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Abstract The Domain InterfaceMethod (DIM) is extended
in this contribution for the case of mixed fields as encoun-
tered in multiphysics problems. The essence of the non-
conforming domain decomposition technique consists in a
discretization of a fictitious zero-thickness interface as in the
original methodology and continuity of the solution fields
across the domains is satisfied by incorporating the corre-
sponding Lagrange Multipliers. The multifield DIM inherits
the advantages of its irreducible version in the sense that
the connections between non-matching meshes, with possi-
ble geometrically non-conforming interfaces, is accounted
by the automatic Delaunay interface discretization without
considering master and slave surfaces or intermediate sur-
face projections as done in many established techniques, e.g.
mortar methods. The multifield enhancement identifies the
Lagrange multiplier field and incorporates its contribution in
the weak variational form accounting for the corresponding
consistent stabilization term based on aNitschemethod. This
type of constraint enforcement circumvents the appearance
of instabilities when the Ladyzhenskaya–Babuška–Brezzi
(LBB) condition is not fulfilled by the chosen discretiza-
tion. The domain decomposition framework is assessed in
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a large deformation setting for mixed displacement/pressure
formulations and coupled thermomechanical problems. The
continuity of the mixed field is studied in well selected
benchmark problems for both mixed formulations and the
objectivity of the response is compared to reference mono-
lithic solutions. Results suggest that the presented strategy
shows sufficient potential to be a valuable tool in situations
where the evolving physics at particular domains require the
use of different spatial discretizations or field interpolations.

Keywords Domain decomposition methods · Non-
conforming interface · Weak coupling techniques for
non-matching meshes · Mixed formulations

1 Introduction

The growing demand of industrial complex simulations,
together with the continuous improvement of computer tech-
nology, have stimulated the popularity of algorithms capable
of processing large systems of equations. This is the case
of algorithms based on domain decomposition techniques
which basically stem from the need of decomposing a large
discretization into a number of smaller discretizations, e.g.
using finite elements (FEs), or from the assembly of inde-
pendently generated meshes which form part of a whole
system. The latter scenario can be found for instance dur-
ing simulations of an aircraft where both wings and fuselage
discretizations are designed independently. In these situa-
tions, the type of algorithms capable of gluing non-matching
meshes are crucial and represent themain focus in the present
contribution.

Examples of non-conforming interfaces arising from the
assembly of non-matching grids can be found in [24,25]
where particular structural components are reused in evolv-
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Fig. 1 Geometrically
compatible (left) and
geometrically incompatible
(right) interfaces
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ing designs such as wings or rotor blades among diverse
aircraft fuselages. The most complex and time-evolving
situations for non-conforming interfaces can be definitely
found in the field of contact mechanics [16,28,31,41] which
has boosted the appearance of a considerable number of
strategies to handle non-matching grids. It is also neces-
sary to resort to these type of algorithms when the nature
of the physics involved in each of the studied domains is
remarkably different, e.g. fluid structure interaction [10] or
because the spatial resolution for the adjacent discretizations
is significantly different, e.g. multiscale and multiresolution
techniques [21,22].

The most general scenario at a non-conforming interface
�I arises when the geometrical compatibility between the
non-matching meshes is not satisfied, i.e. when the bound-
aries of the domains at the common discretized interface are
not identical in the undeformed configuration (cf. Fig. 1).

Many Domain Decomposition techniques assume that the
interface is geometrically compatible [33] but more gen-
eral situations may arise from the assembly of independent
discretizations and curved interfaces with piece-wise linear
distinct discretizations. In such scenarios, powerful tech-
niques are required such as mortar techniques [5,30–32,40]
or the recently introduced DIM [8].

In mortar methods, the coupling constraints are enforced
in a weak sense, i.e. in an integral or average sense along
portions of the interface, and are often referred to as segment-
to-segment techniques. In general, a displacement field at the
interface, u�I , is taken as reference in order to generate the
constraints. A frequently adopted choice is to consider the
reference field based on one of the domain discretizations at
the common interface.

One significant drawback of such classical mortar tech-
niques arises when the coarsest discretization is selected for
the reference solution field. In such scenarios, the perfor-
mance of mortar methods might be less optimal as argued
in [8,18].More advancedmortar techniques [30–32,40] con-
sider a more convenient Lagrange multiplier space or even a
third auxiliary surface with an optimal node distribution in
order to minimize the gap between domains (cf. Fig. 2). This

may circumvent these flaws although the associated compu-
tational cost due to the extra unknowns may increase as well
as the complexity of the resulting algorithm.

In contrast with established mortar methods, the DIM [8]
is based on a continuous Delaunay discretization of the inter-
face obtained after a fictitious contraction of the adjacent
domains (cf. Figs. 2, 3). This technique has proven to achieve
equivalent optimal performances without the drawback of
selecting a projection surface since this is automatically
accounted for by theDelaunay interface discretization.More-
over, the adjacent interface patch discretizations has been
utilized to remove the singularities that arisewhen thedecom-
posed domain is floating, i.e. exhibits rigid body modes
(RBMs). This is performed in a non-intrusive fashion com-
pared to other established dual formulations.

Lagrangemultipliers [1] are typically employed to enforce
the necessary constraints at general interfaces, e.g. possi-
bly non-conforming. To this end, the term concerning the
mechanical work at the non-conforming interface is added
to the variational statement. Special care needs to be taken
when selecting the shape functions associated to the mesh
discretizations for both adjacent domains and the distribu-
tion functions of the Lagrange multipliers. In other words,
the selection of such functions can not be arbitrary since they
need to fulfill the Ladyzhenskaya–Babuška–Brezzi (LBB)
condition (also known as the inf-sup condition) [2] in order
to guarantee that both discretizations converge to the right
solution upon mesh refinement. In the current approach a
Lagrange multiplier method is adopted to enforce the inter-
face constraints but a Nitsche method [27] is considered
to stabilize the system. Such method essentially modifies
the weak form by adding a term with a positive parame-
ter that depends on the particular mesh size but does not
lead to an ill-conditioned system even for small values of the
parameter. A Nitsche method to account for the interface
constraints derived from domain decomposition methods
has been introduced in [4] and the extra term added at the
variational principle basically couples the multipliers with
the stress fields at the interface [17]. A main advantage is
that the discretization of the hybrid solution field contain-
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Fig. 2 Mortar versus
continuous connecting interface
strategies
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ing the Lagrange multipliers can be performed without any
constraints since the stability is accounted for by the extra
Nitsche-type term. In the present contribution, this feature is
specially valuable since the multifield nature of the problem
renders a particularly hybrid solution field. Some general-
ities of the DIM are revisited in Sect. 2 and the multifield
extensions to themethod inorder to tacklemixed incompress-
ibleu/p and coupled thermomechanicalu/p/θ problems are
detailed in Sects. 3 and 4. The reader that is not familiar with
the constitutive model details for the mixed formulations is
referred to Appendices 1 and 1 and the references therein for
a complete overview. The domain decomposition framework
is validated considering benchmark examples for both mixed
type formulations in Sect. 6.

2 General description

The geometrical aspects of the DIM introduced in [8] are
summarized in this section for the case of an irreducible for-
mulation. The concept of geometrical gap and the Lagrange
multipliers identification are revisited and the basic notation
is introduced.

Finite strain theory is considered in our developments,
although an infinitesimal deformation approach can be recov-
ered by considering small displacements (i.e. compared to
the domain dimensions) and infinitesimal displacement gra-
dients. Compact notation is utilized for tensor quantities in
this contribution.

2.1 Geometrical description of the DIM

Consider the union of two non-overlapping domains �(1)

and �(2) as depicted in Fig. 3 (top). Dirichlet and Neumann
boundary conditions are imposed at each domain �(s) along
disjoint regions depicted by �

(s)
u and �

(s)
σ , respectively. The

domain interface �
(s)
I = ∂�(s) ∩ ∂�(q) with outward unit

normal ννν(s) where ∂� stands for the domain boundaries of
the adjacent domains s and q.

An independent FE discretization of the two bodies, leads
to a number of N (s)

λ vertices at the domain boundary ∂�(s)

around �
(s)
I . These vertices are involved in the interface dis-

cretization that characterizes the DIM (cf. step (i) in Fig. 3).
The interface generation is summarized in the chart sequence
in Fig. 3 and basically starts with a fictitious contraction of
the vertices Vi in the direction −ννν(s) by a magnitude k as
indicated in step (ii). As discussed in [8], the magnitude of k
does not interfere with the results although k ≈ he is com-
monly adopted in our analyses where he denotes an average
equivalent FE size.

A Delaunay triangulation defining the interface domain

D =
Nq⋃

q=1

D(q) (1)

is obtained based on the resulting fictitious coordinates x′
i of

the new vertices. The interface patches are denoted by D(q)

and the interface surface �
(s)
D = ∂�(s) ∩ ∂D. Note that for
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Fig. 3 Generation of the
domain interface: (i) domain
discretizations, (ii) fictitious
domain contractions, (iii)
Delaunay triangulations and (iv)
original mesh recovery
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the case of a geometrically compatible interface, �(s)
I = �

(s)
D

since the trace of the interface coincides with the interface
discretizations of the adjacent domains.

Triangular linear elements D(q) are considered in our anal-
yses for the discretization of the interface. In this situation,
all integrals over a geometrically incompatible interface con-
verge to a bounded value when the distance h → 0

Nq∑

p=1

lim
h(q)→0

∫

D(q)

1

h(q)
(•) dD = 1

2

Nq∑

q=1

∫

L(q)

(•) dL + O(h),

(2)

Note that the error due to the piece-wise linear approxima-
tion of the interface is O(h). For the case of geometrically
compatible interfaces O(h) → 0 and

Np∑

q=1

lim
h(q)→0

∫

D(q)

1

h(q)
(•) dD ≈ 1

2

Nq∑

q=1

∫

L(q)

(•) dL . (3)

Themain strength of themethod is that both adjacent domain
interfaces �

(s)
D are automatically taken into account in the

construction of the interface links since the integration is
performed over D(q) when h → 0. This represents an obvi-
ous advantage from the user point of view considering that
no decision has to be made on which interface discretization
is selected for the projection of the interface quantities, e.g.
in the mortar method [5].

The corresponding deformationmap for each domain�(s)

is denoted by φ
(s)
t (X) ≡ φ(s)(X, t) : �

(s)
0 ×[0, T ] → �

(s)
t ,

where material points X(s) ∈ �
(s)
0 at the reference config-

uration are mapped onto the current configuration x(s) =
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Fig. 4 Geometrical definition
of the gap g(xn). Previous (left)
and current (right)
configurations are related
through the incremental motion
of the interface domain φD
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φ
(s)
t (X) ∈ �

(s)
t . Such current configuration x(s) can be also

obtained in terms of the total displacement field U(s)
t (X(s))

as

x(s) = φ
(s)
t (X) = X(s) + U(s)

t (X(s)). (4)

A pseudo-time domain t ∈ [0, T ] is considered in
our computations with subdivisions in discrete intervals
[tn, tn+1]of incremental time length
t = tn+1−tn . Configu-
rations at the previous tn and current tn+1 times are denoted as
�

(s)
n = φ

(s)
tn (�

(s)
0 ) ≡ φ

(s)
n (�

(s)
0 ) and �

(s)
n+1 = φ

(s)
tn+1

(�
(s)
0 ) ≡

φ
(s)
n+1(�

(s)
0 ), respectively.

As shown in [8], an expression of the incremental motion
φ(s) can be found by substitution of the current and previous
configurations leading to

φ
(s)
n+1

(
(φ(s)

n )−1(x(s)
n )

)
= φ(s)(x(s)

n ) = x(s)
n+1. (5)

Considering the incremental motion in (5), the incremental
field

u(s)(x(s)
n ) = φ(s)(x(s)

n ) − x(s)
n = x(s)

n+1 − x(s)
n , ∀x(s)

n ∈ �(s)
n .

(6)

The incremental motion of the interface domain can be
expressed as

φD(x(s)
n ) ≡ xn+1(xn) = xn + uD(xn), ∀xn ∈ D(q)

n , (7)

where D(q)
n denotes the interface domain D at time tn .

The current and previous domain interfaces are related by
Dn+1 = φD(Dn) and γD = φD(�D) sets the link between
current and previous interface surfaces, respectively (cf.
Fig. 4).

