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Abstract
This work presents a computational model for the simulation of problems involving thermo-mechanically active particles 
forming discrete particle systems. Our approach is based on the discrete element method for description of the particles’ 
dynamics, combined with simple heat transfer equations to describe the various thermal effects that may take place when 
the system is excited by temperature gradients and external heat sources. We are able to track the motion of the particles 
and their thermal states over time under the influence of body (e.g., gravitational) forces, contact and friction forces (and 
the related moments w.r.t. the particles’ centers), as well as applied heat from external devices, heat transfer through con-
duction (at the particles’ interfaces upon contact with other particles and objects), convective cooling and radiative effects. 
Numerical examples are provided to validate our scheme and illustrate its applicability to the simulation of a wide range 
of engineering applications. We believe that simple, consistent particle models of the type as shown here may be a useful 
tool to the modeling of discrete particle systems that are consisted of thermo-mechanically active particles and, in a broader 
sense, many other multiphysical discrete systems.

Keywords  Particles · Thermal effects · Coupled thermo-mechanics · Multiphysical particle systems · Discrete element 
method (DEM)

1  Introduction

In a variety of industrial processes and engineering applica-
tions, ranging from advanced manufacturing to state-of-the-
art civil construction, the controlled heating and processing 
of thermo-mechanically active particles such as sintering 
powders and functionalized cementitious materials are of 
utmost importance. From a mechanistic point of view, these 
particles constitute discrete particle systems that may be sub-
jected to a range of multiphysical effects, invariably includ-
ing (but not restricted to) mechanical and thermal fields. 
Oftentimes, these effects are intrinsically interconnected, in 
the sense that the progress of one may affect the progress of 
the others, and vice versa, thus requiring a coupled physical 

description for a reliable and accurate representation of the 
system’s behavior. It is also common that the particles are 
functionalized, e.g., by reactive thin films adsorbed onto the 
particles’ surface, which may be activated by inter-particle 
collisions and therefrom trigger chemical reactions. These 
reactions may be the source of additional heating or cooling 
to the system, which in turn may affect the thermo-mechan-
ical behavior of the particles through added softening or 
stiffening of their base materials. Computational modeling 
of such discrete systems is quite recent in the literature (see, 
e.g., [1, 2]), and discrete particle simulation plays an impor-
tant role in this regard. This technique yields an efficient 
analysis tool able to provide very rich information about 
the system at any desired time instant, such as the trajecto-
ries of (and transient forces acting on) individual particles, 
their individual temperatures (and heat flows and thermal 
powers), their detailed neighboring interactions, and many 
others, which are difficult (if not impossible) to obtain by 
conventional experimental techniques. Heat transfer in dry 
particle systems is often regarded to occur mostly through 
conduction, which in turn essentially depends on the con-
ductivity of the particles’ base material, the inter-particle 
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contacts and the structure of the particle packing. But other 
contributions, such as convective cooling and radiative 
effects, may likewise play an important role.

In this context, the purpose of this work is to present a 
simple, multiphysics computational model for the simulation 
of problems involving thermo-mechanically active particles 
forming discrete particle systems. Our approach is based 
on the discrete element method (DEM) for description the 
particles’ dynamics, combined with simple (lumped) heat 
transfer equations to describe the various thermal phenom-
ena that may take place when the system is excited by tem-
perature gradients and external heat sources. We are able 
to track the motion of the particles and their thermal states 
over time under the influence of body (e.g., gravitational) 
forces, contact and friction forces (and the related moments 
w.r.t the particles’ centers), as well as applied heat from 
external devices, heat transfer through conduction (at the 
particles’ interfaces upon contact with other particles and 
objects), convective cooling and radiative effects. The model 
is relatively simple and straightforward to be implemented 
by engineers and analysts interested in the field and may be 
a useful tool for practical, rapid process simulation, design 
and analysis. Numerical examples are provided to validate 
our scheme and illustrate its applicability to the simulation 
of a wide range of engineering applications.

The DEM formulation adopted here follows from the 
work by Campello [3–5]. We will present it here in a sum-
marized way, with the aim to provide just an overview of our 
discrete particle approach and introduce our notation. For a 
more detailed report, we refer the interested reader to the 
above-mentioned references. In general lines, our strategy to 
account for thermal effects into the DEM description follows 
the same ideas as those of Zohdi [6, 7], whose works are, in 
our opinion, the pioneering successful attempts to the mod-
eling and computational simulation of discrete particle sys-
tems with temperature effects for modern engineering appli-
cations. It differs from Zohdi’s approach, however, in the 
sense that (1) we adopt a fully consistent stick–slip friction 
model for arbitrarily rotational particles (this is the friction 
type that is most frequently observed in dry granular media 
[8]), and that (2) we take rolling resistance as well as (3) 
convective and radiative effects into account. The first two 
of these features are of utmost importance to the modeling 
of systems that are supposed to attain a static equilibrium 
configuration after some given external excitation, which is 
the case for most types of problems we are interested here. 
The third feature, in turn, may be relevant if the temperatures 
to be experienced by the particles are sufficiently higher than 
the temperature of their surroundings, which may likewise 
occur in many applications. Another distinction is that our 
model makes use of contact and heat conduction param-
eters that are well grounded on physical models, in contrast 
to Zohdi’s model, which adopts general parameters that, 

although formally competent, require problem-dependent 
calibration for proper parameter values.

We highlight that our objective in this work is not to 
derive a complex, sophisticated model capable of furnishing 
extremely accurate results up to a very fine thermo-mechan-
ical resolution, but instead to develop a sufficiently simple 
(yet robust) computational framework that contains all 
essential ingredients of thermo-mechanical particle systems. 
We aim to enable a practical, direct simulation tool, with 
which engineers and analysts may assess the overall system’s 
response upon given (thermo-mechanical) external excita-
tions, detecting general trends, identifying the relevance of 
certain parameters (and their subsequent impact upon the 
system’s behavior), drawing what-if scenarios and thereby 
reliably improving process performance. For an early his-
tory of the discrete element method and reviews on its vari-
ous applications, including major findings and fundamental 
results, we refer the reader to Bicanic [9], Zhu et al. [10, 11], 
O’Sullivan [12], Thornton et al. [13] and Radjai and Dubois 
[2], to cite just a few. For an overview of the modeling of dry 
particulate media and advanced manufacturing techniques, 
including both theoretical and practical aspects, we refer to 
Duran [8], Radjaï et al. [14], Zohdi [15] and Gibson et al. 
[16]. We believe that simple, consistent particle models of 
the type as shown here may be a useful tool to the modeling 
of discrete particle systems that are consisted of thermo-
mechanically active particles and, in a broader sense, many 
other discrete systems wherein multiphysical effects may 
be relevant.

The text is organized as follows. In Sect. 2, we briefly 
describe our DEM formulation, with the various force and 
moment contributions that govern the particles’ dynamics 
and their corresponding equations of motion. In Sect. 3, we 
present our model to incorporate thermal effects into the sys-
tem’s description, including detailed accounts of each pos-
sible heat transfer mechanisms and the influence of thermal 
softening on mechanical properties. In Sect. 4, we introduce 
our numerical method for solution of the system’s equations, 
leading to a multiphysics (thermo-mechanical) staggered 
solution strategy embedded within an explicit time integra-
tion scheme (we also include an algorithmic overview and 
brief comments on implementational aspects). In Sect. 5, 
we show numerical examples to validate our model and 
illustrate its applicability, and in Sect. 6 we close the paper 
with our conclusions and final considerations. Through-
out the text, plain italic letters ( a, b,… , �, �,… ,A,B,… ) 
denote scalar quantities, whereas boldface italic letters 
( a, b,… ,�, �,… ,A,B,… ) denote vectors in a three-
dimensional Euclidean space. The (standard) inner product 
of two vectors is denoted by u ⋅ v , and the norm of a vector 
by ‖u‖ =

√
u ⋅ u . Notation with a superposed dot is adopted 

to designate time derivatives.
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2 � Particles’ dynamics

We follow a Lagrangian, discrete element description and 
consider, for the sake of simplicity (but without any loss of 
generality), only spherical particles here. Let us assume a 
system of NP particles, each with mass mi , radius ri and rota-
tional inertia (relative to the particle’s center) ji = (2∕5)mir

2
i
 , 

i = 1,… ,NP . We denote the position vector of a particle by 
xi , the velocity vector by vi , the incremental rotation vector 
by �Δ

i
 (this is the rotation vector relative to two consecutive 

configurations) and the spin vector by �i . Following classi-
cal (Newton–Euler) dynamics, the equations of motion for 
the i th particle are

where g is the gravity acceleration vector, f con
i

 are the forces 
due to mechanical contacts (or collisions) with other parti-
cles and objects, f fric

i
 are the forces due to friction (which 

arise from these contacts or collisions), mfric
i

 is the moment 
due to the friction forces (these forces are eccentric w.r.t. 
the particle’s center, and thereby generate a moment on the 
particle), and mrol

i
 is the moment induced by rolling resist-

ance effects (w.r.t. the particle’s center). Each one of these 
force and moment contributions is briefly described next.

