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Abstract. The analysis of standardized low cycle fatigue (LCF) experiments shows that the
failure times widely scatter. Furthermore, mechanical components often fail before the determin-
istic failure time is reached. A possibility to overcome these problems is to consider probabilistic
failure times. Our approach for probabilistic life prediction is based on the microstructure of the
metal. Since we focus on nickel-base alloys we consider a coarse grained microstructure, with
random oriented FCC grains. This leads to random distributed Schmid factors and different
anisotropic stress in each grain. To gain crack initiation times, we use Coffin-Manson- Basquin
and Ramberg-Osgood equation on stresses corrected with probabilistic Schmid factors.
Using these single grain crack initiation times, we have developed an epidemiological crack
growth model over multiple grains. In this mesoscopic crack percolation model, cracked grains
induce a stress increase in neighboring grains. This stress increase is realized using a machine
learning model trained on data generated from finite element simulations. The resulting crack
clusters are evaluated with a failure criterion based on a multimodal stress intensity factor. From
the generated failure times, we calculate surface dependent hazard rates using a Monte Carlo
framework. We compare the obtained failure time distributions to data from LCF experiments
and find good coincidence of predicted and measured scatter bands.

1 INTRODUCTION

Fatigue is the process under which metals degrade under cyclic load and thereby fail after a
given number of load cycles with load amplitudes well below the ultimate tensile stress (UTS)
[28]. Here, UTS is defined as the load that leads to immediate failure. Low cycle fatigue (LCF)
stands for cyclic fatigue at load amplitudes that lead to failure within a few to several thousands
of load cycles. In such processes, plastic deformation of the material play a pivotal rôle.
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The microstructure of a conventionally cast metal consists of microscopic grains, in which
atoms are organized in crystallographic lattices. In the lattice structure, one dimensional lattice
defects can travel under the influence of cyclic loads. For such traveling dislocations, the acti-
vation energy required is lowest along certain slip systems, i.e. planes of densest packing and
directions on the planes in the crystal’s lattice structure [16]. This points to a decisive influence
of the local orientation of grain structures. As the latter acquire random orientation during the
solidification process in a conventional cast, fatigue processes that depend on grain orientation
become random processes themselves [5, 7, 8, 15].

This is especially true for Nickel (Ni-) based superalloys as are applied in high temperature
applications like gas turbine design [32, 34]. Superalloys often come with a comparatively
coarse grain structure, which prevents homogenization effects at scales which are relevant for
the design. Furthermore, the elasticity constants of Ni-based superalloys are highly anisotropic
[28] and thereby enhance the effect of a statistical scatter of LCF lifetime, as the local elasticity
constants contribute to the calculation of intragranular stress state.

That the LCF lifetime is subject to a high level of statistical scatter has been observed for
a long time. In [29, 31], some of the authors proposed an empirical local model for low cycle
fatigue on the basis of a Poisson process model. This line of research has been applied to gas
turbine design [30, 31], shape optimization [2, 10, 14, 13, 12] and tolerance design [24]. Further
developments include notch support factors into the model [25, 19], see also [1, 21, 22, 23, 35] for
related approaches. While these empirical models have been successfully tested experimentally,
they lack a justification based on the underlying micro-mechanical phenomena.

In [11] some of the authors proposed a model based on the Schmid factors that model the
maximum shear stress on any crystallographic slip system depending on its relative orientation
to the stress tensor. This model has been subsequently extended considering also the local
anisotropy of the metal’s elastic constants [8, 5, 7, 6]. A model purely based on single grain
probability of failure (PoF), defining a metallic structure as failing when the first grain is cracked,
leads to a major underestimation of the statistically observed scatter. The mathematical reason
for the failure is the narrowing in effect of extremal value distributions [4] while the physical
reason can be associated with the experimental definition of a technically relevant mesoscopic
crack that extends over several microscopic grains.

Crack percolation modeling [3] thereby is a constitutive part of any successful physics based
model for the scatter of the number of cycles to (mesoscopic) crack initiation. The model pre-
sented in [27] includes multi grain crack percolation and in [26] this model is refined and tested
extensively against experimental data. These models however do not model any interaction be-
tween a crack already formed in one grain which will influence the crack formation in neighboring
grains as loads are locally re-distributed from the cracked grain to the adjacent grains.