A linear interpolation of the displacement increments ûDi
corresponding to the interface element vertices is employed
to compute the incremental displacement field at the interface
domain uD as

uD(xn) ≡ u(q)(xn) =
3∑

i=1

N
u,D
i (xn)ûDi , ∀xn ∈ D(q)

n , (8)

where N
u,D
i constitute the linear shape functions for three-

node triangular finite elements employed to interpolate the
interface displacements. The incremental gradient deforma-
tion tensor fD can be expressed as

fD = ∇̄∇∇
(
φD(xn)

)
= ∂xn+1

∂xn
= 1 + ∇̄∇∇(uD), (9)
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1 being the second order unity tensor and ∇̄∇∇ denoting the
material gradient with respect to the reference previous con-
figuration n. Due to the linear interpolation of the incremental
displacements in (8), the incremental gradient deformation
tensor fD is constant at every patch D(q). As introduced in [8]
and illustrated in Fig. 4, the normal to the base-line of D(q) in
the sense of the normal to the adjacent domainννν(s) is denoted
byN(q) andT(q) = ê×N(q), where ê denotes the out-of-plane
unit vector. With these definitions in hand and considering
the incremental motionφD, the current tangential and normal
unit vectors read

t(q) = φD(T(q))∣∣∣∣φD(T(q))
∣∣∣∣ = f (q) · T(q)

∣∣∣∣f (q) · T(q)
∣∣∣∣

n(q) = t(q) × ê.

(10)

It should be stressed that these vectors are constant within
every patch (cf. (10)) but discontinuous across the interface
patches since their definition depends only on the local base-
line for every interface patch.

The initial normal gap g0N depicted in Fig. 4 is obtained
at the previous configuration n for a given point xn and its
normal projection to the base-line x̄n as

g0N(xn) = (xn − x̄n) · N(q). (11)

Consequently, the final gap vector

g(xn) = xn+1 − x̄n+1 = φD(xn) − φD(x̄n), (12)

where xn+1 and x̄n+1 stand for the convected points xn and
x̄n , respectively. Expressing g(xn) as a sum of its normal
and tangential projections onto the current base-side, equa-
tion (12) can be rewritten as

g(xn) = gN(xn)n(q)+ gT(xn)t(q) ⇒
{
gN(xn)=g(xn) · n(q)

gT(xn)=g(xn) · t(q).

(13)

The normal gap gN(xn) is interpreted as a projection in
the direction of n(q) and, consequently, denotes penetration
when gN(xn)< 0. In the same spirit, the tangential gap gT(xn)
stands for the slid distance in the sense of t(q). The gap is
conveniently expressed in terms of the displacement field as
detailed in [8]. It essentially considers a Taylor series expan-
sion of φD(xn) around x̄n up to second order terms in order to
obtain the dependency on the displacements u(q). A dimen-
sionless measure of the gap, i.e. the gap intensity ḡ(xn) is
defined as

ḡN(xn) = gN(xn)∣∣g0N(xn)
∣∣ and ḡT(xn) = gT(xn)∣∣g0T(xn)

∣∣ . (14)

Finally, one obtains the expression of the gap ready to be
utilized in the variational statements as

ḡN(xn) = sign
(
g0N(xn)

)
n(q) ·

(
N(q) + ∇̄∇∇(u(q)) · N(q)

)
,

ḡT(xn) = sign
(
g0N(xn)

)
t(q) ·

(
N(q) + ∇̄∇∇(u(q)) · N(q)

)
.

(15)

The interface traction vector tI defined at the surface �
(s)
D

is expressed in terms of the first Piola-Kirchoff stress tensor
P(s) at time n + 1 with respect to the configuration at time n
and the normal vector N(q) = ννν

(s)
n as

tI(xn,N)(s) = P(s) · N(q), ∀xn ∈ �
(s)
D . (16)

The normal and tangential components of tI are obtained
w.r.t. the current normal and tangential vectors as

tI,N(xn) = n(q) · P(s) · N(q)

tI,T(xn) = t(q) · P(s) · N(q)

}
∀xn ∈ �

(s)
D (17)

and are depicted in Fig. 5 inside the surface γ
(s)
D . The normal

and tangential components of the interface traction vector
implicitly define the Lagrange multipliers that enforce dis-
placement compatibility between domains at each interface
patch D(q) as

λN(xn) = tI,N(xn)

λT(xn) = tI,T(xn)

}
∀xn ∈ �

(s)
D . (18)

In this scenario, the Lagrangemultipliers λN and λT are iden-
tified as the normal and tangential stresses that connect the
adjacent domains (cf. Fig. 5).

Remark 2.1 The identification of the Lagrange multipliers
λN and λT stem from the variational statement corresponding
to the weak form of the governing equations

δ
u(u,λλλI, δu) := δ
u
int,ext(u, δu) + δ
u

I (u,λλλI, δu) = 0,

∀δu(s) ∈ V̂VVu, (19)

where δu and V̂VVu denote the displacement variations and
their corresponding function space (cf. Appendices 1 and 1
for a more detailed formulation). The energy functionals
δ
u, δ
u

int,ext and δ
u
I denote the total mechanical work,

the mechanical work due to external and internal forces and
the mechanical work performed at the interface �I, respec-
tively, and can be written as:

123



Comput Mech

Fig. 5 Lagrange multiplier
identification at the interface
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u
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Ns∑

s=1

{∫

�
(s)
n

P(s) : ∇̄∇∇(δu(s)) d�

}

+
Ns∑

s=1

{∫

�
(s)
σ

t̂(s) · δu(s) d�

}
, (20)

δ
u
I (u,λλλu) =

Nq∑

q=1

{∫

D(q)
n

λλλ(q)
u · δḡ(q)(uD) dD

}
, (21)

where t̂ denote the imposed tractions. The term concerning
the interface work δ
u

I can be further elaborated as1:

δ
u
I (u,λλλu) =

∫

Dn

λλλu · δḡ(uD) dD

=
∫

Dn

λλλu · ∂

∂N

(
δuD

)
dD

=
∫

∂Dn

δuD · λλλu dD −
∫

Dn

δuD · ∂λλλu

∂N
dD

=
∫

∂Dn

δuD · λλλu dD, (22)

where integration by parts is employed considering the
expression of the gap as a function of the displacements
in (15) and the constant character of the Lagrangemultipliers
λλλu. In the limit where the h(q) tends to zero, the expression
in (22) can be written as

δ
u
I (u,λλλu) = lim

h(q)→0

∫

∂Dn

δuD · λλλu dD =
∫

�I

δu · λλλu d�.

(23)

1 In the sequel, all summations of integrals over the interface patches
D(q)
n , i.e. with q from 1 to the total number of interface patches Nq, are

denoted as integrals over Dn skipping the summation over q in order to
simplify the notation.

The total work in (19) can be rewritten considering that
∇̄∇∇ · (P(s) · δu(s)

) = (∇̄∇∇ · P(s)
) · δu(s) + P(s) : ∇̄∇∇ (

δu(s)
)
and

employing the divergence theorem taking into account all
boundary contributions, i.e. � = �σ ∪ �u ∪ �I, as

δ
u(u, δu) = −
Ns∑

s=1

{∫

�
(s)
n

(
∇̄∇∇ · P(s)

)
· δu(s) d�

}

+
Ns∑

s=1

{∫

�
(s)
σ

(
t̂ − P · N

)
· δu(s) d�

}

+
∫

�I

(λλλu − P · N) · δu d� = 0. (24)

Note that the boundary integral over �u vanishes according
to the definition of the displacement variations δu (cf. (168)
in Appendix 1). From the variational principle in (24) one
can identify the correspondingEuler-Lagrange equations and
natural boundary conditions as

∇̄∇∇ · P = 0, ∀x(s) ∈ �(s), (25)

t̂ − P · N = 0, ∀x(s) ∈ �(s)
σ , (26)

λλλu − P · N = λλλu − tI = 0, ∀x ∈ �I, (27)

which concludes the proof that identifies the Lagrange mul-
tipliers λλλu with the tractions tI that connect the adjacent
domains.

The strong and weak forms of the irreducible problem
employing the DIM are introduced in detail in [8] and
skipped in the present approach in order to focus only on the
additional formulation content. In this spirit, the following
sections are devoted to present a complete variational formu-
lation of the DIM for the mixed u/p and thermo-mechanical
mixed u/p/θ formulations.
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3 DIM for mixed u/ p formulations

The DIM method introduced in the previous sections, and
described in detail in [8], is modified in this Section in order
to tackle incompressible problems using mixed u/p formu-
lations (cf. Appendix 1). The kernel of the extension resides
in the identification of the Lagrange multiplier λp for the cor-
rect pressure transference between domains which forces the
pressure gap gp to nullify. Figure 6 illustrates the Lagrange
multiplier for both displacement λλλu(u) and pressure λp(p)
fields inside a triangular interface patch D(q) with nodal
quantities u1 to u3 and p1 to p3. The pressure p(q) at the
interface patch D(q) is calculated by linearly interpolating
the pressure unknowns pDi as

pD(xn) ≡ p(q)(xn) =
3∑

i=1

N
p,D
i (xn)pDi , ∀xn ∈ D(q)

n . (28)

The geometrical pressure gap gp is defined for each dis-
cretized interface patch D(q) as

gp = ∂p(q)

∂N (q)
= ∇̄ p(q) · N(q) (29)

and is understood as the pressure gradient projected onto
the normal to the base side of the triangular patch N(q). The
effective pressure gap ḡp is found normalizing the pressure
gap gp as

ḡp = gp∣∣gp
∣∣ . (30)

3.1 Strong and weak forms of the mixed u/ p DIM
formulation

The strong form of the u/p DIM problem is obtained con-
sidering the equations shown in Appendix 1 at each domain
�(s) and accounting for the interface connections between
domains as:

FIND:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u(s)(x(s)
n ) : �

(s)
n → R

2,

p(s)(x(s)
n ) : �

(s)
n → R,

λλλu(xn) : Dn → R
2,

λp(xn) : Dn → R,

(31)

FULFILLING:

Equilibrium equation: ∇̄∇∇ · P(s) = 0, in �
(s)
n (32)

Constitutive pressure equation:
p(s)

κ
= ln(J )(s)

J (s)
, in �

(s)
n

(33)

Dirichlet’s boundary conditions: u(s) = û(s), in �
(s)
u (34)

Neumann’s boundary conditions: t(s) =P(s) · N(s) = t̂(s), in �
(s)
σ

(35)

Lagrange multiplier identification:

⎧
⎪⎪⎨

⎪⎪⎩

λN = t(s)N

λT = t(s)T

λp = 0

, in Dn, (36)

Compatibility constraints:

⎧
⎪⎪⎨

⎪⎪⎩

ḡN(uD) = 0

ḡT(uD) = 0

ḡp(p) = 0

, in Dn, (37)

∇̄∇∇ being the material Nabla operator containing derivatives
with respect to the previous configuration, P the first Piola-
Kirchhoff stress tensor and t̂ and û the prescribed tractions
and displacements at the corresponding boundaries �σ and
�u , respectively. The bulk modulus is denoted by κ and J =
||f || is the determinant of the deformation gradient tensor.
A proper justification of the pressure Lagrange multiplier
identification in Eq. (36) is provided in Remark 3.2 after the
introduction of the weak form of the problem.

As mentioned in Appendix 1, Eq. (32) is solved consider-
ing the splitting of the Cauchy stress tensor into the spheric
and deviatoric counterparts.