The contact forces are given as a function of the amount 
of overlap between any two contacting particles (or particle 
and object). We follow Hertz contact theory (see Johnson 
[17]) and adopt the following expression:

where f con
ij

 is the force that acts on particle i due to its con-
tact with particle (or object) j , Nc

i
 is the number of particles 

and objects that are in contact with particle i,

are the effective radius and the effective elasticity modulus 
of the i−j contacting pair (in which Ei , Ej , �i and �j are the 
elasticity modulus and the Poisson coefficient of i and j , 

(1)
miv̇i = mig + f con

i
+ f fric

i
,

ji�̇i = mfric
i

+mrol
i
,

(2)

f con
i

=

Nc
i�

j=1

f con
ij

, with f con
ij

= −
4

3

√
r∗E∗𝛿

3∕2

ij
nij − dcon𝛿̇ijnij ,

(3)r∗ =
rirj

ri + rj
and E∗ =

EiEj

Ej(1 − �2
i
) + Ei(1 − �2

j
)

respectively), and �ij is the overlap between the pair, which 
is given by

Still in Eq. (2), nij is the contact normal direction, or unit 
vector that points from the center of particle i to the center 
of particle (or object) j , i.e.,

whereas dcon is the contact’s damping constant (related to 
viscous energy dissipation in the normal direction), given by

and 𝛿̇ij is the overlap velocity of the contacting pair (i.e., 
relative velocity of the pair in the pair’s central direction). 
In (6), �con is the damping rate of the contact, which must be 
given (typically, one has 0 ≤ �con ≤ 1 , with �con = 0 stand-
ing for a perfectly elastic contact and �con = 1 for a critically 
damped one).

The friction forces are given by Mindlin’s elastic solu-
tion for sticking contact between spheres, combined with 
Coulomb’s law for coupling the tangential force with the 
normal force whenever there is sliding (i.e., dynamic fric-
tion). Accordingly, denoting by f fric

ij
 the force that acts on 

particle i due to its friction with particle (or object) j , for 
each contacting pair we first consider an elastic “trial stick 
state” in which the friction force is

and then we verify it by a slip check against the static fric-
tion limit:

In Eq. (7), G∗ is the effective shear modulus of the con-
tacting pair, which is a function of the pair’s individual shear 
moduli Gi and Gj as follows

(4)�ij = ri + rj −
‖‖‖xi − xj

‖‖‖ .

(5)nij =
xj − xi

‖‖‖xj − xi
‖‖‖
,

(6)

dcon = 2�con
�

2E∗m∗
√
r∗�

1∕4

ij
, with m∗ =

mimj

mi + mj

,

(7)
f fric
i

=

Nc
i�

j=1

f
fric,trial

ij
, with f

fric,trial

ij

= −8G∗
√
r∗�

1∕2

ij
Δxtrial

ij
− dfricvij,t,

(8)
⎧⎪⎨⎪⎩

IF
���f

fric,trial

ij

��� ≤ 𝜇s
���f

con
ij

��� ⇒ f fric
ij

= f
fric,trial

ij
(trial state is valid, sticking occurs between i−j) ;

IF
���f

fric,trial

ij

��� > 𝜇s
���f

con
ij

��� ⇒ f fric
ij

= 𝜇d
���f

con
ij

���tij (trial is not valid, sliding occurs between i−j) .

(9)G∗ =
GiGj

Gi + Gj

,
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and Δxtrial
ij

 is the pair’s trial elastic deformation (total) in the 
tangential direction, which is computed incrementally 
through

wherein Δxaccum
ij

 is the pair’s accumulated deformation up to 
the previous configuration (i.e., the total deformation expe-
rienced by the pair until then, which must be known) and 
�xtrial

ij
 is the trial incremental deformation for the pair from 

the previous to the current configuration, whose expression 
is shown shortly below. Still in (7), dfric is the friction damp-
ing constant, given by

(where �fric is the frictional damping rate, which must be 
given) and vij,t is the tangential relative velocity between the 
contact points of i and j , respectively. In (8), in turn, �s and 
�d are the static and dynamic friction coefficients, whereas 
tij = vij,t

‖‖‖vij,t
‖‖‖
−1

 is the tangential (or sliding) direction of the 
pair. The pair’s trial incremental deformation is computed 
through time integration of the tangential relative velocity 
between the contact points of i and j from the previous to 
the current configuration, i.e.,

where t is the time instant of the previous configuration and 
t + Δt that of current. In case of sliding, since the sticking 
assumption is violated, the total deformation in the tangen-
tial direction is not the trial deformation, but may be com-
puted from this later through a return (or correction) scheme, 
from which one has

We remark that the total deformation of every contacting 
pair must be stored after the above computations, as to 
become available for evaluation of the pairs’ friction forces 
in the next configuration. This is accomplished through set-
ting Δxaccum

ij
← Δxtrial

ij
 (if the trial state was valid) or else 

through Δxaccum
ij

← Δxij (if sliding occurred). For a detailed 
algorithmic treatment, we refer the reader to Campello [3].

(10)Δxtrial
ij

= Δxaccum
ij

+ �xtrial
ij

,

(11)dfric = 2�fric
�

8G∗m∗
√
r∗�

1∕4

ij

(12)�xtrial
ij

= ∫
t+Δt

t

vij,t(�)d�,

(13)Δxij =
1

8G∗
√
r∗�

1∕2

ij

�
�d
���f

con
ij

���tij − dfricvij,t

�
.

The moments due to the friction forces (relatively to the 
center of the particle) are given by

where mfric
ij

 is the moment on particle i due to its friction 
with particle (or object) j , and rij = rinij is the vector that 
connects the center of particle i to its contact point with 
particle j.

The moments due to rolling resistance, in turn, are given 
by a rotational spring-damper-slider model (often also called 
an “elastic–plastic” model), which may be thought of as the 
rotational version of the stick–slip friction model presented 
above. Accordingly, denoting by mrol

ij
 the moment that acts 

on particle i due to its rolling over particle (or object) j , for 
each rolling pair we first consider an elastic trial stick state 
in which the rolling resistance moment is

and then we verify it by a slip check against the static rolling 
(or “yield”) limit:

In Eq. (15), Δ�trial
ij

 is the pair’s trial rolling rotation (total), 
which is computed incrementally through

where Δ�accum
ij

 is the pair’s accumulated rolling rotation up 
to the previous configuration (i.e., the total rolling rotation 
experienced by the pair until then, which must be known) 
and ��trial

ij
 is the trial incremental rolling rotation for the 

pair from the previous to the current configuration, whose 
expression is shown shortly below. Still in (15), drol is the 
rolling damping constant, given by

(where �rol is the rolling damping rate, which must be given), 
and �ij = �i − �j is the relative rolling velocity between the 
pair. In (16), in turn, �r is the rolling resistance coefficient, 

(14)mfric
i

=

Nc
i∑

j=1

mfric
ij

, with mfric
ij

=

Nc
i∑

j=1

rij × f fric
ij

,

(15)
mrol

i
=

Nc
i�

j=1

m
rol,trial

ij
, with m

rol,trial

ij

= −8G∗
√
r∗�

1∕2

ij
(r∗)2Δ�trial

ij
− drol�ij,

(16)
{

IF
‖‖‖m

rol,trial

ij

‖‖‖ ≤ 𝜇rr
∗‖‖‖f

con
ij

‖‖‖ ⇒ mrol
ij

= m
rol,trial

ij
(trial state is valid, sticking occurs) ;

IF
‖‖‖m

rol,trial

ij

‖‖‖ > 𝜇rr
∗‖‖‖f

con
ij

‖‖‖ ⇒ mrol
ij

= 𝜇rr
∗‖‖‖f

con
ij

‖‖‖sij (trial is not valid, sliding occurs) .