In this work, we thus undertake an effort to model such interaction effects in a physics
based probabilistic model of LCF. To this aim, we perform finite element (FEM) simulations
[9] modeling the influence of a intragranular crack in a crystal with random orientation on the
shear stress on randomly oriented slip systems on the other side of the grain boundary. In this
way, we extract data on the relative increase or decrease of these stresses. Based on this data,
we train a gradient boosting machine [18] that is able to predict these stress deviations with
respect to the stress state in the same grain with an non cracked neighbor grain on the basis of
the in total six Euler angles of both grains.
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The probabilistic grain-micostructure model we employ consists of random Voronoi tessela-
tions [33], where we equip each Voronoi cell with a crystal orientation. Our model starts with
the single grain crack formation model up to the time, where the first grain is cracked. There-
after the stresses of neighboring grains are corrected according to our machine learning model,
which (almost always) leads to an accelerated consumption of the remaining life. This adds an
epidemiological aspect to the model. In this way, clusters of cracked grains spread more rapidly
as compared to the percolation model to the size of a technically relevant crack, which leads to
a slightly reduced scatter bands. Here the notion of technically relevant cracks, following [17],
are based on multiaxial critical stress concentration factors.

Finally, we calibrate this epidemiological model with data from isothermal LCF experiments,
which shows a reasonable prediction of the scatter band after an adequate fitting of the model’s
parameters.

FEM-Simulations

Voronoi Tesselation Probebalistic Schimd Factors Corrected Stress

ML-Model

K Factor

Fitting
MC

Figure 1: Overview of the Modeling Process. The blue steps are in am Monte Carlo loop.

Our paper is organized as follows: In Section 2 we recapitulate the model of random Schmid
factors. The following Section 3 presents the anisotropic FEM-simulations of two adjacent grains,
one of which is cracked. This section also discusses the training of the deep neural network to
predict Schmid factors based on the orientation of both grains. Section 4 then describes our
epidemiological percolation model, which is fitted and compared to experimental data in Section
5. We end with some concluding remarks in Section 6.

2 PROBABILISTIC SCHMID FACTORS

Due to the crystalline structure of metals, the elastic properties of individual grains are
directional. The orientation of the grains influences both the anisotopic stress and the orientation
of the slip systems. In a non-textured polycrystal, the orientation of the grains is randomly
distributed. The orientation of a grain can be described by three Euler angles in the Bungee
convention (φ1, θ, φ2). Each angle represents a rotation around the default crystal coordinate
axes. Therefore the rotation can be represented as a 3× 3-matrix

U(φ1, θ, φ2) =

c(φ1)c(φ2)− s(φ1)c(θ)s(φ2) −c(φ1)s(φ2)− s(φ1)c(θ)c(φ2) s(θ)s(φ1)
s(φ1)c(θ) + c(φ1)c(θ)s(φ2) −s(φ1)s(θ) + c(φ1)c(φ2) −s(θ)s(φ1)

s(θ)s(φ2) s(θ)c(φ2) c(θ)

 , (1)

where s and c stand for sine and cosine. It is assumed that the initiation time of a crack in a
grain depends on the maximum shear stress in the slip systems of that grain. Nickel based alloys
form a face centered cubic (FCC) lattice structure, therefore each grain has 4 slip planes with
3 different slip directions. To calculate the ratio of the externally applied strain and the shear
stress in the slip systems of a grain, the anisotropic stress must first be calculated. Therefore the
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(a) Histogram of the maximum shear stress in the slip systems
of INC738 LC. 100000 random oriented grains under uniaxial
load state.

(b) Geometry for the FEM sim-
ulations. Left grain cracked in
the middle there is the grain
boundary.

Figure 2: Histogram of the maximum shear stress and closeup of the geometry in the FEM-
simulations

anisotopic stiffness tensor C ∈ R3×3×3×3 must be rotated four times with the rotational matrix
U(φ1, θ, φ2).

C(U)ijkl =
∑
p,q,r,s

UipUjqUkrUlsCpqrs (2)

To compute the anisotropic stress for a given strain tensor in each grain Hooke’s law is used.

σ(U)aniij =
∑
k,l

C(U)ijklεkl . (3)

With the anisotropic stress the resulting shear stress in the slip systems is calculated with the
help of the stress tensor

τij(U) = Uni · σ(U)ani · Usij , (4)

where sij is the direction and ni the normal of the slipsystem, gained with the orientation of
the grain. For a rotation of the grain or elementary cell, the slip systems also rotates. For this
purpose, the plane and directional vectors are rotated with the rotation matrix U mentioned in
equation (1). Crack initiation is expected in the most heavily loaded slip system, therefore only
the slip system with the maximum shear stress is considered in a grain.