The strong form of the problem stated in (32) to (37) is
expressed through the equivalent variational principles. To
this end, the solution VVV� and weighting V̂VV� spaces for the
displacements and pressure fields together with the Lagrange

Fig. 6 Lagrange multiplier
identification at the discretized
interface for the mixed u/p
DIM formulation
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multiplier spaceLLL� for the solution and weighting functions
read:

VVV(s)
u :=

{
u
/
u
∣∣∣
�(s)

∈ H1(�(s)), u(s) = û(s) in �(s)
u

}
,

(38)

V̂VV(s)
u :=

{
δu

/
δu

∣∣∣
�(s)

∈ H1(�(s)), δu(s) = 0 in �(s)
u

}
,

(39)

V(s)
p :=

{
p
/
p
∣∣∣
�(s)

∈ L2(�(s))
}

, (40)

V̂(s)
p :=

{
δp

/
δp

∣∣∣
(s)

�
∈ L2(�(s))

}
, (41)

LLLu := L2(D), (42)

Lp := L2(D), (43)

H1(�) and L2(D) being the Sovolev space of functions
with square integrable derivatives and the Lebesgue space
of square integrable functions, respectively. The variational
statement for the mixed u/p formulation reads:

FIND:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u ∈ VVV(s)
u : �(s)

n → R
2,

p ∈ V(s)
p : �(s)

n → R,

λλλu ∈ LLLu : Dn → R
2,

λp ∈ Lp : Dn → R,

(44)

FULFILLING:

δ
u(u,λλλu, δu)=δ
u
int,ext(u, δu) + δ
u

I (u,λλλu, δu) = 0,

∀δu ∈ V̂VV(s)
u , (45)

δ
p(p, λp, δp)=
Ns∑

s=1

{∫

�n

δp(s)

(
ln(J (s))

J (s)
− 1

κ
p(s)

)
d�

}

︸ ︷︷ ︸
δ


p
�(λp,δp)

+ δ

p
I (λp, δp) = 0, ∀δp ∈ V̂(s)

p , (46)

AND

δ
λN(uD, δλN) = 0, ∀δλN ∈ Lu, (47)

δ
λT(u
D, δλT) = 0, ∀δλT ∈ Lu, (48)

δ
λp(p
D, δλp) = 0, ∀δλp ∈ Lp. (49)

The part of the mechanical work corresponding to internal
and external forces reads

δ
u
int,ext(u, δu) = δ
u

int(u, δu) + δ
u
ext(δu) (50)

with

δ
u
int(u, δu) = −

Ns∑

s=1

{∫

�
(s)
n

P(s) : ∇̄∇∇(δu(s)) d�

}
(51)

and

δ
u
ext(δu) =

Ns∑

s=1

{∫

�
(s)
σ

t̂(s) · δu(s) d�

}
. (52)

The work performed at the interface by the virtual gap reads

δ
u
I (u,λλλu) =

∫

Dn

λλλu · δḡ(uD) dD =
∫

Dn

λNδḡN(uD) dD

+
∫

Dn

λTδḡT(uD) dD, (53)

where δḡ denotes the gap intensity variations. The interface
normal and tangential work contributions can also be written
in terms of the displacement variations following the expres-
sions of the gap intensity variations developed in [16,28].
The work performed by the pressure Lagrange multipliers at
the interface can be expressed as:

δ

p
I (λp, δp) =

∫

Dn

λpδg
D
p dD. (54)

The variational statements for the displacement constraint
equations are introduced in detail in [8] and read:

δ
λN(uD, δλN) =
∫

Dn

δλNḡN(uD) dD, (55)

δ
λT(u
D, δλT) =

∫

Dn

δλTḡT(uD) dD (56)

and force the interface work to nullify in an average sense
along the domain interface Dn . Accordingly, the new vari-
ational statement for the interface pressure constraint is
expressed as:

δ
λp(p, δλp) =
∫

Dn

δλpg
D
p dD. (57)

Remark 3.1 In order to stabilize the pressure field for the
case of compressible and nearly compressible materials the
projection term in (183) is added to the weak form of
the constitutive equation concerning the incompressibility
condition in (46). Such projection term arises from the Poly-
nomial Pressure Projection (PPP) method briefly introduced
in Appendix 1.

Remark 3.2 The identification of the pressureLagrangemul-
tipliers λp stem from the variational statement corresponding
to the weak form of the governing equations in (46). The
expression in (54) concerning the interface work δ


p
I devel-

oped by the pressure Lagrange multipliers can be further
elaborated as:

δ

p
I (λp, δp) =

∫

Dn

λpδg
D
p dD =

∫

Dn

λp
∂

∂N

(
δpD

)
dD
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=
∫

∂Dn

δpDλp dD −
∫

Dn

δpD
∂λp

∂N
dD =

∫

∂Dn

δpDλp dD,

(58)

where integration by parts is employed considering the
expression of the pressure gap in (29) and the constant char-
acter of the pressure Lagrange multipliers λp. In the limit
where h(q) tends to zero, the expression in (58) can be writ-
ten as

δ

p
I (λp, δp) = lim

h(q)→0

∫

∂Dn

δpDλp dD =
∫

�I

δpλp d�.

(59)

The total virtual work performed by the pressure variations
reads

δ
p(p, δp) =
Ns∑

s=1

{∫

�n

δp(s)

(
ln(J (s))

J (s)
− 1

κ
p(s)

)
d�

}

+
∫

�I

δpλp d� = 0, ∀δp ∈ V̂(s)
p , (60)

and, therefore, the associated Euler-Lagrange equations with
the corresponding natural boundary conditions can be iden-
tified as:

p(s)

κ
= ln(J )(s)

J (s)
, ∀x ∈ �(s), (61)

λp = 0, ∀x ∈ �I, (62)

which concludes the proof that identifies the pressure
Lagrange multipliers λp at the interface.

3.2 Discretization using FE and lambda-solvability of
the mixed u/ p system

A Galerkin-based spatial discretization is considered in
which the solution field components and their variations
at each domain �(s) are interpolated as indicated in (174)
to (177) (cf. Appendix 1). The Lagrangemultipliers and their
variations connecting displacement and pressure fields are
interpolated as

λλλu(xn) =
∑

b

�u
b (xn)���u,b ∀xn ∈ Dn (63)

δλλλu(xn) =
∑

b

�u
b (xn)δ���u,b ∀xn ∈ Dn, (64)

λp(xn) =
∑

b

�
p
b (xn)�p,b ∀xn ∈ Dn, (65)

δλp(xn) =
∑

b

�
p
b (xn)δ�p,b ∀xn ∈ Dn, (66)

where the subscript b stands for the the discrete nodes cor-
responding to the Lagrange multipliers interpolation using
the domain-wise constant shape functions �u and �p which
read:

�u(xn) =
{
1 ∀xn ∈ D(p)

n

0 ∀xn /∈ D(p)
n

, �p(xn) =
{
1 ∀xn ∈ D(p)

n

0 ∀xn /∈ D(p)
n

(67)

The corresponding FE approximations of the mixed vari-
ational statements in (45) to (49) are denoted as follows:

δ
u(u, δu,λλλu) ≈ δ
u,h(û, δû)

= δ

u,h
int,ext(û, δû) + δ


u,h
I (û,���u, δû),

(68)

δ
p(p, λp, δp) ≈ δ
p,h( p̂,�p, δ p̂) = δ

p,h
� ( p̂, δ p̂)

+ δ

p,h
I ( p̂,�p, δ p̂), (69)

δ
λN(uD, δλN) ≈ δ
h
λN

(ûD, δ�N), (70)

δ
λT(u
D, δλT) ≈ δ
h

λT
(ûD, δ�T), (71)

δ
λp(p
D, δλp) ≈ δ
h

λp
( p̂D, δ�p), (72)

Considering that (68) to (72) hold for any virtual quantity
δû, δ p̂, δ�N, δ�T and δ�p, the resulting discrete problem
consists in finding the nodal quantities û, p̂,���u and�p such
that the following residual is nullified:

Ru(û,���u, p̂) = Ru
int,ext(û, p̂) + Ru

I (û,���u) = 0, (73)

Rp( p̂,�p) = Rp
�( p̂,�p) + Rp

I ( p̂,�p) = 0, (74)

R̃λu(û
D) =

[
R̃λN(ûD)

R̃λT(û
D)

]
= 0, (75)

Rλp( p̂
D) = 0. (76)

The residuals concerning the mechanical Ru
int,ext and

incompressible part Rp are detailed in (180) and (181) (cf.
Appendix 1). The discrete contributions of the normal and
tangential Lagrange multipliers Ru

I as well as the contri-
butions R̃λu has been already introduced in [8] for the
irreducible formulation. The contribution of the pressure
Lagrange multipliers at the interface

Rp
I ( p̂,�p) =

∫

Dn

[
�p�p∇̄∇∇N

p · N]
dD (77)

and the corresponding residual of the pressure Lagrangemul-
tiplier restriction
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Rλp( p̂
D) =

∫

Dn

[
∇̄∇∇N

p · N p̂D
]
dD. (78)

The discrete equations (73) to (76) are linearized and
solved incrementally via a Newton-Raphson procedure lead-
ing to the following system:

⎡

⎢⎢⎣

Ru

Rp

R̃λu

Rλp

⎤

⎥⎥⎦ +

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Ru

∂û
∂Ru

∂ p̂

∂Ru

∂���u
0

∂Rp

∂û
∂Rp

∂ p̂
0T

∂Rp

∂�p

∂R̃λu

∂û
0

∂R̃λu

∂���u
0

0T
∂Rλp

∂ p̂
0T 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎣


û

 p̂

���u


�p

⎤

⎥⎥⎦ = 0.

(79)

As argued in [8], the component
∂R̃λ

∂���u
differs from zero

due to the introduction of a stabilization term added to the
constraint variational statements (70) and (71). Following
an analogous procedure, a new stabilization term needs to be
added to the variational statement related to the pressure con-
straint δ
p

λp
in order to provide a dependency of the residual

component Rλp with respect to the Lagrange multipliers �p.
The modified residual component

δ
̃
p
λp

(p, δλp, δp) = δ

p
λp

(p, δλp, δp)

+
∫

∂Dn∩�
(s)
D

δλpτpλp d� = 0, ∀δλp ∈ Lp

(80)

and essentially consists in the addition of a weak format
of the pressure Lagrange multiplier identification in (37). It
should be noted that, since the penalized term is part of the
Euler-Lagrange equations of the variational principle (37),
it will tend to zero upon mesh refinement. For this reason
the stabilization procedure described in (80) is understood
as a consistent penalty method in which, unlike other non-
consistent penalty methods, the parameter τp > 0 can be
made significantly small without affecting the quality of the
obtained results. Obviously, arbitrarily large values of τp may
lead to an ill-conditioning of the resulting system. However,
as noted in the example reported in Sect. 6.1, results are
remarkably insensitive to the value of τp since a large differ-
ence in such values barely affects the resulting pressure field.

The new modified residual

R̃λp( p̂
D,�p) = Rλp( p̂

D) +
∫

�n

τp�
p�p d� = 0 (81)

and the linearized system in (79) can be rewritten as

⎡

⎢⎢⎣

Ru

Rp

R̃λu

R̃λp

⎤

⎥⎥⎦ +

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Ru

∂û
∂Ru

∂ p̂

∂Ru

∂���u
0

∂Rp

∂û
∂Rp

∂ p̂
0T

∂Rp

∂�p

∂R̃λu

∂û
0

∂R̃λu

∂���u
0

0
∂R̃λp

∂ p̂
0T

∂R̃λp

∂�p

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎣


û

 p̂

���u


�p

⎤

⎥⎥⎦ = 0.

(82)

Remark 3.3 Note that the stabilization parameter τp has no
dimensions associated with it as opposed to the stabilization
parameter τ utilized for the component Rλ and conveniently
justified in [8].

The dual assembly in (82) is rewritten considering the
discretized quantities for each domain �(s) as

⎡

⎢⎢⎢⎢⎣

K(1)
dd 0 0 K(1)

d�

0
. . . 0

...

0 0 K(Ns)
dd K(Ns)

d�

K(1)
�d . . . K(Ns)

�d K��

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎣


d(1)

...


d(Ns)


���

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎢⎣

r(1)
d
...

r(Ns)
d
r�

⎤

⎥⎥⎥⎥⎦
, (83)

where

[
K(s)

dd K(s)
d�

K(s)
�d K��

]
=

⎡

⎢⎢⎢⎣

∂ (Rd(d,���))(s)

∂d(s)

∂ (Rd(d,���))(s)

∂���(s)

∂
(
R̃λ(d,���)

)(s)

∂d(s)

∂R̃λ(d,���)

∂���

⎤

⎥⎥⎥⎦ ,

(84)
[
r(s)
d
r�

]
=

[− (Rd(d,���))(s)

−R̃λ(d,���)

]
(85)

and

d(s) =
[
û(s)

p̂(s)

]
= d(xn)|xn ∈ �(s), (86)

���(s) =
[
���u

(s)

�p
(s)

]
= ���(xn)|xn ∈ �

(s)
I = �I ∩ �(s), (87)

(Rd(d,���))(s) =
[
Ru(s)(d,���)

Rp(s)(d)

]

= R̃d(d,���),∀d = d(s) and ∀��� = ���(s),

(88)

(
R̃λ(d,���)

)(s) =
[
R̃(s)

λu
(d,���)

R̃
(s)
λp

(d,���)

]

= R̃λ(d,���), ∀d = d(s) and ∀��� = ���(s).