(17)Δ�trial
ij

= Δ�accum
ij

+ ��trial
ij

,

(18)

drol = 2�rol
�

8G∗j∗
√
r∗r∗�

1∕4

ij
,

with j∗ =

�
1

ji + mir
2

i

+
1

jj + mjr
2

j

�−1

,
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whereas sij = �ij
‖‖‖�ij

‖‖‖
−1

 is the sliding rolling axis of the pair. 
The pair’s trial incremental rolling rotation is computed 
through time integration of the relative rolling velocity 
between i and j from the previous to the current configura-
tion, i.e.,

In case of sliding, since the sticking assumption is vio-
lated, the total rolling rotation is not the trial rolling rota-
tion, but may be computed from this later through a return 
scheme, from which one has

We remark that, similarly as to the friction force model, 
the total rolling rotation of every rolling pair must be stored 
after the above computations, as to become available for 
evaluation of the pairs’ rolling resistance moments in the 
next configuration. This is accomplished through setting 
Δ�accum

ij
← Δ�trial

ij
 (if the trial state was valid) or else through 

Δ�accum
ij

← Δ�ij (if sliding occurred). Again, for a detailed 
algorithmic treatment, we refer the reader to Campello [3].

Remark 1  The consideration of other force and moment con-
tributions, such as adhesion forces, near-field interactions, 
electromagnetic effects from external fields, drag forces 
(from the surrounding environment), van der Waals effects, 
as well as other rolling resistance models, is entirely possi-
ble, but not considered here. The interested reader is referred 
to Campello [3, 5] and Campello and Zohdi [18] for details. 
Also, it is worth mentioning that the interaction between 
particles and rigid walls may be represented as a special 
case of that between particles, simply by taking the walls 
with infinite mass, radius, inertia and elastic parameters in 
the above force and moment expressions.

Remark 2  Some of the particles’ mechanical properties, 
such as the elasticity modulus, may vary with temperature, 
providing some sort of thermal softening (or stiffening) due 
to a change in temperature. This is one source of coupling 
between the thermal and mechanical fields and can be taken 
into account in a straightforward way by simply considering 
a temperature-dependent value for the corresponding prop-
erty (e.g., from a given input curve), instead of a constant-
valued one. This will be dealt with in Sect. 3.5. Another 
source of coupling is the heat transfer between particles 
through conduction, which is dependent on the particles’ 
contact area and the distance between their centers—and 
thereby, on the particles’ positions and velocities, as will be 
seen in Sect. 3.2.

(19)��trial
ij

= ∫
t+Δt

t

�ij(�)d�.

(20)Δ�ij =
1

8G∗
√
r∗�

1∕2

ij
(r∗)2

�
�rr

∗���f
con
ij

���sij − drol�ij

�
.

3 � Consideration of thermal effects

Following the same discrete particle approach as for the 
mechanical fields, we assume here that the temperatures are 
uniform within the particles. This corresponds to a lumped 
thermal model and is valid as long as the particles are rel-
atively small, such that their surface area is large enough 
in relation to their interior volume as to allow for a rapid 
exchange of heat with the surrounding medium—which is 
the case here.1 From the first law of thermodynamics, the 
energy balance for the i th particle reads

where Ki is the particle’s kinetic energy, Uint
i

 is the particle’s 
internal (or stored) (mechanical plus thermal) energy, Pext

i
 

is the mechanical power due to the external forces, Qext
i

 is 
the particle’s heat input from external devices (e.g., fire noz-
zles, burners, laser beams, electric currents, etc.), Qcond

i
 is 

the particle’s heat flow due to conduction (amount of heat 
that flows through the particle by conduction upon contact 
with other particles and objects), Qconv

i
 is the particle’s heat 

flow due to convection by its surroundings (amount of heat 
that flows from or to the particle due to convection by the 
surrounding environment) and Qrad

i
 is the particle’s heat flow 

due to radiative effects. The kinetic energy is given by

with its time derivative being

Consistent with the DEM assumptions, the particle’s 
deformations (due to contacts with other particles and 
objects) are assumed to be very small, such that the mechan-
ical part of the internal or stored energy is negligible. There 
remains only its thermal part, which means that

where Ci is the specific heat of the particle (heat capacity per 
unit mass, which is assumed constant) and �i is the particle’s 
temperature. The time derivative of (24) yields

(21)K̇i + U̇int
i

= Pext
i

+ Q̇ext
i

+ Q̇cond
i

+ Q̇conv
i

+ Q̇rad
i

,

(22)Ki =
1

2
mivi ⋅ vi ,

(23)K̇i = miv̇i ⋅ vi .

(24)Uint
i

= miCi�i ,

(25)U̇int
i

= miCi𝜃̇i .

1  A useful measure to ascertain such an assumption is the Biot num-
ber, which must be small (smaller than one). The Biot number for 
spheres scales with the ratio of the sphere’s volume to the sphere’s 
surface area, i.e., with the sphere’s radius. Since the particles are 
assumed to be small here, of the order of micrometers to a few mil-
limeters, the Biot number will always be small (much smaller than 
one).
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The power due to the external forces is

where f tot
i

 is the total force vector acting on the particle, 
which is the sum of all forces on the right-hand side of 
Eq. (1)1. From the balance of linear momentum on the par-
ticle, one has miv̇i = f tot

i
 , and if this is inserted into Eq. (23) 

it follows that

implying that these two terms cancel out each other in 
Eq. (21). As a consequence, and taking (25) into account, 
the energy balance of the particle reads

This expression is formally identical to Eq. (1), except 
that it is now a scalar equation. It is the governing equation 
for the system’s thermal field. Each one of its heat power 
(or heat flow per unit time) contributions is described in the 
subsections that follow.

3.1 � Heat power due to external devices

The heat power provided by external devices (fire nozzles, 
burners, laser beams, electric currents, etc.) can be described 
through given (ad-hoc) expressions according to the type of 
device that is heating up the system. A general expression is

where 0 ≤ ai ≤ 1 is the particle’s absorptance (or absorptiv-
ity, ratio of the absorbed to the incident heat power, ascer-
taining the effectiveness of the particle’s surface in absorb-
ing heat), which must be known, and Idev

i
 is the device’s 

input power at the particle’s location, which must also be 
known. For, e.g., fire nozzles, one possible expression for 
Idev
i

 is

where I0 is the nozzle’s nominal input intensity (power 
per unit area of the nozzle’s cross section, which must be 
known), Ai = �r2

i
 is the particle’s frontal area (i.e., the area 

that is exposed to the nozzle’s power), dmax is the maxi-
mum penetration (or heating reach) of the nozzle within 
the bulk of the material (which must also be known) and 
0 ≤ zi ≤ dmax is the particle’s depth with respect to the noz-
zle’s striking position (measured along the nozzle’s path-
length, as indicated in Fig. 1). This is based on the assump-
tion that the nozzle’s power attenuates linearly inside the 
material until the maximum depth dmax is reached. If, e.g., 

(26)Pext
i

= f tot
i

⋅ vi ,

(27)K̇i = Pext
i

,

(28)miCi𝜃̇i = Q̇ext
i

+ Q̇cond
i

+ Q̇conv
i

+ Q̇rad
i

.