τ(U) = max
ij

|τij(U)| . (5)

So to have a ratio between maximum shear stress and the applied principal stress, the alternative
Schmid factor

m(U) =
τ(U)√

2/3||σiso||F
, (6)
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(a) Maximal shear stress maxij(τ
wc
ij (Ur)),

fixed left grain.
(b) Maximal shear stress maxij(τ

wc
ij (Ur)),

fixed right grain.

Figure 3: Maximum shear stress in the right grain with a cracked left grain. In the left plot, the
orientation of the right grain is fix, the Euler angel φl

1 and θl. In the right plot, the left grain is
fixed while φr

1 and θr are changing

is used, which is introduced in [27]. If we assume that the grains have no preferential orientation,
the rotation matrices are distributed according to the isotropic measure, given by the Haar
measure of the SO(3) group of rotations [20]. The plot in figure 2a shows a histogram of m(U)
under uniaxial load. The lattice stiffness anisotropy is considered at 850°C for the alloy INC738
LC [7].

3 ANISOTROPIC FEM SIMULATIONS OF THE INFLUENCE OF CRACKS
IN NEIGHBORING GRAINS

A cracked grain changes the stress field in its surrounding and therefore the shear stress
acting on slip systems in neighboring grains changes as well. The change in shear stress leads
to changes in the remaining life time after the crack is initiated. Our approach to determine
this difference is to use FEM simulations. The geometry in the FEM simulation consists of
two adjacent grains with a grain boundary parallel to the uni-axial loading direction. The left
and the right grain have an orientation of the lattice structure each given by three Euler angels
(φi

1, θ
i, φi

2), i ∈ {r, l}. According to this, the stiffness tensor for the grains is given by C(U i),
where C(U i) corresponds to the rotation matrix U(φi

1, θ
i, φi

2). The goal is to determine the new
shear stress in each individual slip systems τwc

ij resulting from the crack as a function of the
orientations of the two grains and the shear stress τncij that was found in the slip system of the
right grain before the crack

τwc
ij (U r) = a(τncij (U

r), φr
1, θ

r, φr
2, φ

l
1, θ

l, φl
2). (7)

For this purpose, two simulations were evaluated for each pair of orientations. One with a half
of a penny shaped crack in the left grain and one without a crack. The direction of the crack in
the left grain depends on the slip system with the maximum shear stress. For the geometry of
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(a) Ratio of the Maximal shear stress
r(Ur, U l), fixed left grain

(b) Ratio of the Maximal shear stress
r(Ur, U l),fixed right grain.

Figure 4: Ratio of the maximum shear stress in the right grain r(U r, U l). In the left plot, the
orientation of the right grain is fix, the Euler angel φl

1 and θl. In the right plot, the left grain is
fixed while φr

1 and θr are changing

the ellipsoidal crack, it is assumed that the whole grain is cracked. Accordingly, the crack length
corresponds to the average diameter of a grain. The resulting shear stresses in the right grain
are calculated by averaging over the volume of a half sphere centered on the grain boundary at
the tip of the crack intersected with the volume of the right grain.

τ̄ij =
1

|B|

∫
x∈B

U rni · σFEM (x) · U rsijdx . (8)

The integral in equation (8) is calculated numerical with an Gaussian quadrature.
The toolchain for the simulations is as follows, the generation of the geometry and the pre-

processing is done with R. The grid is created using Gmsh. The FEM simulations are solved with
CalculiX. As post-processor we use R code again. The simulation is controlled and parallelized
with R. The mesh consists of about 210000 nodes and 130000 tetrahedral elements of order 2.
One simulation takes about 15 minutes, with our current hardware setup we are able to run
40 simulations in parallel. The results of the FEM simulations for different orientations of the
neighboring grains are shown in Figure 3. As we can see in Figure 3a, the maximum shear stress
is continuously differentiable as a function of the orientations of the intact grain. Exceptions are
the points where the slip system with the maximum shear stress changes, here the maximum
shear stress is not differentiable. If the left grain is rotated, the slip system with the maximum
shear stress changes as well, therefore the crack direction changes.