(89)
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Fig. 7 Lagrange multiplier
identification at the discretized
interface for the coupled
thermomechanical u/p/θ DIM
formulation
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Different parallel solution strategies for solving such a sys-
tem are briefly discussed in Sect. 5 together with an iterative
scheme for a general non-linear problem.

4 DIM for coupled thermomechanical u/ p/θ
formulations

The coupled thermomechanical formulation utilized in this
manuscript is explained in detail in Appendix 1 for the case
of a monolithic approach. In this manner, the present sec-
tion is exclusively focused on the necessary extensions to
the DIM in order to tackle such mixed problems. The kernel
of the coupled thermomechanical DIM consists in the iden-
tification of the appropriate Lagrange multipliers concerning
the connection of the displacement, pressure and tempera-
ture fields across the interface (cf. Fig. 7). The main addition
with respect to the mixed formulation detailed in Sect. 3 is
the introduction of the temperature unknowns θ which are
transferred through the corresponding Lagrange multipliers
λθ located at each interface patch D(q). The temperature θ(q)

at the interface patch D(q) is calculated by linearly interpo-
lating the temperature unknowns θD

i as

θD(xn) ≡ θ(q)(xn) =
3∑

i=1

N
θ ,D
i (xn)θDi , ∀xn ∈ D(q)

n . (90)

The heat flux defined at the interface patch D(q) is denoted
asQ(q) andQ(q)

e refers to the heat flux at theFEadjacent to the
base-side of the interface patch. In this manner, the Lagrange
multiplier λθ is defined as the the projection of the adjacent
flux Q(q)

e to the normal N(q) of the base-line as:

λθ = Q(q)
e · N(q). (91)

The thermal gap gθ is defined for each discretized interface
patch D(q) as

gθ = ∂θ(q)

∂N (q)
= ∇̄θ(q) · N(q) (92)

and is understood as the temperature gradient projected onto
the normal to the base side of the triangular patch N(q). In
order to provide a continuous heat flux across the interfaces
the thermal gap is forced to be null. The effective temperature
gap ḡθ is found normalizing the temperature gap gθ as

ḡθ = gp
|gθ | . (93)

4.1 Strong and weak forms of the coupled
thermomechanical u/ p/θ DIM formulation

The strong form of the mixed u/p/θ formulation introduced
in detail in Appendix 1 is considered at each domain �(s)

accounting for the interface restrictions. In this view, the
strong form of the DIM thermomechanical formulation can
be stated as:

FIND:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u ∈ VVV(s)
u : �(s)

n → R
2,

p ∈ V(s)
p : �(s)

n → R,

θ ∈ V(s)
θ : �(s)

n → R,

λλλu ∈ LLLu : Dn → R
2,

λp ∈ Lp : Dn → R,

λθ ∈ Lθ : Dn → R,

(94)

FULFILLING:

Equilibrium equation: ∇̄∇∇ · P(s) = 0, in �(s)
n (95)

Constitutive pressure equation:
p(s)

κ
= ln(J )(s)

J (s)
, in �(s)

n

(96)

Energy balance: ρ0U̇
(s)+∇̄∇∇ · Q(s) =D(s)

int +ρ0R
(s), in �(s)

n
(97)

Dirichlet’s boundary conditions: u(s) = û(s), in �(s)
u

(98)
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Neumann’s boundary conditions:

t(s) = P(s) · N(s) = t̂(s), in �(s)
σ (99)

Lagrange multiplier identification:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λN = t (s)N

λT = t (s)T

λp = 0

λθ = Qe · N

, in Dn, (100)

Compatibility constraints:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ḡN(uD) = 0

ḡT(uD) = 0

ḡp(p) = 0

ḡθ (θ) = 0

, in Dn, (101)

where the domain energy balance equation, the identification
of the temperature Lagrange multiplier and the temperature
gap restriction are the new ingredients compared to the strong
form presented in Sect. 3.

The strong form in (95) to (101) is expressed through
the equivalent variational principles in which the weak form
presented in Sect. 3 is extended accounting for equations
concerning the temperature field.

To this end, the solutionVVV� and weighting V̂VV� spaces for
the displacements, pressure and temperature fields together
with the Lagrange multiplier space LLL� for the solution and
weighting functions read:

VVV(s)
u :=

{
u
/
u
∣∣∣
�(s)

∈ H1(�(s)), u(s) = û(s) in �(s)
u

}
,

(102)

V̂VV(s)
u :=

{
δu

/
δu

∣∣∣
�(s)

∈ H1(�(s)), δu(s) = 0 in �(s)
u

}
,

(103)

V(s)
p :=

{
p
/
p
∣∣∣
�(s)

∈ L2(�(s))
}

, (104)

V̂(s)
p :=

{
δp

/
δp

∣∣∣
�(s)

∈ L2(�(s))
}

, (105)

V(s)
θ :=

{
θ
/

θ

∣∣∣
�(s)

∈ L2(�(s)), θ = θ̂ in �θ

}
, (106)

V̂(s)
θ :=

{
δθ

/
δθ

∣∣∣
�(s)

∈ L2(�(s))
}

, (107)

LLLu := L2(D), (108)

Lp := L2(D), (109)

Lθ := L2(D), (110)

H1(�) and L2(D) being the Sovolev space of functions
with square integrable derivatives and the Lebesgue space
of square integrable functions, respectively. The variational
statement for the mixed u/p/θ formulation reads:

FIND:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u ∈ VVV(s)
u : �(s)

n → R
2,

p ∈ V(s)
p : �(s)

n → R,

θ ∈ V(s)
θ : �(s)

n → R,

λλλu ∈ LLLu : Dn → R
2,

λp ∈ Lp : Dn → R,

λθ ∈ Lθ : Dn → R,

(111)

FULFILLING:

δ
u(u,λλλu, δu) = δ
u
int,ext(u, δu)

+ δ
u
I (u,λλλu, δu) = 0, ∀δu ∈ V̂VV(s)

u , (112)

δ
p(p, λp, δp) = δ

p
�(p, δp) + δ


p
I (λp, δp)

= 0, ∀δp ∈ V̂(s)
p , (113)

δ
θ(θ, λθ , δθ) = δ
θ
int,ext(θ, δθ) + δ
θ

I (λθ , δθ) = 0,

∀δθ ∈ V̂(s)
θ , (114)

AND

δ
λN(uD, δλN) = 0, ∀δλN ∈ Lu, (115)

δ
λT(u
D, δλT) = 0, ∀δλT ∈ Lu, (116)

δ
λp(p
D, δλp) = 0, ∀δλp ∈ Lp. (117)

δ
λθ (θ
D, δλθ ) = 0, ∀δλθ ∈ Lθ . (118)

The part of the thermal work corresponding to internal and
external contributions

δ
θ
int,ext(θ, δθ) = −δ
θ

int(θ, δθ) + δ
θ
ext(δθ) (119)

with

δ
θ
int(θ, δθ) =

Ns∑

s=1

{∫

�
(s)
n

δθ(s)cθ̇ (s) d�

}

+
{∫

�
(s)
n

[
k∇̄∇∇(δθ(s)) · ∇̄∇∇(θ(s))−

√
2

3

λσy(θ

(s))

]
d�

}

(120)

and

δ
θ
ext(δθ) =

Ns∑

s=1

{∫

�
(s)
n

δθ(s) R̂(s) d�

+
∫

�
(s)
n

δθ(s)
[
−D(s)

]
d�

}
, (121)

where R̂(s) and D(s) stand for the heat sources and the out-
ward normal heat flux term applied at the interface �n

The work performed at the interface by the Lagrange mul-
tipliers λθ reads

δ
θ
I (λθ , δθ) =

∫

Dn

λθδgθ (θ
D) dD, (122)
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where δgθ denotes the thermal gap variations.

Remark 4.1 The identification of the temperature Lagrange
multipliers λθ stem from the variational statement corre-
sponding to the weak form of the governing equations
in (114). The expression in (122) concerning the interface
work δ
θ

I developed by the temperature Lagrange multipli-
ers can be further elaborated as:

δ
θ
I (λθ , δθ) =

∫

Dn

λθδg
D
θ dD =

∫

Dn

λθ

∂

∂N

(
δθD

)
dD

=
∫

∂Dn

δθDλθ dD −
∫

Dn

δθD
∂λθ

∂N
dD

=
∫

∂Dn

δθDλθ dD, (123)

where integration by parts is employed considering the
expression of the temperature gap in (92) and the constant
character of the temperature Lagrange multipliers λθ . In the
limit where h(q) tends to zero, the expression in (123) can be
written as

δ
θ
I (λθ , δθ) = lim

h(q)→0

∫

∂Dn

δθDλθ dD =
∫

�I

δθλθ d�.

(124)

The total virtual work performed by the temperature varia-
tions reads

δ
θ(θ, δθ) = −
Ns∑

s=1

{∫

�
(s)
n

δθ(s)cθ̇ (s) d�

}

−
{∫

�
(s)
n

[
k∇̄∇∇(δθ(s)) · ∇̄∇∇(θ(s)) −

√
2

3

λσy(θ

(s))

]
d�

}

+
Ns∑

s=1

{∫

�
(s)
n

δθ(s) R̂(s) d� +
∫

�
(s)
n

δθ(s)
[
−D(s)

]
d�

}

+
∫

�I

δθλθ d� = 0, ∀δθ ∈ V̂(s)
θ , (125)

and, therefore, the associated Euler-Lagrange equations with
the corresponding natural boundary conditions can be iden-
tified as:

ρ0U̇
(s) + ∇̄∇∇ · Q(s) = D(s)

int + ρ0R
(s), ∀x ∈ �(s) (126)

λθ = D = Qe · N, ∀x ∈ �I, (127)

which concludes the proof that identifies the pressure
Lagrange multipliers λθ at the interface.

The variational statement for the thermal constraint equa-
tions reads:

δ
λθ (θ
D, δλθ ) =

∫

Dn

δλθgθ (θ
D) dD = 0 (128)

and basically enforces in a weak sense the restriction to the
thermal gap gθ = 0 (cf. equation (118)). In other words, the
variational statement in (128) forces overall continuity of the
heat flux across the interface.

As argued in [8] and briefly commented in Sect. 3.2,
the independence of the restriction statement with respect
to the corresponding Lagrange multiplier, e.g. independence
of (128) with respect to λθ , leads to a system prone to exhibit
instabilities if the adopted solution field discretization does
not satisfy the LBB condition [2]. To this end, an extra term
is added to the thermal restriction variational statement in
order to provide the dependence with λθ as

δ
̃λθ (θ
D, λθ , δλθ ) =

∫

�n

δλθτθ

(
Q(θ(s)) · N−λθ

)
d� = 0.

(129)

The extra term is based in the expression in (100) and
enforces the temperature Lagrange multiplier λθ to be equal
to the heat flux vector Q of the adjacent element projected
on to the normal N(q) of the base-side of the corresponding
patch D(q) (cf. Fig. 7).

The stabilization parameter τθ > 0 is defined as

τθ = αL

k
, (130)

α > 0 being an non-dimensional parameter, L stands for the
length of the base-side of D(q) and k denotes the thermal
conductivity coefficient.

4.2 Discretization using FE and lambda-solvability of
the thermal system

As seen in the monolithic formulation (cf. Appendix 1),
the coupled thermomechanical problem is resolved in a
staggered way and, for this reason, only the discretized tem-
perature equations are outlined in this section. The final
discretized system needs to be solved together with the
mechanical system in (83) outlined in Sect. 3. A full iterative
procedure for the solution of the coupled thermomechanical
domain decomposition problem is outlined in Sect. 5.

A Galerkin-based spatial discretization is considered in
which the solution field components and their variations
at each domain �(s) are interpolated as indicated in (232)
to (237) (cf. Appendix 1). The temperature Lagrange multi-
pliers are interpolated as

λθ (xn) =
∑

b

�θ
b (xn)�θ,b ∀xn ∈ Dn, (131)

δλθ (xn) =
∑

b

�θ
b (xn)δ�θ,b ∀xn ∈ Dn, (132)

123



Comput Mech

where the subscript b stands for the the discrete nodes cor-
responding to the Lagrange multipliers interpolation using
the shape functions�θ = �p defined at each interface patch
D(q) as described in (67).