(29)Q̇ext
i

= aiI
dev
i

,

(30)Idev
i

= I0Ai

(
1 −

zi

dmax

)
,

the nozzle is such that its power affects only the surface 
of the material, not penetrating its interior, one must set 
dmax = r

top

i
 , with rtop

i
 as the radius of the top-layer particles, 

implying that only these particles will be directly heated by 
the nozzle (all sub-surface heating will be accomplished by 
conduction from the top layer). For laser beams, in turn, one 
possible expression for Idev

i
 may be derived from the Lam-

bert–Beer law, which states that the attenuation of incident 
light through a material (by both absorption and scattering) 
is exponentially dependent on the material’s thickness (or, 
more precisely, optical depth) and its attenuation coefficient. 
Accordingly, we write

where I0 is the laser’s input intensity (power per unit area of 
the beam’s cross section, which must be known), Ai = �r2

i
 

is the particle’s frontal area, � is the material’s attenuation 
coefficient (a bulk property determining how much the radi-
ant power of the beam is reduced as it passes through the 
bulk of the material, with units of m−1) and zi is the particle’s 
depth w.r.t. the beam’s striking position (measured along the 
beam’s path-length, as indicated in Fig. 1). This expression 
is obtained by assuming uniform attenuation in the Lam-
bert–Beer law, in the sense that � does not vary throughout 

(31)Idev
i

= I0Aie
−�zi ,

Fig. 1   Representation of external device’s heat penetration within a 
granular material. The depth of a particle w.r.t. the device’s striking 
position is measured by zi , whereas the device’s maximum penetra-
tion (or heating reach) is dmax
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the path-length of the beam. We remark that consideration 
of the transmittance of the laser through the interior of the 
material is of utmost importance. Otherwise, only the sur-
face layer remains hit by the beam, leaving all deeper (sub-
surface) heating to be accomplished solely by conduction 
from the top layer—a scenario that is far too conservative for 
laser devices. Considering the penetration of the heat source 
through the bulk of the material allows the deeper parts to 
be heated up more rapidly and effectively and represents the 
physical process in a more reliable way. Other expressions 
for the device’s input power may be adopted, according to 
the problem at hand.

3.2 � Heat power due to conduction

Heat flow through conduction takes place whenever the par-
ticle makes contact with another particle or object. It is a 
function of the temperature gradient between the contacting 
pair, the contact area between the pair and the pair’s indi-
vidual thermal conductivities. We follow the discrete form 
of Fourier’s law for conduction across interfaces and adopt 
the following expression

(32)Q̇cond
i

=

Nc
i∑

j=1

Q̇cond
ij

, with Q̇cond
ij

= kij

𝜃j − 𝜃i

‖‖‖xj − xi
‖‖‖
Ac
ij
,

where Qcond
ij

 is the conduction heat flow on particle i due to 
its contact with particle (or object) j , Nc

i
 is the number of 

particles and objects that are in contact with particle i , kij is 
the effective thermal conductivity of the i−j contacting pair 
(which is a function of the individual thermal conductivities 
of i and j and, possibly, the thermal resistance at their inter-
face) and Ac

ij
 is the contact area between the pair. This latter 

is computed by assuming that the area is circular with radius 
aij , which in turn may be obtained through solution of the 
following geometrical problem (see Fig. 2):

which gives (see Zohdi [19])

We draw the attention of the reader to the fact that Hertz 
contact theory predicts Ac

ij
= �(r∗�ij) (with r∗ and �ij given, 

respectively, by Eqs. (3)1 and (4)), but this is valid only for 
very small overlaps. Expression (34), on the contrary, is gen-
eral and holds for any overlap magnitude.

The pair’s effective thermal conductivity may be com-
puted from

where ki and kj are the thermal conductivities of i and j , 
respectively, and ri and rj their radii. If the particles have 
adsorbed material onto their surfaces, one extra term may be 
added to the above expression to account for the correspond-
ing thermal resistance (namely, the term would be tmat∕kmat , 
where tmat is the material’s thickness and kmat its thermal 
conductivity). Expression (35) is based on the assumption 
that the individual thermal resistances of the contacting pair 
may be summed up to provide the effective resistance of the 
pair, the reciprocal of which furnishes the pair’s effective 
conductivity.

An alternative approach, though valid only for 2D parti-
cles (i.e., circles or disks), is to consider the so-called pipe 
network model from Feng et al. [20], which is based on 
the thermal conductances of the contacting particles (rather 
than on their thermal conductivities) and the formation of 
a “heat pipe” between the contacting pair at their contact 
interface. Accordingly, if �i is the angle (measured from the 
particle’s center) that defines the particle’s contact interface 

(33)

a2
ij
+ L2

i
= r2

i

a2
ij
+ L2

j
= r2

j

Li + Lj =
‖‖‖xj − xi

‖‖‖ ,

(34)

Li =
1

2

⎛⎜⎜⎝
���xj − xi

��� −
r2
j
− r2

i

���xj − xi
���

⎞⎟⎟⎠
⇒ Ac

ij
= �a2

ij
= �(r2

i
− L2

i
) .

(35)
ri + rj

kij
=

ri

ki
+

rj

kj
,

Fig. 2   Geometrical representation of two contacting particles allow-
ing for the solution to obtain Li
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with another particle or object, the thermal conductance �i 
of the particle may be satisfactorily approximated by

This result is based on the two-dimensional solution of 
the steady-state heat problem within a 2D circular domain 
to which heat is provided across an interface defined by �i . 
A similar expression holds for the thermal conductance of 
particle j . The effective conductance of the contacting pair 
is then obtained as the reciprocal of the effective resist-
ance, similarly to (35). The three-dimensional version of 
this model is yet to appear. Other possible approaches, also 
based on conductances rather than on conductivities, are 
as suggested by Radjai and Dubois [2] and Vargas-Escobar 
[1]. We remark that we prefer to work with the conductiv-
ity rather than with the conductance, since the former is a 
material property, whereas the latter is a component-based 
one. One additional possible approach is by combining a 
discrete-finite element representation for the particles and 
their interfaces, e.g., in Yan and Jiao [21] and Yan et al. [22], 
but this is clearly not within the scope of our work.

The thermal conductivities of the particles are assumed to 
be constant with temperature here (although we could easily 
consider temperature-varying ones, in the lines of what is 
done for the mechanical properties in Sect. 3.5). This is a 
reasonable approximation for a wide range of engineering 
materials and operating temperatures—at least as long as the 
particles do not approach or experience phase transforma-
tion, which is the case here. Note that expressions (32) and 
(34) stand for a source of coupling between the thermal and 
mechanical fields, as it had been previously mentioned in a 
remark at the bottom of Sect. 2.

3.3 � Heat power due to convection

The surrounding environment (e.g., the environmental air) 
may exchange heat with the particle through convection. The 
corresponding heat flow on the particle may be computed 
through the classical Newton’s law of cooling. We adopt the 
following expression

where hi is the convection (or film) coefficient of the par-
ticle w.r.t its surrounding environment, �E is the environ-
ment’s temperature at the particle’s location (which must be 
known) and As

i
= 4�r2

i
 is total surface area of the particle. 

We assume that the convection coefficient is independent (or 
only marginally dependent) of the temperature difference 
between the particle and the environment. By resorting to 
the Nusselt number Nu of the environment around the par-
ticle (ratio between its heat transfer of convection to heat 

(36)�i ≅
�ki

− ln �i + 3∕2 + �2
i
∕36 + �4

i
∕2700

.