This leads to sudden change of the stress field in the intact grain, therefore the resulting shear
stress in the slip systems shows the same response (3b). This behavior has an impact on the

ratio of the maximal shear stress with and without crack r(U r, U l) =
maxij(τ

wc
ij (Ur))

maxij(τnc
ij (Ur)) as shown in

Figure 4. Since the course of the shear stress is almost identical for a cracked and non-cracked
left grain depending on the orientation of the right grain, the ratio is constant in large areas
(4a). The regions where the ratio changes are those where the maximum stressed slip system
changes. For a fixed right grain, the maximal shear stress is continuous for a non-cracked left
grain, therefore in the ratio r(U r, U l), the sudden changes in the shear stress show up as well
(4b).
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Figure 5: Prediction of the shear stress vs results
from the FEM-simulations.

To model the shear stress after a crack
occurred as a function of the Euler an-
gles we build a dataset from 25000 simu-
lations with randomly orientated grains
distributed according to the isotropic
Haar measure. With this database, a ma-
chine learning model is trained. The in-
put for the model are the six Euler angles
that encode the respective orientation of
the two grains and the shear stress in a
particular slip system of the right grain
if the left grain is not cracked. The gra-
dient boosting machine then predicts the
shear stress with a cracked left grain. So
for each of the 12 slip systems one sep-
arate model is trained. For the machine
learning model we use the implementa-
tion within the gbm package in R. For the
loss function we take squared error. The
detailed settings are as follows: for the
maximal number of trees we chose 2000,
the training fraction is 0.5 and the inter-
action depth is set to 6. With these setup,
the R squared value for the 12 slip systems is between 0.970 and 0.987. The predictions over
actual values for one particular slip system are shown in figure 5.

4 THE EPIDEMIOLOGICAL CRACK PERCOLATION MODEL

To model the polycrystalline rectangular surface of a cast metal with height h and length
l, we use a Voronoi tessellation with n seeds. The seeds are independently sample from the
uniform distribution in the plane. A grain with seed g then consists of every point for which
the Euclidean distance to the seed g is smaller then distance to any other seed. Two grains
are adjacent if the share a common boundary. We assume that the grains have no preferential
orientation. Accordingly the orientation is again sampled according to Haar’s measure [20].

For a given strain amplitude εa, the same procedure as in section 2 can now be used to
determine shear stresses and Schmid factors. to gain the stress amplitude from a mixture of
plastic and elastic deformation the inverse of the Ramberg–Osgood equation (RO)

RO(σa) =
σa
E

+K
(σa
E

)nRO

, (9)

with material dependent parameters E,K, nRO is used. With the so gained stress amplitude
σa = RO−1(εa) the shear stress in each slip system of each grain is calculated and transformed
back into an strain amplitude. Now the inverse of the Coffin-Manson Basquin equation (CMB)

CMB(Ni) =
σ′
f

E
(2Ni)

b + ε′f · (2Ni)
c, (10)
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is used do gain the initial crack times for each grain:

Ng
i = CMB−1

(
RO

(
RO−1(εa)

m(Ug)

λ

))
. (11)

In equation (11) λ = E[m(U)] is used as an scaling factor. With the initial failure times, the
grain that cracks first can now be determined as ĝ = argming(N

g
i ). Aa a grain ĝ cracks, the

neighboring grains are infected. So for a adjacent grain g the new shear stress in the slip systems
are calculated with the gradient boosting machines from section 3. With the new shear stress
the Schmid factors m̄g are calculated. To calculated the new crack time of g, we use a Miners
rule which take the consumed lifetime into account:

N̄g = N ĝ +

(
1− N ĝ

N(mg)

)
·N(m̄g) . (12)

The failure criterion for the whole surface that based on a stress intensity factor K. Therefore
after each cracked grain we evaluate the resulting crack clusters. All cracked grains that are
adjacent belong to the same crack cluster. Each crack cluster is evaluated by taking all possible
pairs of two grains in the cluster. The resulting direction of the total crack from these two grains
is the vector t⃗ between the two seeds of the corresponding Voronoi cells, the normal is just the
normal in the surface. Our multi modal stress intensity factor is as follows:

KI = n⃗T · σiso · n⃗ ·

√
π
∥t⃗∥
2

, (13)

KII =
t⃗T

∥t⃗∥
· σiso · n⃗ ·

√
π
∥t⃗∥
2

, (14)

Keq =
√
K2

I +K2
II . (15)

If Keq exceeds a critical value Kcrit, there is a material failure.