The corresponding FE approximations of the thermal vari-
ational statements in (119), (122) and (128) are denoted as
follows:

δ
θ = δ
θ
int,ext(θ, δθ) + δ
θ

I (λθ , δθ) ≈ δ
θ ,h(θ̂ , δθ̂ ,�θ )

= −δ
θ
int,h(θ̂ , δθ̂ ) + δ
θ

ext,h(δθ̂) + δ

θ ,h
I (�θ , δθ̂),

(133)

δ
̃λθ (θ
D, λθ , δλθ ) ≈ δ
̃h

λθ
(θD,�θ , δ�θ ). (134)

Considering that (133) and (134) hold for any virtual quantity
δθ̂ and δ�θ , the resulting discrete problem consists in finding
the nodal quantities θ̂ and�θ such that the following residual
is nullified:

Rθ (θ̂ , �θ ) = Rθ
int,ext(θ̂) + Rθ

I (�θ ) = 0, (135)

Rλθ (θ
D,�θ ) = 0, (136)

where

Rθ
int(θ̂) =

∫

�
(s)
n

[
N

θ [c ˙̂
θ(s)] + BT[k∇̄∇∇ θ̂ (s)]

−N
θ

[√
2

3
σy(θ̂

(s))
λ

]]
d�, (137)

Rθ
ext =

∫

�
(s)
n

N
θ R̂(s) d� −

∫

�
(s)
n

N
θ D(s) d�, (138)

Rθ,h
I (�θ ) =

∫

Dn

[
��θ

(
∇̄∇∇(Nθ ) · N(s)

)]
dD, (139)

Rλθ (θ
D,�θ ) =

∫

Dn

[
∇̄∇∇N

θ · N(s)
]
θD dD

−
∫

�n

τθ

[
kN(s) · ∇̄∇∇N

θ θ̂ (s) + ��θ

]
d�,

(140)

The discrete equations (135) and (136) are linearized and
solved incrementally via a Newton-Raphson procedure lead-
ing to the following system:

[
Rθ

Rλθ

]
+

⎡

⎢⎢⎣

∂Rθ

∂θ̂

∂Rθ

∂�θ
∂Rλθ

∂θ̂

∂Rλθ

∂�θ

⎤

⎥⎥⎦

[

θ̂


�θ

]
= 0. (141)

Assembling the contributions for each domain �(s) the
global system of equations reads:

⎡

⎢⎢⎢⎢⎣

K (1)
θθ 0 0 K (1)

θ�θ

0
. . . 0

...

0 0 K (Ns)
θθ K (Ns)

θ�θ

K (1)
�θ θ . . . K (Ns)

�θ θ K�θ�θ

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎣


θ̂(1)

...


θ̂ (Ns)


�θ

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎢⎣

r (1)
d
...

r (Ns)
θ

r�θ

⎤

⎥⎥⎥⎥⎦
,

(142)

where

[
K (s)

θθ K (s)
θ�θ

K (s)
�θ θ K�θ�θ

]
=

⎡

⎢⎢⎢⎣

∂Rθ(s)

∂θ̂ (s)

∂Rθ(s)

∂�θ
(s)

∂R(s)
λθ

∂θ̂ (s)

∂Rλθ

∂�θ

⎤

⎥⎥⎥⎦ , (143)

[
r (s)
θ

r�θ

]
=

[
−Rθ (s)

−Rλθ

]
(144)

and

θ̂ (s) = θ̂ (xn)|xn ∈ �(s), (145)

�θ
(s) = �θ(xn)|xn ∈ �

(s)
I = �I ∩ �(s). (146)

Different parallel solution strategies for solving such a
system are briefly discussed in Sect. 5 together with an iter-
ative scheme for the general non-linear thermomechanical
problem.

5 Parallel system solution strategies and non-linear
iterative scheme

Bothmechanical (83) and thermal systems (142) are expected
to be large and suitable to be solved using parallel solvers. As
argued in [8], both sparse systems can be resolved in a robust
manner using direct parallel solvers such as multi-frontal or
block-LU methods [34]. Considering that multifield prob-
lems may lead to ill conditioned systems, i.e. due to the
contrast between stiffness coefficients, this choice might be
a suitable one since they are based on independent simul-
taneous factorizations of the domain matrices and specific,
i.e. problem dependent, preconditioners are not required.
However, a considerable amount of memory is required and
scalability is only expected in a moderate number of proces-
sors. As pointed out in [12,23], block-LU solvers account
for automatic load-balancing and multi-threading which is
optimal when dealing with highly heterogeneous domains in
terms of the number of DOF.

In order to obtain scalabilities in a massive number of
processors it is convenient to recast the global systems (83)
or (142) in terms of the interface flexibility problem2

2 Note that the the subscripts utilized in equations (148) and (149) refer
directly to the subscripts in (83) but the thermal system in (142) can be
treated in the same way by considering θ instead of d and �θ instead
of �.
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Fig. 8 Handling domains �(m)

with RBMs. Stabilizing
interface patches
D(r), r = 1 . . . 4 correspond to
the shadowed elements

Ω(q)Ω(s) Ω(m)

dD
1

ΛΛΛ(2)ḡ(1)I

Stabilizing interface patches D(r) for domains with RBMs Ω(m)

(r = 1 . . .4)

dD
2

dD
3

D(3) D(4)

D(1) D(2)

FI
��� = 
gI, (147)

FI = K�� −
Ns∑

s=1

(
K(s)

�d

(
K(s)

dd

)−1
K(s)

d�

)
, (148)


gI = r� −
Ns∑

s=1

(
K(s)

�d

(
K(s)

dd

)−1
r(s)
d

)
, (149)

considering that the matrices K(s)
dd can be inverted, i.e.

they do not exhibit singularities arising from the existence of
rigid body modes (RBMs). The flexibility of the interface FI

can be understood as the condensation of the domain stiff-
ness matrices at the interface whereas 
gI is, in turn, the
condensed residual force vector at the interface �I.

After solving the flexibility problem in (147) and obtain-
ing the Lagrange multiplier field 
���, the domain displace-
ment increments 
d(s) can be independently calculated for
each domain as


d(s) =
(
K(s)

dd

)−1 (
r(s)
d − K(s)

d�
���
)

. (150)

A blend of direct solvers are employed to independently
compute the factorizations of the domain stiffness and an iter-
ative solver is utilized for the solutionof the interface problem
in (147) which is never assembled in practice and, thus,
requiring a considerably low memory profile [13,14]. Since
the resolution of the interface problem and the computation
of the domain solution fields are inherently parallel tasks, the
methodology scales well in massively parallel computers.

If one or more subdomains �(s) exhibit rigid body modes
(RBMs), the corresponding matrices K(s)

dd are not invertible
and the expressions in (147) to (149) need to be modified

considering the generalized inverse for each domain K(s)
dd

+
.

The new expressions basically extend the unknown field d
accounting for the rigid bodymode intensitiesααα as explained
in [8,20,22]. Thismethodology is general for the parallel pro-
cessing of any dual system (83) or (142) but its implementa-
tion in commercial FE packages is regarded highly intrusive.

In this view, exploiting the novel features of the DIM
method, i.e. a continuous fictitious discretization of the inter-
face, a newmethodology to handle rigid bodymodes has been
proposed in [8] and adopted in this contribution. The method
is described in detail in [8] and essentially adds a new term
to the variational statements in (45) to (46) or (112) to (114)
which penalizes a function of the type 1

2 ||ḡ||2. It is impor-
tant to mention that the new term is nullified in the solution
since it is related with the Euler-Lagrange equations of the
constraint variational principle, this giving rise to the term
“consistent penalty”. The new variational statements in (45)
to (46) and (112) to (114) read:

δ
̃u = δ
u + δ
u
RBM = δ
u +

Nr∑

r=1

cu

∫

�
(r)
D

δḡu · ḡu d� = 0,

(151)

δ
̃p = δ
p + δ

p
RBM = δ
p +

Nr∑

r=1

cp

∫

�
(r)
D

δḡp · ḡp d� = 0,

(152)

δ
̃θ = δ
θ + δ
θ
RBM = δ
θ +

Nr∑

r=1

cθ

∫

�
(r)
D

δḡθ · ḡθ d� = 0,

(153)

where �
(r)
D corresponds to the interface segments such that

�
(r)
D = �(s) ∩ D(r), Nr representing the number of patches

utilized to handle the RBMs (cf. Fig. 8) and c� denotes
the penalty coefficient utilized to enforce the new condition.
A more detailed formulation considering the weak and dis-
cretized contributions of the stabilizing interface patches to
the global system can be found in [8] for the irreducible for-
mulation.

Remark 5.1 Note that the term cθ̇ in (137) allows for the
computation of K−1

θθ since it behaves similarly than a mass
matrix in a dynamic setting. However, for the choice of null
specific heat c = 0 the RBMs need to be eliminated with the
addition of stabilizing interface contributions as indicated
in (153) leading to a modified matrix of the type
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K̃θθ = Kθθ + cθ R̃T
θ Rθ , (154)

cθ > 0 corresponding to the penalization term.

The linearized set of equations in (83) and (142) obtained
with a Newton-like scheme is solved iteratively for each
load/time step 
t (cf. Newton-Krylov-Schur methods [9,
15]). In this view, two types of iterations can be identified. A
first type refer to the solution of the non-linear problem with
successive linear approximations and second type arise from
the solution of the flexibility problem in (147) where usually
Conjugate Gradient or GMRES iterates are considered. The
Schur complements are utilized for the local solutions at each
domain �(s) as indicated in (150).

Assuming a fix domain decomposition and a given Delau-
nay interface discretization, the iterative scheme for the
coupled thermomechanical non-linear DIM framework is
summarized in Box 1.

6 Framework validation through representative
simulations

Two representative tests are selected to assess the perfor-
mance of the multifield domain decomposition framework.
Attention is focused on the continuity of the hybrid solution
field at the interface, the convergence rate upon mesh refine-
ment and the influence of the stabilization parameters as well
as the activation of the Lagrange multipliers for the differ-
ent solution fields at the interface. Finite strain theory and
plane strain conditions are considered in all two dimensional
examples.

6.1 Mixed u/ p formulation for incompressible problems

The mixed u/p formulation is tested in the context of the
DIM by solving the Cook’s membrane problem. This test
constitutes a well known benchmark problem for assessing
the performance of themixed u/p element in both compress-
ible and incompressible conditions (cf. [26,37]). The setup
is basically sketched in Fig. 9 where a vertical force F is
applied at one end of the membrane while the opposite end
is fixed in both directions.

The membrane is considered elastic with Young’s modu-
lus E = 70 N/mm2 and the Poisson’s ratio ν is set to 1/3
and nearly 0.5 for the compressible and incompressible case,
respectively.

In order to assess the convergence of the proposedmethod-
ology, five different discretization scenarios are considered.
These concern a monolithic approach and the DIM on the
body partitioned in two domains, i.e. �(1) and �(2) depicted
in Fig. 9, with both conforming and non-conforming inter-
faces (cf. Table 1; Fig. 10).

Box 1 Iterative scheme for the coupled thermomechanical
non-linear DIM
Initialize: d(s)

0 ,�
(s)
0 ,K(s)

dd,0,K
(s)
d�,0,K

(s)
�d,0,K��,0, r

(s)
d,0 and r�,0

Initialize: θ̂ (s)
0 ,�

(s)
θ,0,K

(s)
θθ,0,K

(s)
θ�θ ,0,K

(s)
�θ θ,0,K�θ �θ ,0, r

(s)
θ,0 and r�θ ,0

New load step tn+1 = tn + 
t :

1. Mechanical step at constant temperature θn :
Add new external force increment to the residual r(s)

d ← f (s)ext,n+1

2. Update tangent stiffness K(s)
dd,i ,K

(s)
d�,i ,K

(s)
�d,i ,K��,i using nodal

data from last iteration i

• If floating domain K(s)
dd,i ,K

(s)
d�,i , r

(s)
d,i ← R̃mech,i (d,���)(s)

• Otherwise K(s)
dd,i ,K

(s)
d�,i , r

(s)
d,i ← Rmech,i (d,���)(s)

3. Parallel solver:

• Factorize local stiffness and compute the flexibility compo-
nents FI,i and 
gI,i

• Solve for 
���i+1 = (
FI,i

)−1

gI,i using an iterative solver.