(37)Q̇conv
i

= hi(𝜃E − 𝜃i)A
s
i
,

transfer of conduction), the convection coefficient may be 
given by

where L = 2ri is the length scale and kE is the environment’s 
thermal conductivity. The Nusselt number may be related to 
the Reynolds number and Prandtl number through the well-
known heat transfer expression for flows past single spheres 
(see Whitaker [23])

where

is the Prandtl number (wherein CE is the environment’s 
specific heat), �E is the environment’s fluid viscosity and 
�E,s its viscosity at the particle’s surface temperature (we 
assume �E,s ≈ �E throughout this work). Expression (39) is 
a semi-empirical relation and allows for a realistic estimate 
to the convection coefficient of smooth spheres for a wide 
range of heat transfer and fluid flow regimes.2 For nearly 
stationary particles within calm (stagnant) environments, as 
the Reynolds number tends to zero, and consequently the 
Nusselt number to two, from (38) one has hi ≅ kE∕ri . This 
resembles natural (i.e., free) convection situations and will 
be adopted throughout this work (unless otherwise stated, 
where then Eq. (38) with (39) would hold). We remark that 
the above model is a “one-way” type of model, in the sense 
that the environment’s temperature affects the particles but 
the particles’ temperatures do not affect the environment. 
This may seem a rather rough approximation, but suffices 
for the purposes of this work (we recall that we are not inter-
ested in having extremely accurate results here, but instead 
in developing a simple model that covers the essential ingre-
dients of thermo-mechanical particle systems and capture 
their overall behavior for practical applications; besides, this 
approximation is consistent with the small particles assump-
tion). More elaborate approaches, e.g., solving for both the 
environment’s and particle’s temperatures in a large-scale 
CFD (computational fluid dynamics) coupled analyses, are 
obviously possible, but not considered here (this is clearly 
outside the scope of the present work).

(38)Nu =
hiL

kE
⇒ hi =

NukE

L
,

(39)Nu ≈ 2 +
(
0.4Re1∕2 + 0.06Re2∕3

)
Pr0.4

(
�E

�E,s

)0.25

,

(40)Pr =
CE�E

kE

2  The effects of particle spin on the convection coefficient, and 
thereby on the overall convective cooling rates of the particles, are 
neglected here. This is arguable, and we leave it as matter of future 
research.
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3.4 � Heat power due to radiation

Heat flow by radiative effects may be relevant if the parti-
cle’s surrounding environment (e.g., the environmental air) 
has a significantly different temperature as compared to the 
particle’s own temperature. In many applications, the par-
ticles are severely heated, whereas its surroundings remain 
(at least in an average sense) at a much lower temperature. 
In such condition, the amount of electromagnetic thermal 
radiation that is emitted by a particle may be significantly 
larger than that absorbed by it from the environment, creat-
ing an outward net energy flow from the particles that ulti-
mately promotes overall cooling of the system. We follow 
the Stefan–Boltzmann law to account for this energy transfer 
mechanism and adopt the following expression:

where 0 ≤ �i ≤ 1 is the particle’s radiative cooling efficiency 
(which must be known), B = 5.670367 × 10−8 W/m2 K4 is 
the Stefan–Boltzmann constant, �E is the environment’s 
temperature at the particle’s location (which must also be 
known) and As

i
= 4�r2

i
 is the particle’s surface area. Again, 

the environment’s temperature, besides being known (i.e., 
given), is assumed to be unaffected by the particle’s tempera-
ture (a “one-way” model). We once again acknowledge that 
this may be a rather rough approximation, but for the same 
reasons mentioned in the previous subsection it suffices for 
the purposes of this work (besides, it is also consistent with 
the small particles assumption).

(41)Q̇rad
i

= 𝜀iB(𝜃
4
E
− 𝜃4

i
)As

i
,

3.5 � Thermal softening of mechanical properties

Most materials have their mechanical properties degraded 
with increasing temperature. To incorporate such softening 
effects into the particles’ dynamics, one straightforward way 
is to consider temperature-dependent mechanical properties 
(e.g., by means of given input curves), instead of constant-
valued ones. Accordingly, we adopt the following expression 
for the particles’ elasticity modulus:

where E0 is the modulus’ ground or reference value (e.g., 
the value at room temperature, or at a temperature interval 
around the room temperature) and �∗ is the critical tempera-
ture at which it starts to degrade. A threshold value Emin 
may also be introduced, as to prevent indefinite softening. 
Figure 3 depicts (qualitatively) the general behavior implied 
by this relation for a ground modulus of E0 = 1.0 MPa and 
a critical temperature of �∗ = 400 K. Expression (42) may 
also be modified as to include a degrading rate coefficient, 
which would multiply the temperature term on the exponent. 
This would allow one to fine-tune the strength or mildness of 
the decaying rate, and thereby approximate other softening 
behaviors such as linear and hyperbolic softening (as com-
monly observed for many metals and ceramic materials). 
One should notice that thermal softening affects not only the 
particle’s normal stiffness (and therefrom its normal contact 
forces), but also its tangential stiffness (and thus its friction 
forces and rolling resistance moments), since the elasticity 
modulus enters the expression of the particle’s shear modu-
lus. The thermal softening of many common engineering 
materials may be satisfactorily approximated by expression 
(42). Other ad-hoc relations (e.g., multilinear or more elabo-
rate laws) are likewise possible to be incorporated.

Remark 3  The consideration of other heat sources and 
energy transfer mechanisms, such as heating or cooling due 
to internal chemical reactions (triggered, e.g., by reactive 
thin films adsorbed onto the particles’ surface, which may 
be activated by inter-particle collisions), is entirely possi-
ble, but not considered here. The onset and subsequent pro-
gress of such reactions may be represented through simple 
evolution laws that capture their overall influence on the 
mechanical and thermal states of the particles. Also, heat 
dissipated through inelastic impacts, as well as induced 
by dragging effects (due to friction with the surrounding 
environment at high speeds), are likewise possible, but will 
not be considered here (for a straightforward way to deal 
with drag-induced heating, see e.g., Campello [24]). These 
advancements are being currently undertaken by the authors 
and shall appear soon in a forthcoming paper.

(42)Ei = Êi(𝜃i) = min
{
E0,E0e

1−
𝜃i

𝜃∗

}
,
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Fig. 3   Schematic illustration of the thermal degradation of a parti-
cle’s elasticity modulus as implied by the proposed relation. Other 
mechanical properties may likewise vary with temperature, such as 
the friction coefficient and the adhesion stiffness, but this will not be 
considered here
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4 � Numerical solution scheme

To compute the time evolution of the system, we integrate 
the governing Eqs. (1) and (28) numerically by means of an 
explicit (forward Euler) scheme. Accordingly, for the veloci-
ties and spins of the particles, between any two time instants 
t and t + Δt we have

The solution process is very straightforward, as schemati-
cally outlined in the algorithm below:

(46)

𝜃i(t + Δt) = 𝜃i(t) +
1

miCi
∫

t+Δt

t

(Q̇ext
i

+ Q̇cond
i

+ Q̇conv
i

+ Q̇rad
i
)dt

≈ 𝜃i(t) +
Δt

miCi

(
Q̇ext

i
(t) + Q̇cond

i
(t) + Q̇conv

i
(t) + Q̇rad

i
(t)
)
.

––

where Δt is the integration time-step size, whereas for the 
positions and incremental rotations we write

The total rotation vectors are obtained by means of the 
Rodrigues formula (see Campello [4])

For the thermal states of the particles, in turn, we have

(43)

vi(t + Δt) = vi(t) +
1

mi
∫

t+Δt

t

(mig + f con
i

+ f fric
i

)dt

≈ vi(t) +
Δt

mi

(
mig + f con

i
(t) + f fric

i
(t)
)
,

�i(t + Δt) = �i(t) +
1

ji ∫
t+Δt

t

(mfric
i

+mrol
i
)dt

≈ �i(t) +
Δt

ji

(
mfric

i
(t) +mrol

i
(t)
)
,

(44)
xi(t + Δt) ≈ xi(t) + vi(t + Δt)Δt ,

�Δ
i
(t + Δt) ≈ �i(t + Δt)Δt .

