
 
 
 
 
 
 

MATHEMATICAL PROGRAMMING TECHNIQUES FOR 
DESIGNING MINIMUM COST PIPELINE NETWORKS  

FOR CO2 SEQUESTRATION 
 

 
H. Y. Benson1 and J. M. Ogden2 

 
1 Princeton Environmental Institute and Department of Operations Research and Financial Engineering, 

Princeton University, Princeton, NJ, 08544, USA 
2 Princeton Environmental Institute, Princeton University, Princeton, NJ, 08544, USA 

 
 

 
ABSTRACT 
 
It has been proposed that the CO2 produced at sources such as fossil energy conversion facilities and 
industrial process plants could be captured, compressed to supercritical pressures, transported via pipelines 
and stored in underground geologic formations such as depleted oil and natural gas reservoirs and deep 
saline aquifers.   In this paper, we describe the initial phases of a project using mathematical programming 
techniques to find the minimum cost network for transporting the CO2 from the sources to the sinks.  A non-
linear model of the CO2 pipeline system is described, with appropriate constraints, and the lowest cost 
system is found using a state-of-the-art nonlinear optimization software called LOQO. We also present ways 
to model the behavior of the system over time, and to model the impact of uncertainties. In future work, we 
plan to extend these methods to look at the larger system of fossil energy complexes with CO2 capture and 
sequestration and distribution of hydrogen.   
 
INTRODUCTION 
 
The greenhouse gas emissions from direct combustion of fuels can be greatly reduced with the use of 
hydrogen produced from fossil sources, when hydrogen production is coupled with capture and secure 
sequestration of the resulting CO2 at storage sites such as aquifers and depleted hydrocarbon reservoirs.  The 
transportation of CO2 from fossil hydrogen plants to sequestration sites can be accomplished via a pipeline 
network.  The design of this pipeline is an important aspect of the overall energy network. 
 
In this paper, we describe a mathematical model for a pipeline infrastructure for CO2 sequestration and 
utilize various mathematical programming techniques to find minimum cost strategies for building and 
operating this pipeline network. Following previous work in the literature, the techniques we investigate are: 
• Nonlinear Programming:  The capital cost of the network depends nonlinearly on the diameter and the 

length of each pipe and its flow rate.  We use a nonlinear programming solver to find the lowest cost 
solution, subject to constraints on the flow rates over time from the sources and to the sinks. 

• Stochastic Programming:  Some of the sequestration site characteristics, such as maximum flow rate, 
permeability and storage capacity, may have large uncertainties.  Moreover, there is some probability of 
leakage out of the reservoir.   In order to handle these uncertainties, we investigate work with a 
stochastic framework, whenever probability distributions for the uncertain variables can be identified.   

• Dynamic Programming:  This is another technique that allows us to answer questions about how the 
flow over the network evolves over time.  For example, we could specifically consider the optimum 
order in which to bring the sequestration sites online (should nearby, small sites be used first, or larger 
more distant sites), and backup strategies for rerouting CO2 flows in the case of leakage in the network. 

 



As mentioned above, these approaches have been widely discussed in literature.  Nonlinear programming 
formulations of models for water distribution networks and oil and natural gas pipelines are given in [8], [3], 
and [4].  In fact, problems that arise in fossil fuel networks are, in principle, the reverse of designing a CO2 
sequestration network.  For a CO2 sequestration network, the sources provide the “demand” for 
sequestration, and the sinks provide the finite “supply” of capacity.  The major difference between the 
models in previous literature and the one we consider is the cost function, which is customized for the case 
of CO2 sequestration.  The formulation for the cost function will be given in Section 3, and further details 
can be found in [9]. 
 
There are different approaches presented in [6], [3], and [5] to solve the pipeline optimization problems.  [6] 
uses a linearization of the model, [3] uses a Sequential Unconstrained Minimization technique (SUMT), and 
[5] uses a global optimization approach.  In this paper, we are proposing using a state-of-the-art nonlinear 
optimization software called LOQO [10], which uses an infeasible interior-point method approach for 
finding local optima for nonconvex, nonlinear optimization problems.  As shown in [1], it is particularly 
suited for solving large-scale sparse problems, and it is quite robust at working with complicated objective 
functions.  The network problems that arise in CO2 sequestration are indeed quite sparse and the objective 
(cost) function is nonconvex and nonlinear.   As we consider uncertainties in the system and propose a 
stochastic framework consisting of many possible scenarios, the problems become quite large in order to 
represent as many situations as possible.  Therefore, we feel that LOQO is a good tool for approaching CO2 
sequestration pipeline design problems, and the examples we present in the upcoming sections will 
underline this idea. 
 