• Compute displacement increments 
d(s)
i+1 =

(
K(s)

dd,i

)−1 (
r(s)
d,i − K(s)

d�,i
�i+1

)

4. Update domain internal variables, assemble internal forces and
compute new residuals r(s)

d,i+1 and r(s)
�,i+1

5. Check for convergence:
If converged:

Thermal step at constant configuration
{
ûn, p̂n

}

Add new external increment to the residual r(s)
θ,n+1

Update tangent K(s)
θθ,i ,K

(s)
θ�θ ,i ,K

(s)
�θ θ,i ,K�θ �θ ,i using

nodal data from last iteration i
If floating domain K(s)

θθ,i ,K
(s)
θ�θ ,i , r

(s)
θ,i ←

R̃therm,i (θ,�θ )
(s)

Otherwise K(s)
θθ,i ,K

(s)
θ�θ ,i , r

(s)
θ,i ← Rtherm,i (θ,�θ )

(s)

Parallel solver: Iterate until convergence
Factorize local stiffness and compute the flexibility

components FI,i and 
gI,i
Solve for 
���i+1 = (

FI,i
)−1


gI,i using an iterative
solver.

Compute temperature increments
θ
(s)
i+1=

(
K(s)

θθ,i

)−1

(
r(s)
θ,i − K(s)

θ�θ ,i
�θ,i+1

)

Update domain internal variables, assemble internal
forces
compute new residuals r(s)

θ,i+1 and r(s)
�θ ,i+1

go to 1
Else, add new iteration i and go to 2

All operations involving domain FE quantities (i.e. with superscript s)
require a loop over all domains �(s)

Note that for the mixed u/p formulation all steps involving temperature
quantities need to be skipped

The vertical displacement of point A (cf. Fig. 9) is
monitored for both monolithic and domain decomposition
analyses employing the five different FE discretizations. Fig-
ure 11 shows the convergence behaviour in terms of the
vertical displacement for the compressible and incompress-
ible cases upon different mesh refinements.
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Fig. 9 Geometry, boundary conditions and domain decomposition of
the Cook’s membrane test

Table 1 Number of finite elements for the five discretization scenarios
considered at the Cook’s membrane test. Each discretization is particu-
larized for the monolithic approach on the whole domain � and for the
domain interface method (DIM) with conforming and non-conforming
interfaces at partitions �(1) and �(2)

Discretization Monolithic
approach

Domain interface method (DIM)

Conforming Non-conforming

�(1) �(2) �(1) �(2)

1 8 4 4 4 6

2 72 36 36 36 60

3 200 100 100 100 150

4 800 400 400 400 600

5 5000 2500 2500 2500 3000

It is observed that all analyses provide an analogous con-
vergent behaviour and thedifferences between themonolithic
approach and the domain decomposition strategy are hardly
visible beyond the third discretization, i.e. around 200–250
FE. In both compressible and incompressible analyses the
DIMwith non-conforming interfaces shows a slightly slower
convergence with respect to the domain decomposition with
conforming interfaces.

The influence of the activation of the pressure Lagrange
multiplier λp is studied for the incompressible case employ-
ing both conforming and non-conforming interfaces (cf.
Fig. 12).

It is observed that the activation of λp hardly influences
the displacement solution field and the monitored vertical
displacement is almost identical in all cases. Consequently,
the Lagrange multiplier λp does not seem to play a relevant
role in the correct transference of the displacements across
the interfaces.

The influence of the activation of λp on the correct trans-
ference of the pressure variable across the interface is studied
by monitoring the norm of the pressure jump �p� at the inter-
face �1,2 between domains �(1) and �(2) as

∣∣∣∣�p�
∣∣∣∣
L2

=
(∫

�1,2

∣∣p2 − P�2(p1)
∣∣2 d�1,2

)1/2

, (155)

where P�2(p1) denotes the projection of the coarse domain
interface pressure p1 onto the fine interface discretization
�2. It can be observed that the error

∣∣∣∣�p�
∣∣∣∣
L2

reduces with
decreasing element size h (cf. Fig. 13).

Moreover, the convergence rate is increased and the mag-
nitude of the error is diminished when the pressure Lagrange
multiplier λp is activated. The benefits of the activation of
λp are illustrated in the pressure distribution plots across the
interface �1,2 for different mesh discretizations (cf. Fig. 14).

The deactivation of λp leads to a pressure jump across the
interface �1,2. This effect is obviously less visible for the
fine discretizations but the benefits of activating the pressure
Lagrange multiplier are clear among all tested FE meshes.

The influence of the stabilization parameter τp is stud-
ied for the incompressible Cook membrane with a non-
conforming interface. The pressure distribution along the
segment AA′ (cf. Fig. 15) is plotted for τp = 10+4 and
τp = 10−4 employing the FE discretization (3) (cf. Table1;
Fig. 10). Results depicted in Fig. 15 (left) clearly show that
large values of τp lead to a pressure jump at the interface,
located at x = 25 mm, whilst low values of the stabilization
parameter lead to a continuous pressure distribution along
the intersection between AA′ and �1,2.

As shown in Fig. 15 (right), the error
∣∣∣∣�p�

∣∣∣∣
L2

diminishes
upon mesh refinement for both values of the stabilization
parameter. Moreover, for large values of τp the conver-
gence rate decreases and the overall magnitude of the error
increases. It is noted that a difference in eight orders of mag-
nitude for τp leads to a pressure jump of around 0.02 Mpa.

6.2 Coupled thermomechanical formulation applied to
“bulk-forming” problems

In this example, a non-isothermal elastoplastic test is consid-
ered, in which a cylindrical metallic specimen is compressed
until it experiences a 60% reduction of its initial height as
depicted in Fig. 16a. The test is known as ’upsetting of a
billet’ in the bulkmetal formingfield and is considered appro-
priate for the assessment of the correct transference of both
temperature and pressure fields in the present framework.
Adiabatic conditions are considered, i.e., no heat exchange
is allowed between the body and its surrounding environ-
ment, and, therefore, the temperature increments are solely
related to self heating induced by dissipation during large
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Fig. 10 Finite element
discretizations of the Cook’s
membrane for the monolithic
and DIM with conforming and
non-conforming interfaces. The
interface �I is depicted in blue
and the red rectangles contain a
zoom-in of the mesh around an
interface region

(1)

(2)

(3)

(4)

(5)

DIM conforming DIM non-conformingFE discretization Monolithic approach

Ω

Ω(1) Ω(1)

Ω(2) Ω(2)

Γ1,2 Γ1,2

plastic deformation. Perfect stick is considered between the
rigid tool and the specimen leading to ’barreling’ of the com-
pressed billet.

As indicated in Fig. 16b, only a quarter of the specimen is
considered due to the symmetry of the geometry and bound-
ary conditions. In order to assess the correct transference of
the pressure and temperature fields across the domain bound-

aries, the solution obtained with a monolithic approach, i.e.
consideringonlyonedomain, is compared to the oneobtained
with four and twelve partitions with non-conforming inter-
faces as depicted in Fig. 17. A FE discretization of around
700 three-node axisymmetric linear elements is considered
in all analyses.
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Fig. 11 Convergence of the
vertical displacement uy at point
A upon different FE
discretizations at the coarsest
domain �(1) for the
compressible (left) and
incompressible (right) cases
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Fig. 12 Influence of the
activation of λp on the
convergence of the vertical
displacement uy at point A upon
different FE discretizations at
the coarsest domain �(1).
Results are plotted for the
incompressible case employing
both conforming (left) and
non-conforming (right)
interfaces
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Fig. 13 Influence of the
activation of λp on the
convergence of the pressure
transference across the interface
upon different FE sizes h at the
coarsest domain �(1). Results
are plotted for the
incompressible case employing
both conforming (left) and
non-conforming (right)
interfaces
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The thermo-plastic model detailed in Appendix 1 is uti-
lized with the material parameters summarized in
Table 2.

The yield stress evolution is given by
σy(α, θ) = σ0(θ) + h(θ)α (156)

with

σ0(θ) = σ0(θ0) (1 − w0 (θ − θ0)) , (157)

h0(θ) = h0(θ0) (1 − wh (θ − θ0)) . (158)

The relations (156) to (158) describe a linear thermo-plastic
softening widely used in metal plasticity for most steels in a
temperature range from 300 to 400 K [36].

The temperature distribution for the three discretizations
depicted in Fig. 17 are plotted in Fig. 18 at the final time
step (t = 1 s). Note that the temperature fields of the
domain decomposition analysis are remarkably comparable
and equivalent to the one of the referencemonolithic analysis.
The close-ups at the non-conforming interface regions show

123



Comput Mech

Fig. 14 Influence of the
activation of λp on the pressure
transference across the interface
upon different FE
discretizations. Results are
plotted for the incompressible
case employing non-conforming
interfaces
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a continuous temperature field which evidences its correct
transference throughout the domains.

Figure 19 shows the pressure distribution for the three dis-
cretizations at the final time step (t = 1 s). As it was observed
for the temperature field, the distribution of the pressure is
continuous in all domain decomposition analyses across the
non-conforming interfaces. It is observed that the pressure

field at the top right corner of the specimen could be improved
by using a finer discretization in both monolithic and domain
decomposition approaches. However, the aim of the analyses
is to proof that the results obtained with the domain decom-
position framework are practically equivalent between them,
and that no differences are observed when compared to the
reference monolithic solution which is actually reflected in
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Fig. 15 Sensitivity of the
stabilization parameter τp. Left
Pressure distribution along the
AA′ segment across the
non-conforming interface �1,2
considering the FE
discretization (3). Right
convergence of the pressure
transference across the interface
upon different FE sizes h at the
coarsest domain �(1). Results
are plotted for the
incompressible case employing
non-conforming interfaces
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Fig. 16 a Geometry and
description of the problem
’Upsetting of a billet’. b
Geometry and boundary
conditions of the discretized
quarter of the cylinder
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Table 2 Material parameters for the thermo-plastic model used in the
bulk forming test

Bulk modulus κ 166, 670 N/mm2

Shear modulus μ 76, 920 N/mm2

Flow stress σ0 700 N/mm2

Hardening modulus h 300 N/mm2

Density ρ 7.8 × 10−9 N s2/mm4

Expansion coefficient α 10−6 K−1

Conductivity k 45 N/s K

Capacity c 4.6 × 108 mm2/s2 K

Dissipation factor χ 0.9

Flow stress softening w0 3 × 10−4 K−1

Hardening softening wh 3 × 10−4 K−1

Fig. 19. Results shown in the close-ups in Figs. 18 and 19 evi-
dence that the proposed domain decomposition framework
provides a correct transference of the different fields in the
mixed formulation.

The mechanical response of the billet, considering the
applied force and displacement at the top of the specimen, is
shown in Fig. 20. The reference responses reported by Pon-
thot [38], Taylor and Becker [29] are considered together
with the monolithic and domain decomposition tests with
four and twelve decompositions, respectively. The mechan-
ical response of the domain decomposition method does not
depend of the number of decompositions and conformity

of the interfaces and is in agreement with the monolithic
response which, in turn, shows that the selected constitutive
model matches the results provided in literature, particularly
the ones by Ponthot [29].

7 Conclusions

The Domain Interface Method (DIM) presented in [8] is
extended in this contribution for the case of mixed formu-
lations encountered in multiphysics problems. Particularly,
the domain decomposition framework is assessed in a large
deformation setting for the particular case of mixed displace-
ment/pressure formulations in incompressible materials and
coupled thermomechanical problems with applications to
bulk forming processes.

The extended DIM method for multiphysics problems
essentially relies in an explicit discretization of the inter-
face by means of a zero-thickness Delaunay triangulation
as in the original methodology. This strategy allows setting
a full tied contact in the most demanding scenarios, e.g.
between geometrically incompatible interfaces. Continuity
of themixed solution field is satisfied across domains through
the incorporation of LagrangeMultipliers. ANitschemethod
is adopted in which a stabilization term is added at the con-
straint equations of themixed field, i.e. one stabilization term
per field. The incorporation of the stabilization term avoids

123



Comput Mech

Fig. 17 Finite element
discretizations and domain
decompositions for the bulk
forming test. The red rectangles
determine the close-up area
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the appearance of zero diagonal terms at the global system
and instabilities are avoided if the LBB condition is not ful-
filled by the chosen discretization. It is important to remark
that, since the penalized term is part of the Euler-Lagrange
equations of the variational principle, it will vanish upon
mesh refinement (consistent penalty method).