(45)

�i(t + Δt) =
4

4 − �i(t) ⋅ �
Δ
i
(t + Δt)(

�i(t) + �Δ
i
(t + Δt) −

1

2
�i(t) × �Δ

i
(t + Δt)

)
.

Since we adopt an explicit scheme, selection of an appro-
priate time-step size for a numerically stable time integration 
is critical. As general guideline, Δt must be set as a fraction 
of the smaller vibration period of all particle interactions 
(forces, moments and heat transfer contributions) of the 
model. Here, however, since we are dealing with problems 
wherein contacts and collisions inherently occur, and since 
they are typically of very short duration, the time-step size 
is invariably governed by the duration of the contacts—at 
least for the types of problems we are interested in and the 
material properties we consider. Thus, we adopt the follow-
ing criterion:

where �tcon is the duration of the shortest possible contact or 
collision of the system and vrel is the relative velocity of the 
corresponding contacting pair in the pair’s central direction 
immediately before the contact or collision is initiated. This 
is based on Hertz’s contact theory (see Johnson [17]) and, 
according to our experience, allows for a good accuracy in 
the computation of the contact forces.

One additional important aspect is that contact detection 
is often the computational bottleneck of any DEM solution 

(47)Δt ≤ �tcon

10
, �tcon ≅ 2.87

[
(m∗)2

r∗(E∗)2vrel

]1∕5
,
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scheme. We perform this task here via a hybrid global–local 
search method, wherein both domain subdivision cells and 
nearest-neighbors lists (“Verlet lists”) are combined. Details 
on its algorithmic implementation can be found in Campello 
[5].

Remark 4  The use of implicit time integration schemes, 
such as the backward Euler scheme or the midpoint rule, is 
entirely possible within this framework (see, e.g., Campello 
[3] and Zohdi [6]). Here, however, since we are interested 
in having a “first working version” of the model in its sim-
plest form, and since we are not concerned with long-term 
calculations (for which accuracy could be an issue), explicit, 
first-order accurate methods are sufficient. The implicit ver-
sion is currently under development by the authors, using 
a recursive (fixed-point iterative) error-controlled approach 
within each time step.

5 � Numerical examples

Let us illustrate the usage of the above model by analyzing 
a few numerical examples. First, we show one simple vali-
dation problem involving only a single particle (we remark 
that extensive validation of the model has been conducted 
in a separate study and will not be reported here). Next, we 
analyze more general, multi-particle model problems.

5.1 � Interaction between a particle and a thermal 
base

This example is analyzed to investigate the behavior of the 
basic ingredient of a thermo-mechanical particle system, 
namely the interaction between two contacting entities. 
For simplicity, we consider here a single particle in contact 
with a thermal floor, with arbitrarily different initial tem-
peratures. We want to assess some of the features of our 
scheme under simple idealized conditions, such that we may 

better highlight its coupled thermal–mechanical aspects. In 
particular, we want to evaluate the evolution of the parti-
cle’s temperature and its subsequent effect upon the par-
ticle’s elastic stiffness and contact force. Let us consider a 
particle with radius r1 = 0.001 m, placed tangentially over a 
thermally active base, as shown in Fig. 4. Gravity acts down-
wards. The particle has an initial temperature �1(0) = 300 
K and is made of a material with thermal conductivity 
k1 = 60 W/m K, specific heat C1 = 100 J/kg K, mass-density 
�1 = 3000 kg/m3 and elastic properties at room temperature 
E0,1 = 1.0 MPa and �1 = 0.3 , with critical (degrading) tem-
perature �∗

1
= 400 K. Critically damped contact is considered 

( �con = 1 ). The floor is assumed to have infinite mass and 
zero conductivity (i.e., it does not change its thermal state 
over time), with a constant temperature of �f = 700 K. The 
surrounding environment is not considered (i.e., it does not 
absorb nor provide heat to the particle). As gravity drives the 
particle toward the floor, they make contact and the particle 
starts to receive heat through conduction, since it is at a 
smaller temperature than the floor. Eventually, the particle 
attains mechanical and thermal equilibrium with the floor. 
Figure 5 depicts the evolution of the particle’s temperature 
with time, along with time histories of its elastic moduli, 
overlap, contact area and contact force. As we can see in 
Fig. 5a, thermal equilibrium is reached at around t ≈ 12 s. 
The elastic moduli is clearly seen to degrade (Fig. 5b), and 
the overlap consequently is seen to increase until thermal 
equilibrium with the floor is reached (Fig. 5c). Another 
interesting aspect, as a consequence of the increase in the 
overlap, is the increment of the contact area (Fig. 5d), of 
about 63%, if compared to the area when thermal softening 
is not considered. This implies an increase in the amount of 
conduction heat flow between both objects, as it can be seen 
in Fig. 5e. Therein, a reference line at t = 8 s is plotted in 
the graph, for which the temperature of the particle is seen 
to be about 7% higher than that in the case without thermal 
softening. Also, with thermal softening thermal equilibrium 
is reached faster than in the case without softening (~ 12 s 
against ~ 18 s). With regard to the contact force, the change 
in elastic modulus and overlap would make one to expect 
that the contact force also varies in time; however, it is seen 
from the graph in Fig. 5f that this does not happen: after 
mechanical equilibrium is attained (this occurs very rapidly 
at the beginning and cannot be seen from the adopted graph 
scale), the force is perfectly constant in time, with a value 
of 1.23 × 10−4 N. It turns out that the decrease in stiffness 
is exactly compensated by the increase in the overlap, and 
the force remains constant thereby. Indeed, this is consistent 
with static equilibrium arguments, since the only external 
force acting upon the particle is the gravity force, which is 
constant. The time-step size adopted in this simulation was 
Δt = 2 × 10−5 s whereas the final time was t = 40 s.

Fig. 4   Single particle under gravity placed over a thermally active 
floor
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5.2 � Heated and vibrated extended granular 
medium

This example has been originally proposed by Campello 
[3], however without consideration of heat. At the time, the 
author was interested in the purely mechanical part of the 

problem, namely the onset of surface instabilities followed 
by the formation of well-marked surface waves. This inter-
esting phenomenon may be observed if an extended (i.e., 
shallow) granular stack is vibrated vertically under certain 
frequencies. It has been studied through physical experi-
ments by Duran [8] and Clément et al. [25], among others, 

(a) Evolution of the particle´s temperature (b) Evolution of the elastic moduli along time as the 
particle´s temperature varies

(c) Evolution of the overlap with respect to time (d) Increasing of the contact area of the particle as 
result of thermal softening

(e) Evolution of the temperature considering the 
degradation of the elastic moduli

Evolution of the contact force 
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Fig. 5   Example 5.1: interaction between a particle and a thermal base. Analysis results

Fig. 6   Heated and vibrated 
extended granular medium. 
Problem definition. The initial 
temperature of the particles is 
300 K
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and their results were numerically reproduced in [3]. Here, 
instead, we want to analyze a thermo-mechanical version of 
the problem, by heating up the granular medium while it is 
being vibrated, with the aim to investigate the evolution of 
its thermal states and the role of conduction and convection. 
Accordingly, nine layers of particles with diameter 1.5 mm 
and initial temperatures 300 K are disposed at the bottom of 
a rectangular cell of 300 mm width, as shown in Fig. 6 (the 
same setting as in the original example). The layers are piled 
in a regular triangular arrangement, such that the total height 
of the stack at rest is 11.9 mm. The problem is mounted 
in a bi-dimensional setting, as to facilitate visualization of 
results. The cell is shaken vertically according to the dis-
placement function y(t) = A sin(�t) , with given amplitude A 
and angular frequency � . A normalized acceleration meas-
ure, � = A�2∕g (with g = 9.8 m/s2 as the gravity accelera-
tion), is taken as a control parameter. At t = 0 , the cell walls 
are given an initial temperature of 1000 K, which is then 
held constant throughout the simulation. The air’s tempera-
ture, in turn, is taken as 273 K. Other data are as follows:

•	 Mass-density of the particles: �i = 2700 kg/m3;
•	 Elastic properties of the particles: Ei = 700 MPa and 

�i = 0;
•	 Friction and rolling resistance coefficients between par-

ticles: �s = �d = 0.5 and �r = 0.01;
•	 Friction and rolling resistance coefficients between par-

ticles and cell walls: �s = �d = �r = 0;
•	 Contact, friction and rolling resistance damping rates: 

�con = �fric = 0.16 and �rol = 0.01;
•	 Thermal properties of the particles: ki = 500 W/m K and 

Ci = 5 J/kg K;
•	 Thermal properties of air: kair = 0.025 W/m  K and 

Cair = 1000 J/kg K;
•	 Normalized acceleration parameter: � = 3.4;
•	 Total number of particles: NP = 1796;
•	 Time-step size: Δt = 5 × 106 s.