5 FITTING AND EXPERIMENTAL VALIDATION

To validate our percolation model, we use data from LCF experiments with RENE 80. The
test specimens have a gauge length of 18mm and a radius of 7mm. The average diameter of the
grains is 1.6mm, therefore the surface contains of 198 grains. The strain amplitude is between
0.55% and 0.65% for the specimens. The experiments were carried out at 850°C. As an failure
criterion for the experiments we choose a drop in load of 5%.

With these parameters, we perform 2500 simulations of the percolation model wit a pre-
fitted CMB parameters per strain level. For comparison, we also run the simulation without
the infection model. With the simulation data generated in this way, our model is now fitted to
the experimental results. The parameters we fit are on the one hand a shift sCMB of the CMB
which changes the position of the probability of failure (PoF)

CMB′(εa) = CMB(εa) · sCMB , (16)

on the other hand we adjust the failure criterion Kcrit, which mainly affects the scatter of the
resulting PoF. The influence of different values of Kcrit on the PoF is shown in figure 6b.
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Figure 6: Experimental LCF results (a) for different strain levels. Influence of the critical K-
factor on PoF (b).

The fitting of the maximum likelihood estimation is performed in R with the Nelder–Mead
algorithm which is implemented in the package nloptr. We compare the results from our epi-
demiological crack percolation model with the percolation model with out the infection function.
As figure 7 shows, the interaction between the cracked grain and the surrounding grains reduce
the the scatter in the resulting PoF significantly as compared to the percolation model without
infection.

It turns out that both models, with and without infection, predict a statistical scatter bands
in the physically correct order of magnitude. While the infection free model’s prediction tends
to be over-dispersed, this is removed by the model that includes infection. However, the data
at strain amplitude 0.6% seems to be right shifted in average, while the dispersion with is
realistically modeled by the infection model. This, potentially, is due to a batch effect in the
production of specimens or an experimental shift due to lab conditions as a second source of
scatter. A final settlement of this issue would require further investigation and potentially more
data as well. Also, including batch effects as random effects in the model could be a means for
more accurate modeling.

6 CONCLUSION

We presented a probabilistic model of low cycle fatigue (LCF) that models the scatter of
fatigue experiments on the basis of an initial crack initiation phase and a subsequent crack
percolation phase, where the neighboring grains of a cracked grain fail faster due to elevated
stress levels. The statistical scatter in LCF cycles to crack initiation is explained from the effects
of random grain structure, modeled by a Voronoi tessellation, and random orientation of the
grains crystallographic axes. Here the latter effect accounts both for scatter due to anisotropic
elasticity properties and also for the orientation of slip systems that enable plastic deformation.

We integrated a finite element simulation for the elevation of loads in grains with anisotropic
elastic properties via a gradient boosting machine trained on the results of the finite element
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Figure 7: Comparison of the probability of failure for the model with (yellow) and without
infection (green).

simulations. In this way, we are able to integrate elevated stress due to a crack in a neighboring
grain in a probabilistic simulation of crack propagation. In this way, we pass from a simple
model with independent cracks to an epidemiological percolation model of crack growth.

Finally, we compared our modeling approach with data from the Ni-based superalloy Rene80
and fitted the parameters of our model. We were able to show that the range of statistical
scatter that is modeled is in the correct order of magnitude compared with the actually observed
scatter and that the model can be reasonably fitted to the data for LCF experiments at high
load amplitudes.

In future research, we will further develop our model and account for effects due to devia-
tions from uniform grain orientation at the surface of cast specimens due to dendrite growth of
superalloy grains, in contrast to uniformly distributed orientations in bulk material. We also
intend to further develop our model by including batch random effects and extend the range of
validity from rather high load amplitudes to the high cycle fatigue regime.
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Berlin (u.a.): Springer, Jan. 2001.

[18] Trevor Hastie et al. The elements of statistical learning: data mining, inference, and pre
diction. Vol. 2. Springer, 2009.
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[20] Carlos A. León, Jean-Claude Massé, and Louis-Paul Rivest. “A statistical model for ran-
dom rotations”. In: Journal of Multivariate Analysis 97.2 (2006), pp. 412–430. doi: https:
//doi.org/10.1016/j.jmva.2005.03.009.

[21] Ding Liao et al. “Computational framework for multiaxial fatigue life prediction of com-
pressor discs considering notch effects”. In: Engineering Fracture Mechanics 202 (2018),
pp. 423–435.

11
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