The formulation presented in this manuscript is based on
the identification of all Lagrange multipliers to connect the
mixed field and their consideration in the weak variational
form together with the corresponding consistent stabiliza-
tion term. This technology is first assessed for a mixed
displacement/pressure formulation to tackle incompressible
materials in which a Polynomial Pressure Projection method
is employed to account for the stability of the resulting sys-
tems within each domain. It is demonstrated that the pressure
field is transferredwith continuity across the non-conforming
interfaces only if the Lagrange multiplier concerning the

pressure field is taken into account, i.e. the continuity of the
displacement field at the interface, enforced by the displace-
ment Lagrangemultipliers, does not guarantee the continuity
of the pressure field at the interface. In fact, this effect van-
ishes upon mesh refinement since the stabilization term is no
longer needed and vanishes too. It should be highlighted that
the sensitivity of the results to the stabilization parameter is,
however, very small. For the mixed displacement/pressure
formulation, a variation of eight orders of magnitude in the
pressure stabilization parameter would cause an insignificant
jump in the pressure field.

The assessment of the DIM formulation for multiphysics
problems is completed with a coupled thermomechanical
problem with applications to bulk metal forming processes.
In this case, amixed displacement/pressure/temperature field
is considered together with the corresponding Lagrangemul-
tipliers at the interface. Continuity of the three fields is
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Discretization 2 (DIM: 4 domains)

Close-up (DIM: 12 domains)

Discretization 3 (DIM: 12 domains)

295463
Temperature [K]

Discretization 1 (Monolithic)

Close-up (DIM: 4 domains)

Discretization 2 (DIM: 4 domains)

Close-up (DIM: 12 domains)

Discretization 3 (DIM: 12 domains)

295463
Temperature [K]

Fig. 18 Temperature distribution at 60%height reduction for themonolithic and non-conforming domain decomposition analyses. No displacement
magnification is applied at the deformed configurations

obtained across all interfaces and the distributionof themixed
field is in very good agreement with the reference monolithic
solutions. The mechanical response resulting from the upset-
ting of a billet studied in this example is remarkably close to
those reported in literature which validates both the adopted
constitutive model and domain decomposition technique.

Analternative non-intrusivemethodology tohandleRBMs
was introduced in the original contribution presenting the
DIM method. This methodology essentially adds an extra

stabilization term to the energy functional with contributions
of all adjacent interface patches avoiding, in this manner,
the calculation of a pseudo-inverse at floating domains. As
a result, the band structure of the global system is preserved
and, for this reason, possible parallel solution strategies
employed in other dual domain decomposition methods can
still be employed. In the analyses considering the mixed dis-
placement/pressure problem no singular modes may arise
from the pressure field. However, in the thermomechanical
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Discretization 1 (Monolithic)

Close-up (DIM: 4 domains)

Discretization 2 (DIM: 4 domains)

Close-up (DIM: 12 domains)

Discretization 3 (DIM: 12 domains)

870-1746
Pressure [MPa]

Fig. 19 Pressure distribution at 60% height reduction for the monolithic and non-conforming domain decomposition analyses. No displacement
magnification is applied at the deformed configurations

problem, singular temperature modes with constant temper-
ature distribution may arise at floating domains. An extra
stabilization term analogous to the term restricting the RBMs
should be considered but in the present formulation the sub-
domain matrices with diagonal temperature coefficients can
still be inverted due to the introduction of a transitory term
which acts in a similar way than the mass matrix in a dynam-
ics problem.

The DIM method for mixed fields inherits all advantages
outlined for the irreducible formulation, i.e. the interface con-
nections are set up as a result of the connectivity in the
automatic Delaunay triangulation and do not rely in user
criteria for the master and slave DOFs or intermediate inter-
face projections as it is done in established techniques such
as the mortar approach. For this reason, the methodology
shows potential to be used in cases where completely differ-
ent discretizations are needed among domains since different
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Fig. 20 Evolution of the
applied force against the
displacement at the top part of
the cylinder until 66.7% height
reduction
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physical phenomena are tacking place therein. The use of the
DIMmethod could be specially advantageous when a partic-
ular domain discretization needs to be changed at a certain
stage of the problem in order to improve the simulation of
the physical process.
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Appendix 1: Mixed u/ p formulation for incom-
pressible problems

The standard irreducible formulation does not suffice for
incompressible and nearly incompressible elastic materials,
i.e. with Poisson’s ratio ν > 0.4. A discretization consider-
ing linear approximations using triangular elements can lead
to highly oscillatory results [42]. Since the main problem
in an irreducible formulation resides in the determination
of the mean stress, i.e. the pressure p, it is convenient to
separate it from the total stress field and treat it as an extra
unknown in the constitutive equations. This is accomplished
bydecomposing the total stress into thedeviatoric and spheric
counterparts in the equilibrium equations and considering
the constitutive equation relating the pressure and volumet-
ric strain.

Strong and weak forms of the mixed u/ p formulation

A Neo-Hookean Hyperelastic constitutive model [7] is
adopted in this study leading to the following strong form of
the problem in which the body forces have been neglected:

FIND:

{
u(xn) : �n → R

2,

p(xn) : �n → R,
(159)

FULFILLING:

Equilibrium equation: ∇̄∇∇ · P = 0, in �n (160)

Constitutive pressure equation:
p

κ
= ln(J )

J
, in �n

(161)

Dirichlet’s boundary conditions: u = û, in �u (162)

Neumann’s boundary conditions: t = t̂, in �σ , (163)

∇̄∇∇ being the material Nabla operator containing derivatives
with respect to the previous configuration, P the first Piola-
Kirchoff stress tensor, t̂ and û the prescribed tractions and
displacements at the corresponding boundaries �σ and �u ,
respectively. The bulk modulus is denoted by κ and J = ||f ||
is the determinant of the deformation gradient tensor.

Equation (160) is solved at the current configuration,
�n+1, considering the splitting of the Cauchy stress tensor
into the spheric and deviatoric counterparts leading to

∇̄∇∇ · s + ∇̄∇∇ p = 0, (164)

with

p = 1

3
tr(σσσ), (165)

s = dev(σσσ). (166)
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The weak form of the problem stated in (160) to (163)
is expressed through the corresponding variational principle.
The solution VVV� and weighting V̂VV� spaces for the displace-
ments and pressure fields read:

VVVu :=
{
u
/
u
∣∣∣
�

∈ H1(�), u = û in �u

}
, (167)

V̂VVu :=
{
δu

/
δu

∣∣∣
�

∈ H1(�), δu = 0 in �u

}
, (168)

VVVp :=
{
p
/
p
∣∣∣
�

∈ L2(�)
}

, (169)

V̂VVp :=
{
δp

/
δp

∣∣∣
�

∈ L2(�)
}

, (170)

H1(�) and L2(D) being the Sovolev space of functions
with square integrable derivatives and the Lebesgue space
of square integrable functions, respectively. The variational
statement for the mixed u/p formulation reads:

FIND:

{
u ∈ VVVu : �n → R

2,

p ∈ VVVp : �n → R,
(171)

FULFILLING:

δ
u
int,ext(u, δu) = −

∫

�n

P : ∇̄∇∇(δu) d� +
∫

�σ

t̂ · δu d�

= −
∫

�n

J

⎛

⎝dev (σσσ)︸ ︷︷ ︸
s

+p1

⎞

⎠ : ∇̄∇∇(δu) d�

+
∫

�σ

t̂ · δu d� = 0, ∀δu ∈ V̂VVu, (172)

AND

δ
p(p, δp)=
∫

�n

δp

(
ln(J )

J
− 1

κ
p

)
d�=0, ∀δp ∈ V̂VVp,

(173)

Discretization using FE

A Galerkin-based spatial discretization is considered in
which the solution field components and their variations are
interpolated as:

u(xn) =
∑

a

N
u
a(xn)ûa ∀xn ∈ �n, (174)

δu(xn) =
∑

a

N
u
a(xn)δûa ∀xn ∈ �n, (175)

p(xn) =
∑

a

N
p
a(xn) p̂a ∀xn ∈ �n, (176)

δp(xn) =
∑

a

N
p
a(xn)δ p̂a ∀xn ∈ �n, (177)

where the subscript a denotes the discrete nodes correspond-
ing to the displacement interpolation and N

mec refer to the

shape functions utilized for the displacement and pressure
fields.

The FE approximation of the variational statements
in (172) and (173) considering the additional stabilization
term in (183) can be written using the above interpola-
tions (174) to (177) as follows:

δ
u(u, δu) ≈ δ
u,h(û, δû) = δ

u,h
int (û, δû) + δ


u,h
ext(û, δû),

(178)

δ
p(p, δp) ≈ δ
p,h( p̂, δ p̂), (179)

Considering that (178) and (179) hold for any virtual dis-
placement δu and pressure δp, the residual vector of the
variational principle accounting for the stabilization term is
composed by

Ru(û, p̂) =
∫

�n

∑

a

((
p̂1 + dev[τττ ])F−T∇̄N

u
a

)
d�

−
∫

�

∑

a

(
N
u
a t̂
)
d� = 0, (180)

Rp( p̂) =
∫

�n

∑

a

(
N
p
a
ln(J )

J

)
d�

+ p̂
∫

�n

1

κ

∑

a

(
N
p
aN

p
a
T
)
d� = 0, (181)

The discrete equations (180) and (181) are linearized and
solved incrementally via a Newton-Raphson procedure lead-
ing to the following system:

[
Ru

Rp

]
+

⎡

⎢⎣

∂Ru

∂û
∂Ru

∂ p̂
∂Rp

∂û
∂Rp

∂ p̂

⎤

⎥⎦
[


û

 p̂

]
= 0 (182)

Stabilization of the pressure field

Themixeddisplacement/pressure (u/p) formulationpresents
oscillations for incompressible and nearly incompressible
materials. Such oscillations arise when the same interpola-
tion order utilized in both the displacements and pressure
fields does not satisfy the LBB condition [2].

In the present study the Polynomial pressure projection
(PPP) [6] is employed since, in contrast with other methods,
it does not require a stabilization parameter depending on the
mesh size or the calculation of higher-order derivatives.

The following projection term is added to the weak form
of the constitutive equation involving the incompressibility
condition (161)

∫

�n

β

μ
(p − p̄) (δp − δ p̄) d� (183)
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with

p̄ = 1

3
(p1 + p2 + p3) , (184)

δ p̄ = 1

3
(δp1 + δp2 + δp3) , (185)

β and μ being the stabilization parameter and shear mod-
ulus, respectively, and p1 to p3 denote the corresponding
nodal pressure values of the mixed element. Application of
the projection operator to the weak form of the constitutive
equation involving the pressure term removes the instability
arising when pressures and displacements are interpolated
employing shape functions of the same order [6].

Appendix 2: Coupled thermomechanical formula-
tion (mixed u/ p/θ )

In the following equations the strong and weak format of
the coupled termomechanical problem for a single domain
is outlined with the corresponding adopted constitutive rela-
tions and the staggered solution algorithm of the discretized
FE quantities.

Strong form of the coupled thermomechanical problem

The strong form of the coupled thermomechanical problem
neglecting the body forces can be expressed as

FIND:

⎧
⎪⎨

⎪⎩

u(xn) : �n → R
2,

p(xn) : �n → R,

θ(xn) : �n → R,

(186)

FULFILLING:

Equilibrium equation: ∇̄∇∇ · P = 0, in �n (187)

Constitutive pressure equation:
p

κ
= ln(J )

J
, in �n

(188)

Energy balance: ρ0U̇ + ∇̄∇∇ · Q = Dint + ρ0R (189)

Dirichlet’s boundary conditions: u = û, in �u (190)

Neumann’s boundary conditions: t = t̂, in �σ , (191)

with ρ0 being the initial density, ∇̄∇∇ being the material Nabla
operator containing derivatives with respect to the original
configuration, P being the first Piola-Kirchhoff stress tensor,
U̇ is the internal energy, Q denotes the nominal heat flux
vector and R stands for the internal generated heat.

Remark 7.1 Since incompressibility is assumed in all con-
stitutive relations, the splitting of the Cauchy stress tensor
in the current configuration is considered together with the

constitutive pressure equation (188) in the remaining of the
formulation.