Radiative effects and thermal softening are not considered 
(this allows us to concentrate solely on the effects of conduc-
tion and convection here). Figure 7 shows two sequences of 
snapshots as obtained with our simulation for the case with 
an excitation frequency of f = 7.8 Hz (which corresponds 
to a shaking amplitude of A = 13.9 mm). The left sequence 
is obtained by considering both conduction and convection, 
whereas for the right one the convection contribution is 
turned off. One can see that heat transfer through convection 
is particularly dominant here, not allowing the particles to 
heat up significantly even after they have made tens of thou-
sands of contacts with the walls at t = 60 s. If convection 
is not considered, the particles’ temperatures steadily grow 
as the bottom and lateral layers are heated due to multiple 
contacts with the walls, and from them the other layers are 

heated through inter-particle conduction. The particles are 
clearly seen to approach the walls’ temperature with increas-
ing time. Figure 8 displays the corresponding results for the 
case with an excitation frequency of f = 12 Hz (which cor-
responds to a shaking amplitude of A = 5.9 mm). The same 
overall behavior is observed, except that here the waves have 
a rather smaller height, and as consequence the heat trans-
fer paths are different, leading to a different exchange of 
heat between particles and between particles and the envi-
ronment. For this reason, the temperature distributions are 
slightly different as compared to the previous case.

5.3 � Conduction through a 3D particle assembly

We consider here a three-dimensional particle assembly con-
sisted of NP = 10000 particles randomly packed under grav-
ity within a cubic box, subjected to a temperature gradient 
of 700 K in its x direction as depicted in Fig. 9, top part. The 
box has side dimensions of 0.1 m, whereas the particles have 
radii following a Gaussian distribution with mean r̄ = 3.0 
mm and standard deviation 0.667 mm (the distribution is 
truncated at three standard deviations from the mean). The 
volume fraction of particles within the assembly is 0.54. The 
thermal gradient is enforced by holding the temperatures of 
the two opposite walls of the box in the x direction at 1000 K 
and 300 K indefinitely, respectively, with the particles’ ini-
tial temperatures being set at 300 K. By releasing the system 
at t = 0 and computing the evolution of heat flow over time, 
we are able to ascertain the effective (i.e., bulk) thermal con-
ductivity of the assembly, which is obviously not the same 
of the individual conductivities of the constituent particles. 
Convection and radiation are not considered as to isolate the 
conduction problem and allow for a better estimate of the 
effective response. Other data are as follows:

•	 Particles’ thermal properties: ki = 100 W/m  K and 
Ci = 100 J/kg K;

•	 Particles’ mass-density: �i = 1000 kg/m3;
•	 Particles’ elastic properties: Ei = 1 MPa (no thermal sof-

tening) and �i = 0.3;
•	 Friction and rolling resistance coefficients between par-

ticles: �s = �d = 0.05 and �r = 0.2;
•	 Friction and rolling resistance coefficients between par-

ticles and cell walls: �s = �d = �r = 0;
•	 Contact, friction and rolling resistance damping rates: 

�con = �fric = 1.0 and �rol = 0.2;
•	 Pack generated through a random sequence addition 

method (Campello and Cassares [26]);
•	 Time-step size: Δt = 2 × 104 s.

Figure 9 shows snapshots of the system’s configura-
tion at selected time instants as obtained with our simula-
tion (sequence is from left to right, top to down). Thermal 
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Fig. 7   Heated and vibrated extended granular medium. Simulation 
results for the case with f = 7.8 Hz. Left sequence considers both con-
duction and convection; right sequence has convection turned off. 

Snapshots (from top to down) are taken at t = 1 s, 3 s, 6 s, 8 s, 10 s, 
13 s, 20 s, 30 s, 40 s and 60 s, respectively
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Fig. 8   Heated and vibrated extended granular medium. Simulation 
results for the case with f = 12 Hz. Left sequence considers both con-
duction and convection; right sequence has convection turned off. 

Snapshots (from top to down) are taken at t = 1 s, 3 s, 6 s, 8 s, 10 s, 
13 s, 20 s, 30 s, 40 s and 60 s, respectively
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(a) Temperature distribution at 25t = s (b) Temperature distribution at 50t = s

(c)Temperature distribution at 100t = s (d)Temperature distribution at 200t = s

Temperature distribution at 350t = s Temperature distribution at 450t = s

Twall = 1000 K

0.10 m 0.10 m

0.10 m

Twall = 300 K

Particles’ radii

= 0.003 m

= − 3 = 0.001 m

= + 3 = 0.005 m

(e) (f)

Fig. 9   Conduction through a 3D particle assembly. Simulation results. Sequence is from left to right, top to down
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equilibrium is reached at around t ≈ 350 s, wherein the par-
ticles’ temperatures no longer change significantly between 
consecutive time steps. From the thermal field thus obtained, 
the total heat that is provided to the system until then ( ΔQ ) 
may be computed by summing up the change in the parti-
cles’ individual thermal energies w.r.t. the initial configu-
ration, i.e., ΔQ =

∑
miCiΔ�i . The effective conductivity 

of the assembly in the x-direction, then, may be obtained 
by k∗ = ΔQ∕(∇TAΔt) , where ∇T = 700∕0.1 = 7000 K/m 
is the applied thermal gradient, A = 0.1 × 0.1 = 0.01 m2 is 
the cross-sectional area to the flow and Δt = 350 s is the 
time interval considered. From this, it follows that k∗ = 6.2 
W/m K. In order to check the consistency of this result, let us 
resort to the well-known Hashin–Shtrikman bounds (Hashin 
and Shtrikman [27–29]) on effective responses for two-phase 
solid mixtures. For linear heat transfer applications, for a 
mixture of two isotropic materials, each with known thermal 
conductivities k1 and k2 and volume fractions v1 and v2 , the 
bounds for the effective bulk conductivity are

wherein it is implicitly assumed that k2 ≥ k1 . Phase 1 is 
the matrix (in our case, void) material, whereas phase 2 
is the particle one. Provided that the volume fractions and 
constituent conductivities are the only known information 
about the mixture’s microstructure, the Hashin–Shtrikman 
expressions are the tightest bounds for the overall effective 
responses of two-phase media, where both constituents are 
isotropic. One should notice that the lower bound is more 
accurate for mixtures composed of highly conductive parti-
cles surrounded by a lowly conductive matrix (which is the 
case here), whereas the upper bound is more accurate for 
mixtures of a highly conductive matrix surrounding lowly 
conductive particles. For the conductivities adopted here 
( k1 = 0 and k2 = 100 W/m K), the above expression renders 
a lower bound of k∗,− = 0 , and an upper bound of k∗,+ = 44.6 
W/m K. This is entirely consistent with the value derived 
from our simulation: not only our numerical estimation lies 
within the bounds, but also it is much closer to the lower 
(more accurate) one. One additional explanation to the fact 
that the assembly’s effective conductivity shall be closer to 
the lower bound here is that the particles, though occupy-
ing roughly 54% of the assembly’s total volume, interact 
with their neighboring ones through minute contact areas, 
such that the conductivity paths, although existing within the 
entire assembly, are of very small cross-sectional size, thus 
affecting the conduction rates severely. To further check the 
consistency of our proposed scheme, we have run one addi-
tional simulation of the assembly, now considering thermal 
softening of the elasticity modulus, in an attempt to increase 
the particles’ contact areas and thus improve the overall 