We have also included a discussion of a dynamic programming approach for designing the optimal pipeline 
network for CO2 sequestration.  This technique has been widely used in pipeline design, and a good survey 
can be found in [2].  It is particularly useful for answering specific questions such as which of the sinks to 
bring online first.  For the current state of our model, however, we found that a nonlinear programming 
approach was quite sufficient and include the discussion of dynamic programming solely for completeness.  
 
In future work, we plan to extend these methods to look at the larger system of fossil energy complexes with 
CO2 capture and sequestration and distribution of hydrogen.   
 
 
DESIGN PROBLEMS IN OPTIMIZATION 
 
Many optimization problems are termed design problems.  In such problems, the constraints would allow 
infinitely many designs.  The objective function that is optimized (in our case, the cost of the CO2 pipeline 
network) selects one design out of the design space (in our case, the lowest cost CO2 pipeline network).  
Many of the design variables are zero in the optimal solution.  These represent components that are not built.  
Variables that are non-zero in the optimal solution are “built” and the values of these variables give 
appropriate “sizing” of the pipeline segments.  Our model starts with all of the possible connections between 
the sources and the sinks in place (e.g. Figure 1(a)), and uses mathematical programming methods to find an 
optimal solution that indicates which connections should actually be built and utilized to achieve the lowest 
overall cost of CO2 disposal (e.g. Figure 1(b)). 
 
 
A NONLINEAR OPTIMIZATION MODEL FOR CO2 SEQUESTRATION 
 
The optimization model that we propose is one that considers the pipeline capital cost for a CO2 
sequestration network. The cost function is minimized subject to four sets of constraints:  

1. conservation of mass at the sources,  
2. requirement that the total flow into each sink during any one time period cannot exceed a maximum 

amount allowed by the physical characteristics of that sink, 
3. flow balance at the intermediate nodes, and 
4. requirement that the total flow into each sink throughout the lifetime of the system cannot exceed the 

total capacity of the sink.  
 



This approach takes into account the lifetime of the pipeline and the sequestration site and allows for trunk 
lines to consolidate flow on certain routes.  The model has the following form:   
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The variable sijt is the flow from source i to sink j at time t, Lij is the distance between source i and sink j, Qi 
is the amount of CO2 at source i, smaxj is the maximum flow into sink j, scapj is the total capacity of sink j, 
O is the set of sources, D is the set of sinks, and T is a discretization of the lifetime of the system.  The 
objective function, NPV(s,L), uses a net present value of the cost of the pipeline over the lifetime of the 
system.  Further details about the cost function appear below. 
 
In the above model, R is the set of intermediate nodes.  Using intermediate nodes allows several smaller 
flows to be combined into a larger (and possibly cheaper) flow at these nodes.  We can then accommodate 
trunk lines in our pipeline network.  We will take the approach of determining beforehand the number of 
intermediate points to be used, and the locations of these intermediate points are variables in our model.  
Note that especially for a large network, determining the number of intermediate nodes is an intractable 
problem—in fact, in its most general form, it is the Steiner network problem which is NP-complete [7].  
 
In the model presented above, the lifetime of the pipeline and especially the useful capacity of the reservoir 
have important effects on the system economics. For example, if a given reservoir has a small capacity, it 
will be used up in only a few years, and no more CO2 can be sent there. The pipeline connected to this sink 
will be useless for CO2 disposal. When the sink capacity is considered, we need to be able to balance the 
cost spent on a certain pipe with the length of time it is in use.  It may be more advantageous for a network 
to utilize a more distant, but larger capacity, sink if it leads to an increased lifetime for the pipeline network. 
 
In this model, the linear constraints can be easily handled by any solver.  The cost function, presented below, 
is nonlinear and nonconvex and requires the use of a robust nonlinear solver. 
 
The Single-Period Cost Function 
 
The cost function that we use depends nonlinearly on the flow over the pipe and its length: 
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where C0, s0, and L0 are constants.  This cost function represents the cost for one time period, t.  Further 
details on how this cost function was formulated and the particular constants involved can be found in [9]. 
 
