuously from the critical zone, allowing the local mesh to handle the
growing domain without depending on the global mesh. However, the local mesh fixed
size cannot handle the growing behaviour of the entire problem as the grown parts will
be larger than the mesh itself.

The idea to solve this challenge is to divide the full problem into a finite number of
shorter subproblems, P1, . . . ,PN . In each of them, the local mesh will be able to deal
with the growth of the domain, so the global domain will be static. Let [T0, Tend] be the
time interval for the full problem, we introduce the time divisions T 0, . . . , TN ∈ [T0, Tend]
so the subproblem Pn is defined over the time interval [T n−1, T n]. The length of these
intervals is given by the velocity of the heat source. This length is the travel time of the
source to go over the initial intersection between meshes. In figure 1 a representation of
this division is shown.

Ωn
0 Ωn+1

0

Ω1(T
n−1) Ω1(T

n) Ω1(T
n) Ω1(T

n+1)

[T n−1, T n] [T n, T n+1]

Figure 1: Representation of the position of the meshes for two consecutive subproblems.

As the global domain will be static on each subproblem, it will be denoted as Ωn
0 =

Ω0(t), ∀t ∈ [T n−1, T n]. ∀n ∈ {1, . . . , N} and ∀t ∈ [T0, Tend], the bilinear forms An0 and At1
and the linear forms Ln0 and Lt1 are defined from the non temporal dependent definitions
of Ai and Li, (4)-(5), by changing the domains Ω0 and Ω1 for its corresponding domains
Ωn

0 and Ω1(t) in the definitions. In the same way, ∀t ∈ [T0, Tend], the couplings Ct are
defined from the static definition of C, (7), by changing the intersection of Ω0 and Ω1 for
its corresponding intersection of Ω0(t) and Ω1(t):

5



Miguel Picos, Patricia Barral, Peregrina Quintela and Jerónimo Rodŕıguez

Ani (u, v) :=
∫

Ωn
0
α0ρCp

∂u
∂t
vdx+

∫
Ω0
α0k∇u · ∇vdx+

∫
∂Ωn

0∩Γ
α0(hrad + hconv)uvdΓ, (9)

Lni (v) :=
∫

Ωn
0
α0Qvdx+

∫
∂Ωn

0∩Γ
α0(hrad + hconv)uextvdΓ, (10)

At1(u, v) :=
∫

Ω1(t)
α1

(
ρCp

∂u
∂t
v + k∇u · ∇v

)
dx+

∫
∂Ω1(t)∩Γ

α1(hrad + hconv)uvdΓ, (11)

Lt1(v) :=
∫

Ω1(t)
α1Qvdx+

∫
∂Ω1(t)∩Γ

α1(hrad + hconv)uextvdΓ, (12)

Ct(u, λ) :=
∫

Ω0(t)∩Ω1(t)
uλ+∇u · ∇λdx. (13)

The subproblem Pn can be written as follows: For every t ∈ (T n−1, T n] find (ut0, u
t
1, λ

t) ∈
H1(Ωn

0 )×H1(Ω1(t))×H1(Ωn
0 ∩ Ω1(t)), such that:

An0 (ut0, v0) + Ct(v0, λ
t) = Ln0 (v0), ∀v0 ∈ H1(Ωn

0 ),

At1(ut1, v1)− Ct(v1, λ
t) = Lt1(v1), ∀v1 ∈ H1(Ω1(t)), (14)

Ct(ut0, vλ)− Ct(ut1, vλ) = 0, ∀vλ ∈ H1(Ωn
0 ∩ Ω1(t)),

setting for t = T n−1 as initial condition the solution for the same time in Pn−1 and the
initial condition of the full problem for P1 and where the superscript t indicates the time
dependency.

As the growth of the domain is supposed to be known a priori, the domains of the
consecutive subproblems is known too. This fact makes possible to plan the structure of
the mesh for the final piece such that the mesh used in each subproblem is a submesh of
it. This feature makes the computation of the initial condition of each subproblem trivial
in the already constructed part and an easy projection from the finer local mesh in the
new added elements.

3.3 Change of variable

As the strategy for the global domain is already explained, in this section the focus will
be the local domain and its corresponding temporal dependency. As it was mentioned
before, the mesh selected for this domain is a fixed in size moving mesh. The reason for
this is to follow the heat source and the growing boundary as it moves. To do so, the
spatial position of this mesh will change, following a known a priori path.

As the local mesh moves out from the global mesh of each subproblem, the total
computational domain grows. To solve a time dependent problem, a discretization of the
temporal derivative will be needed. Usually, this discretization involves the state of the
variable in previous time steps. When working with moving meshes or growing domains,
knowing the state of a variable on the previous time step becomes a challenge. Obtaining
the value of a variable on a node in the previous time step can become a challenge when
that position was not a node before. This is especially troublesome in points that were
not part of the domain in the previous time step.

To solve this issue, a change of variable is introduced in this method before the time dis-
cretization. A fixed position for the local mesh, Ω̂1, is defined. Between this static position
and the real time dependent one there is a unique translation, f(x̂; t), which transforms
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each point of the fixed domain x̂ ∈ Ω̂1 into the correspondent one of the temporal de-
pendent domain, f(x̂; t) = x ∈ Ω1(t). In the figure 2 a scheme of the transformation is
shown.

Although the possibilities for the movement of the heat source is wide, it usually moves
with constant velocity, −→v . In this case the transformation would be f(x̂; t) = x̂+−→r +−→v t,
being −→r the initial displacement between Ω̂1 and Ω1(T0).

Ω̂1

Ω1(t1) Ω1(t2) Ω1(t3)

f(x̂, t1)
f(x̂, t2)

f(x̂, t3)

Figure 2: Scheme of the transformation throughout time.

This transformation, continuous in time, can be used as a change of variable in the
integrals over Ω1(t) in (14). Functions defined over the fixed domain will be denoted with
a hat, so that û(x̂) = u(f(x̂)). The bilinear forms At1 and Ct and the linear forms Lt1
are transformed by the change of variable into Â1, Ĉt and L̂1. The temporal dependency
of the transformation introduce a convective behaviour in the bilinear form Â1. After
the transformation, only the coupling bilinear form is time dependent (coupling over
f−1(Ω0(t); t) ∩ Ω̂1) as the relative real position of the meshes changes over time.

The new formulation of the subproblem Pn, using this change, can be written as follows:
For every t ∈ (T n−1, T n], find (ut0, û

t
1, λ

t) ∈ H1(Ωn
0 )×H1(Ω̂1)×H1(Ωn

0 ∩Ω1(t)), such that:

An0 (ut0, v0) + Ct(v0, λ
t) = Ln0 (v0), ∀v0 ∈ H1(Ωn

0 ),

Â1(ût1, v̂1)− Ĉt(v̂1, f
−1(λt; t)) = L̂1(v̂1), ∀v̂1 ∈ H1(Ω̂1), (15)

Ct(ut0, vλ)− Ĉt(ût1, f−1(vλ; t)) = 0, ∀vλ ∈ H1(Ωn
0 ∩ Ω1(t)),

where the initial condition for T n−1 is obtained form the previous subproblem and the
initial condition for P1 is the initial condition of the whole problem.

By doing the changes, both of the domains become static in each subproblem and only
the coupling varies with time. As a result, the computations needed for each time step
decreases and no remeshing is necessary.

Finally, partial numerical results will be given during the conference.
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