Dissipation inequalities

The momentum and energy balance equations appearing in
the strong form (187) to (191) are restricted by the the second
law of thermodynamics fromwhich the following dissipation
inequalities can be written [35]:

Dint = P : Ḟ + θη̇ − U̇ ≥ 0, (192)

Dcon = 1

θ
∇∇∇θ · Q ≤ 0, (193)

where Dint and Dcon denote the internal dissipation and dis-
sipation due to conduction, respectively and F stands for the
deformation gradient tensor. The entropy is denoted by η

and U and Q denote the internal energy and nominal heat
flux, respectively. The expression in (192), also referred to
as the Clausius Plank form of the second law of thermody-
namics, indicates that the internal energy can never increase
at the expense of decreasing stress power. The restriction of
the dissipation by conduction in (193) indicates that the heat
flux adopts the opposite sense of the temperature gradient
which can be trivially verified by considering the expression
of the heat flux according to Fourier’s law:

Q = −k∇̄∇∇θ, (194)

with k representing the positive thermal conductivity coeffi-
cient.

Thermomechanical model for J2 flow theory

The following form of the free energy �, i.e. the part of
the internal energy U amenable to be transformed into work
at constant temperature and defined as � = U − θη, is
considered for the adopted thermomechanical model at finite
strains [35,36]

� = T (θ) + M(θ, J )︸ ︷︷ ︸
thermal

+U (J ) + W (b̄e)︸ ︷︷ ︸
hyperelastic

+ K (ēp, θ)︸ ︷︷ ︸
hardening

. (195)

The volume preserving part of the left Cauchy-Green tensor
be is calculated as

b̄e = (J e)
−2

3 be, (196)

be = F(Cp)−1FT. (197)
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The internal hardening variable is denoted ēp and T (θ) refers
to the potential for the purely thermal entropy defined as

T (θ) = c

[
θ − θ0 − θ log

(
θ

θ0

)]
, (198)

where c and θ0 correspond to the heat capacity and reference
temperature, respectively. The function M(θ, J ) describes
the thermomechanical coupling due to thermal expansion

M(θ, J ) = (θ − θ0)
[−3αU ′(J )

]
, (199)

α being the linear coefficient of thermal expansion. The
explicit expression for T (θ) in (198) and M(θ, J ) in (199)
are obtained under the assumption of constant specific heat
capacity c ≥ 0. The volumetric and deviatoric contributions
of the elastic free energy are denoted as U (J ) and W (b̄e),
respectively and are defined as

U (J ) = κ

[
1

2

(
J 2 − 1

)
− ln(J )

]
, (200)

W (b̄e) = 1

2
μ
[
tr(b̄e) − 3

]
, (201)

with κ > 0 and μ > 0 being the bulk and shear moduli,
respectively.

The potential describing isotropic hardening K (ēp, θ)pre-
sented in [39] and adopted in [36] is considered in this
contribution as:

K (ēp, θ) = 1

2
h(θ)(ēp)2 − [σ0(θ) − σ∞(θ)] H(ēp), (202)

H(ēp) =
⎧
⎨

⎩
ēp − 1 − ēδēp

δ
, for δ �= 0

0, for δ = 0,
, (203)

σ0(θ) = σ0(θ0) [1 − ω0(θ − θ0)] , (204)

σ∞(θ) = σ∞(θ0) [1 − ωh(θ − θ0)] , (205)

h(θ) = h(θ0) [1 − ωh(θ − θ0)] , (206)

where δ is the saturation exponent and σ0(θ), σ∞(θ) and
h(θ) control the linear thermal softening. The initial yield
stress is represented by σ0(θ0), σ∞(θ0) denotes the final
saturation hardening stress and h(θ0) represents the linear
hardening modulus. The reference temperature θ0 is consid-
ered in expressions (204) to (206) and ω0 and ωh denote
the flow stress softening and hardening-softening parame-
ters, respectively. The potential in (203) describing isotropic
hardening is able to model materials exhibiting a combina-
tion of linear and saturation-type hardening. Other related
models existing in literature can be found in the works of
Johnson and Cook [19] and Bäker [3].

Remark 7.2 It is important to note that the spherical and
deviatoric counterparts of the Kirchhoff stress tensor τττ can
be written through the energy functions M(θ, J ), U (J ) and
W (b̄e) [36] as

τττ = pJ1 + dev{τττ }, (207)

p = U ′(J ) + ∂JM(J, θ), (208)

dev{τττ } = 2dev{b̄e∂b̄eW (b̄e)}. (209)

The thermoelastic domain � can be expressed in terms of
the true Kirchhoff stresses through the function φ as

� := {(τττ , β, θ) : φ(τττ , β, θ) ≤ 0}, (210)

where θ is the absolute temperature and β is related to the
internal variables as

β = −K ′(ēp, θ). (211)

In this study the Mises yield criterion, typically employed in
metal plasticity, is adopted which can be formalized as

φ(τττ , β, θ) = ||dev{τττ }|| +
√
2

3
[β − σy(θ)] ≤ 0, (212)

where σy(θ) > 0 denotes the flow stress. The evolution equa-
tion for the internal variables can be written as:

Lvbe = −2λ∂τφ(τττ , β, θ) · be, (213)
˙̄ep = λ∂βφ(τττ , β, θ), (214)

η̇p = λ∂θφ(τττ , β, θ), (215)

where Lvbe represents the Lie derivative of the left Cauchy-
Green tensor be (cf. [36]) and λ ≥ 0 is the consistency
parameter satisfying the Kuhn-Tucker relations:

λ ≥ 0, φ(τττ , β, θ) ≤ 0, λφ(τττ , β, θ) = 0. (216)

The evolution of the thermal response can be derived from
the equivalent form of the energy balance equation in (189)
as

θη̇ = −∇∇∇ · Q + R + Dmec, (217)

η being the entropy per unit of initial volume, Q is the nom-
inal heat flux (cf. (194)), R denotes the internal generated
heat and Dmec refers to the mechanical dissipation satisfying

Dint := Dmec + Dther ≥ 0, (218)

where Dtherm and Dint are the thermal and internal dissipa-
tion, respectively. The temperature evolution equation can
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be obtained by manipulating the constitutive entropy equa-
tion [11] and reads

cθ̇ = −∇̄∇∇Q + R + Dmech − H, (219)

c being the specific heat at constant strain and constant inter-
nal variables per unit of reference volume and H stands for
the structural elastoplastic heat [36].

Weak form of the coupled thermomechanical model

The weak form of the problem outlined in (187) to (191) is
expressed through the corresponding variational principle.
The solution VVV� and weighting V̂VV� spaces for the displace-
ments, pressure and temperature field read:

VVVu :=
{
u
/
u
∣∣∣
�

∈ H1(�), u = û in �u

}
, (220)

V̂VVu :=
{
δu

/
δu

∣∣∣
�

∈ H1(�), δu = 0 in �u

}
, (221)

VVVp :=
{
p
/
p
∣∣∣
�

∈ L2(�),
}

, (222)

V̂VVp :=
{
δp

/
δp

∣∣∣
�

∈ L2(�)
}

, (223)

VVVθ :=
{
θ
/

θ

∣∣∣
�

∈ L2(�), θ = θ̂ in �θ

}
, (224)

V̂VVθ :=
{
δθ

/
δθ

∣∣∣
�

∈ L2(�), δθ = 0 in �θ

}
, (225)

H1(�) and L2(D) being the Sovolev space of functions
with square integrable derivatives and the Lebesgue space
of square integrable functions, respectively. The variational
statement for the coupled thermomechanical model reads:

FIND:

⎧
⎪⎨

⎪⎩

u ∈ VVVu : �n → R
2,

p ∈ VVVp : �n → R,

θ ∈ VVVθ : �n → R,

(226)

FULFILLING:

δ
u
int,ext(u, δu) = −

∫

�n

P : ∇̄∇∇(δu) d�+
∫

�σ

t̂ · δu d� = 0,

∀δu ∈ V̂VVu, (227)

δ
p(p, δp) =
∫

�n

δp

(
ln(J )

J
− 1

κ
p

)
d�=0, ∀δp ∈ V̂VVp,

(228)

AND

δ
θ
int,ext(θ, δθ)= − δ
int

therm(θ, δθ) + δ
ext
therm(θ, δθ) = 0,

∀δθ ∈ V̂VVθ , (229)

δ
int
therm(θ, δθ) =

∫

�n

(
δθcθ̇

)
d�

+
∫

�n

(
k∇∇∇δθ · ∇∇∇θ −

√
2

3

λσy(θ)

)
d�,

(230)

δ
ext
therm(θ, δθ) =

∫

�n

(
δθ R̂

)
d� +

∫

�n

(δθ(−D)) d�,

(231)

where R̂ denotes the heat sources and D the heat flux acting
at the surface �n .

A Galerkin-based spatial discretization is considered in
which the solution field components and their variations are
interpolated as:

u(xn) =
∑

a

N
u
a(xn)ûa ∀xn ∈ �n, (232)

δu(xn) =
∑

a

N
u
a(xn)δûa ∀xn ∈ �n, (233)

p(xn) =
∑

a

N
p
a(xn) p̂a ∀xn ∈ �n, (234)

δp(xn) =
∑

a

N
p
a(xn)δ p̂a ∀xn ∈ �n, (235)

θ(xn) =
∑

a

N
θ
a(xn)θ̂a ∀xn ∈ �n, (236)

δθ(xn) =
∑

a

N
θ
a(xn)δθ̂a ∀xn ∈ �n, (237)

where the subscript a denotes the discrete nodes correspond-
ing to the displacement interpolation. Functions Nu, Np and
N

θ refer to the shape functions utilized for the displacements,
pressure and thermal fields.

The FE approximation of the virtual work expression
in (227) to (229) can be written using the above interpo-
lations (232) to (237) as follows:

δ
u(u, δu) ≈ δ
u,h(û, δû)=δ

u,h
int (û, δû) + δ


u,h
ext(û, δû),

(238)

δ
p(p, δp) ≈ δ
p,h( p̂, δ p̂), (239)

δ
θ(θ, δθ) ≈ δ
θ,h(θ̂ , δθ̂ )=δ

θ,h
int (θ̂ , δθ̂ ) + δ


θ,h
ext (θ̂ , δθ̂ ),

(240)

Considering that (238) to (240) hold for any virtual displace-
ment δu, pressure δp and temperature δθ , the residual vector
of the variational principle is composed by

Ru(û, p̂) =
∫

�n

∑

a

((
p̂1 + dev[τττ ])F−T∇̄N

u
a

)
d�

−
∫

�

∑

a

(
N
u
a t̂
)
d� = 0, (241)

Rp( p̂) =
∫

�n

∑

a

(
N
p
a
ln(J )

J

)
d�

+ p̂
∫

�n

1

κ

∑

a

(
N
p
aN

p
a

)
d� = 0, (242)

Rθ (θ̂) =
∫

�n

∑

a

[
N

θ
ac

˙̂
θ
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+
(
∇̄N

θ
a

)T (
k∇̄ θ̂

)
− N

θ
a

(√
2

3
σyθ̂
λ

)]
d�

−
∫

�n

∑

a

(
N

θ
a R̂

)
d� −

∫

�n

∑

a

(
N

θ
a D

)
d� = 0,

(243)

Coupled thermomechanical algorithm

The coupled discrete equations (241)–(243) are linearized
and solved incrementally via a Newton-Raphson procedure.
In fact, a staggered strategy is employed inwhich themechan-
ical problem is solved at constant temperature and the thermal
problem is solved keeping a constant configuration. The algo-
rithm in Box 2 summarizes the staggered resolution strategy
on the linearized set of equations.

Box 2 Staggered solution of the coupled thermomechanical
algorithm
1. Initialization at step n

Internal FE variables at tn
{
ben, ē

p
n, η

p
n
}

Prescribed nodal quantities at tn
{
ûn, p̂n, θ̂n

}

2. Mechanical step at constant initial temperature θn
System of equations at tn+1:

[
Ru

Rp

]
+

⎡

⎢⎣

∂Ru

∂û
∂Ru

∂ p̂
∂Rp

∂û
∂Rp

∂ p̂

⎤

⎥⎦
[


û

 p̂

]
= 0 (244)

Nodal mechanical variables update at tn+1:

ûn+1 = ûn + 
ûn+1 (245)
p̂n+1 = p̂n + 
 p̂n+1 (246)

3. Thermal step at constant configuration
{
ûn, p̂n

}

Thermal equations at tn+1:

Rθ + ∂Rθ

∂θ̂

θ̂ = 0 (247)

Nodal thermal variables update at tn+1:

θ̂n+1 = θ̂n + 
θ̂n+1 (248)
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