Multi-period Cost Function for Sinks with Capacities  
 
We use a Net Present Value (NPV) approach in our cost function to compute total cost over the lifetime of 
the system: 
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where d is the discount rate (taken to be 0.12 in our models).  Note that by using this objective function, we 
are favoring using the capacity of a sink over as long a period of time as possible. 
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HANDLING UNCERTAINTIES IN THE SYSTEM
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each scenario while minimizing the expected cost over all of them.  Clearly, the more scenarios generated, 
the better the decisions will be on how to design the optimal network.  The model we work with in this 
stochastic framework is 
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where E(NPV(s,L)) is the expected Net Present Value computed over all scenarios, Ω is the set of all 
scenarios, and all the flow variables and all the data are now indexed also by scenario. 

 
The specific example we consider here is that the sinks in Figure 1(a) have uncertain total capacities.  We 
will assume that the capacities of sinks one and two are uniformly distributed between 0 and 15 and the 
capacity of sink 3 is uniformly distributed between 0 and 30.  We stipulate that the lifetime of the system 
should be at least 10 years and generate 100 scenarios, each with a total sequestration capacity of at least 30 
units.  Solving this model gives that the scenarios with larger capacities for sinks one and two send very 
little flow to sink three as it is farther away, and scenarios with smaller capacities for sinks one and two rely 
heavily on sink three.   
 
The example above is fairly simple, but illustrates the power of the optimization technique used.  With 100 
scenarios, the model has 6000 variables and 2519 constraints (after preprocessing).  The solution time for 
this model is 7 seconds on a machine with a 400MHz CPU.  In fact, the optimization approach presented 
here has been successfully used to solve similar problems in the financial sector that have millions of 
variables and constraints.  In all of these models, more complicated probability distributions can be used or 
the nonlinear solver can be connected to simulation software.   
 
 
USING DYNAMIC PROGRAMMING TO MODEL FLOW OVER TIME 
 
Another way to think about the problem of sinks with capacities is to consider the allocation of available 
capacity to yearly usage over the lifetime of the pipeline network.  Such a problem can be handled using the 
standard optimization technique of Dynamic Programming.  The resulting problem is recursive, and it is 
solved starting at the end of the lifetime and working back to time period 1. 
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where Cost(s,L) is the cost for the current time period t, with flows sijt, and sj is the total flow into sink j.   
 
Using dynamic programming is a fairly classical approach in pipeline design, and a good survey of the 
progress of the last several decades is provided in [2].   At this stage in our study, we prefer using a 
straightforward nonlinear programming approach as it seems to work quite well.  In fact, we wrote a piece of 
code to implement the recursion given by (3) and were easily able to verify the results from LOQO as being 
the global optimum on this small problem presented in Figures 1(a) and 1(b).   



CONCLUSION 
 
We have presented here mathematical programming techniques that can be used to build and solve models 
representing a CO2 sequestration network.  Preliminary numerical results were also presented.  The work 
that is done follows closely on the footsteps of previous work in pipeline design, as outlined in [2], [3], [4], 
[5], [6] and [8].  There are two main contributions of this study:  (1) we bring the state-of-the-art modeling 
and optimization technology into solving such problems.  The solver used in our study, LOQO, has been 
documented [1] as a leader in large-scale nonconvex nonlinear optimization, and (2) we incorporate a 
nonconvex nonlinear objective function to represent the cost of building and operating a pipeline for CO2 
sequestration. 
 
An important future consideration here is to bring real-world constraints into our problem.  Besides the 
uncertainties that were mentioned in the previous section, we also need to consider incorporating 
geographical concerns into the mathematical model.  For example, the location of existing rights of way may 
determine the actual length and location of the pipeline. This issue can be handled by using a look up table 
for the distances between sources and sinks along rights of way, replacing the Euclidean length computation 
that is currently used in the model.  Pipeline capital costs reported in the literature vary widely depending on 
the terrain and location. These variations could be added to a geographic specific model.  
 
There are two further steps in our study.  The first is to apply our techniques to actual data for possible CO2 
emission sites and sequestration sites.  The second is to introduce the concept of larger scale fossil energy 
complexes with hydrogen production and CO2 capture into the model and look at a more general framework 
as described in [9]. 
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