(48)k1 +
v2

1

k2−k1
+

1−v2

3k1

≤ k∗ ≤ k2 +
1 − v2
1

k1−k2
+

v2

3k2

,
conductivity of the assembly. By considering a critical tem-
perature of �∗ = 300 K, the new thermal field obtained at 
the time of thermal equilibrium (i.e., when the particles’ 
temperatures no longer change significantly between con-
secutive time steps) leads to k∗ = 7.4 W/m K. This is entirely 
consistent, since it is higher than the first estimate, however 
still closer to the lower bound. It is important to mention that 
the increase in k∗ in this case is indeed expected to be small, 
since the softening adopted is rather mild. More pronounced 
increases may be accomplished by softening the particles 
more severely. At any rate, any estimate to the effective 
conductivity in this problem shall be closer to the lower 
bound. The proposed methodology provides a simple and 
useful way to ascertain the effective thermal conductivity 
of dry powders and other particulate media used in indus-
trial processes and advanced engineering applications. A 
similar approach to effective responses, though in the rather 
different context of particle infiltration into porous media, 
has been developed recently by Zohdi and Campello [30].

5.4 � Laser‑sintering of a bed of particles

This example has been proposed by Ganeriwala and Zohdi 
[31]. Here, we analyze it with a few slight modifications: we 
consider Hertz-based contact, consistent stick–slip friction, 
consistent rolling resistance, as well as convection, radiation 
and thermal softening of the particles’ elasticity modulus 
(instead of [31] ‘s no convection, no radiation and no ther-
mal softening), but with no phase transformation. To better 
highlight the effects of these phenomena, the particles’ diam-
eters and bed’s lateral dimensions have been changed here in 
comparison with Ganeriwala and Zohdi’s original example. 

Table 1   Laser-sintering of a bed of particles. Values used in the sim-
ulation

No. Parameter Values

1 Particle’s diameter (mean, std. dev) 1.0 mm, 0.1 mm
2 Number of particles 6401
3 Particles’ initial temperatures 373 K
4 Particles’ degrading temperature 700 K
5 Particles’ material density 7800 kg/m3

6 Particles’ elastic modulus and Poisson coeff. 200 GPa and 0.3
7 Particles’ friction and rolling resistance 

coeffs.
0.1

8 Particles’ damping rates 1.0
9 Bed’s lateral dimensions 40 mm × 40 mm
10 Laser power 1000 W
11 Laser beam diameter 10 mm
12 Laser beam horizontal velocity 0.1 m/s
13 Particles’ thermal conductivity 60 W/m K
14 Particles’ heat capacity 600 J/kg K
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Accordingly, a bed of metallic particles whose properties 
are summarized in Table 1 is heated from above by a high-
intensity laser beam, as shown in Fig. 10, top part. The laser 
moves in the horizontal z-direction at a constant speed of 
0.1 m/s, as to heat the particles and promote their rapid sin-
tering. Its properties are shown in Table 1. The beam’s inten-
sity is assumed to be uniform throughout its cross-sectional 

area. The environment’s temperature is assumed to be 273 K. 
Considering that the particles are very stiff, a small time-
step size of Δt = 5 × 10−7 s is adopted. The total simulation 
time is tF = 0.5 s. Figures 10 and 11 show a sequence of 
screenshots at selected time instants as obtained with our 
simulation. The left sequence refers to the simulation con-
sidering only conduction heat transfer, whereas the right 

0.04 m 0.04 m

T0 = 373 K

Particles’ radii

= 0.0005 m

= − 3 = 0.0002 m

= + 3 = 0.0008 m

Laser sintering at 0.04t = s. Only conduction. 
Color represents temperatures in [ºK] 

(b)(a) Laser sintering at 0.04t = s. Conduction, convection 
and radiation. Color represents temperatures in [ºK] 

(c) Laser sintering at 0.12t = s. Only conduction. 
Color represents temperatures in [ºK] 

(d) Laser sintering at 0.12t = s. Conduction, convection 
and radiation. Color represents temperatures in [ºK] 

Fig. 10   Laser-sintering of a bed of particles. Problem definition and simulation results up to t = 0.12 s. Left sequence considers only conduction; 
right sequence considers conduction, convection and radiative effects
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sequence considers conduction, convection and radiative 
effects. At t = 0.24 s, for example, it can be seen that the 
average temperature of the particles (considering only those 
that have been targeted by the beam) for the case with only 
conduction is 2986 K, whereas for the case with conduc-
tion, convection and radiation it is 2121 K—a difference of 
about 41%. As for the maximum temperatures, a difference 
of about the same order (43%) is observed between both 
cases. Contrary to Ganeriwala and Zohdi [31], wherein the 
particles were of a smaller average size, here the convec-
tion and radiative contributions play a very significant role. 
The process performance may be severely impacted if they 

are not taken into account in the model. Another interesting 
aspect that can be seen in both cases is that particles located 
near the boundaries of the beam’s path-length heat up less 
than those further within the path, due to conduction with 
the cooler neighboring particles that have not been targeted 
by the beam. At any rate, irrespective of these observations, 
we remark that, due to the high temperatures experienced 
by the particles here, a more rigorous approach to this prob-
lem would require one to incorporate phase transformation 
effects and, occasionally, adhesion forces. This is already 
under development by the authors.

(a) Laser sintering at 0.24t = s. Only conduction. 
Color represents temperatures in [ºK] 

(b)Laser sintering at 0.24t = s. Conduction, convection 
and radiation. Color represents temperatures in [ºK] 

(c) Laser sintering at 0.416t = s. Only conduction. 
Color represents temperatures in [ºK] 

(d) Laser sintering at 0.416t = s. Conduction, convection 
and radiation. Color represents temperatures in [ºK] 

Fig. 11   Laser-sintering of a bed of particles. Simulation results from t = 0.24  to t = 0.416  s. Left sequence considers only conduction; right 
sequence considers conduction, convection and radiative effects
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6 � Conclusions

Discrete particle systems consisted of thermo-mechanically 
active particles are widely observed in many industrial pro-
cesses and engineering applications. This is the case of (but 
is not restricted to) modern advanced manufacturing and 
state-of-the-art civil construction, wherein the controlled 
heating (and further processing) of particles such as sin-
tering powders and functionalized cementitious materials 
is critical. In order to have a reliable and fairly accurate 
representation of the behavior of such systems under exter-
nal (thermal and mechanical) excitations, a multiphysical 
description is required. The purpose of this work was to 
present a multiphysics computational model for the simula-
tion of such discrete particle systems. We find the model to 
be reasonably simple and straightforward to be implemented 
by engineers and analysts interested in the field. We aimed 
to enable a direct design and analysis tool with which ana-
lysts and engineers may assess the overall system’s response 
upon given external excitations, detecting general trends, 
identifying the relevance of certain parameters (and their 
subsequent impact upon the system’s behavior), drawing 
what-if scenarios and thereby reliably improving process 
performance. The model proved to work very well for the 
purposes envisioned, as demonstrated in our numerical 
examples. This truly motivates us to pursue in its exten-
sion and improvement. In this regard, incorporation of more 
complex phenomena such as adhesion forces, chemical reac-
tions, heat generation through inelastic collisions as well as 
phase transformation is currently under development by the 
authors. Likewise, the implicit version of the numerical solu-
tion scheme is under work. All these advancements over the 
present model shall appear soon in a forthcoming paper. We 
believe that simple, consistent particle models of the type as 
shown here may be a useful tool to the modeling of discrete 
particle systems that are consisted of thermo-mechanically 
active particles and, in a broader sense, many other discrete 
systems wherein multiphysical effects may be relevant.
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