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Abstract

Traffic congestion continues to be a persistent problem throughout the world. As vehicle-to-

vehicle communication develops, there is an opportunity of using cooperation among close

proximity vehicles to tackle the congestion problem. The intuition is that if vehicles could

cooperate opportunistically when they come close enough to each other, they could, in

effect, spread themselves out among alternative routes so that vehicles do not all jam up on

the same roads. Our previous work proposed a decentralized multiagent based vehicular

congestion management algorithm entitled Congestion Avoidance and Route Allocation

using Virtual Agent Negotiation (CARAVAN), wherein the vehicles acting as intelligent

agents perform cooperative route allocation using inter-vehicular communication. This

paper focuses on evaluating the practical applicability of this approach by testing its robust-

ness and performance (in terms of travel time reduction), across variations in: (a) environ-

mental parameters such as road network topology and configuration; (b) algorithmic

parameters such as vehicle agent preferences and route cost/preference multipliers; and (c)

agent-related parameters such as equipped/non-equipped vehicles and compliant/non-

compliant agents. Overall, the results demonstrate the adaptability and robustness of the

decentralized cooperative vehicles approach to providing global travel time reduction using

simple local coordination strategies.

Introduction

Our proposed co-operative route allocation approach entitled, Congestion Avoidance and

Route Allocation using Virtual Agent Negotiation (CARAVAN), first introduced in [1],

employs inter-agent coordination and negotiation (via vehicular ad hoc networks or VANETs)

as the basis of cooperation in which the routes are traded by the vehicle agents to arrive at an

efficient route allocation. Also, other work such as [2] demonstrated the use of inter-vehicle

communication for detecting as well as controlling congestion. In our previous work in [1], we
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showed that with CARAVAN, effective global traffic management can emerge from local

negotiations among agents (having specific route preferences) at disparate road junctions.

However, our previous work did not answer important questions regarding the robustness of

the approach, as algorithmic, environmental and agent-specific parameters are varied: how
would the number and placement of junctions and the road segment capacity affect emergent traf-
fic flows?What if drivers do not follow the system’s recommendations and only some percentage
of vehicles are equipped with CARAVAN? What traffic behaviors would emerge if the system
favors drivers with only specific route preferences? In this paper, we address these questions by

comprehensively analyzing the effects of the aforementioned parameters on the performance

of CARAVAN in terms of travel time reduction. This work provides insights into the emergent

behaviors of the cooperative self-organizing multiagent vehicle models under different condi-

tions enabled by the virtual negotiation deals. The two main contributions of this paper are: (i)

demonstrating the robustness (over an extensive range of conditions) of the local coordination

mechanism used in the approach to regulate the overall traffic; and (ii) demonstrating the

effect of factors such as driver preferences and response, road topology and configuration on

the route allocation in terms of travel time reduction.

The rest of the paper is organized as follows. We first review work on multiagent based

cooperative traffic congestion management. Then, we provide an overview of CARAVAN, and

describe the virtual negotiation mechanism design and the algorithmic parameters used in

CARAVAN. A comprehensive evaluation of CARAVAN os then presented, and then we

conclude.

Related work

Multiagent based congestion management

We classify multiagent systems or MAS based congestion management approaches as:

1. Cooperation and Self-organization based techniques: MAS techniques can be used to

detect and avoid traffic congestion. MAS based techniques such as ant pheromone,

honey-bee foraging and fish schooling are inspired from the peculiar features of species

(ants, honey-bees, fish). These techniques aid in traffic flow forecasting and traffic orga-

nization with indirect communication leading to well-coordinated movement of vehi-

cles. The ant-pheromone technique proposed in[3], involves vehicles depositing digital

pheromone (such as speed and acceleration) to build a dynamically weighted network

graph depicting the areas and levels of congestion. The Adaptive and Cooperative Traffic

light Agent Model (ACTAM) described in [4], has Intelligent Intersection Agents (IIA)

capable of storing data and inter-communicating, learning from past/current traffic pat-

terns and forecasting traffic states.

2. Negotiation based Techniques: The conflicting objectives of driver satisfaction and network

stability can be handled using multiagent negotiation techniques which can lead to good

network performance and increase in driver satisfaction by allocating drivers evenly along

the network. For example, the Urban Traffic Control (UTC) technique in [5] consists of

Roadside Agents (RSA), Intelligent Traffic Signaling Agent (ITSA) and Authority Agent

(supervises and controls several ITSAs). Using the roadside information (collected by RSA)

ITSA devises traffic control strategies, estimates the traffic state and is also capable of resolv-

ing conflicts via cooperation and negotiation. Another cooperative MAS based route guid-

ance approach in [6] has three types of agents for: (i) providing traffic information; (ii)

satisfying drivers’ route choice; and (iii) focusing on overall network stability.

Cooperative vehicles for robust traffic congestion reduction
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3. Driver-behavior based model: Drivers can be given intelligent advice to improve their ability

to cope with congestion. The work in [7] simulates various scenarios with varying driver

feedback/conformance, real-time information provisioning and driver’s ability to observe

the local traffic conditions. The authors in [8] describe an Adaptive Route Advisor that gen-

erates routes for the drivers by adapting its recommendation via continuous driver

interaction.

The system performance in the traffic management scenarios depends on collective action,

i.e. the number of agents (the vehicles) taking a particular action (such as route selection)

rather than the intrinsic value of a particular action [9]. Furthermore, the conflicting objectives

of the agents can be resolved using negotiation strategies and the effectiveness of the route

guidance system is enhanced when the agent preferences are taken into consideration. A

detailed review of various congestion management techniques is in [10].

Application of local coordination and self-organization based MAS

techniques

In a limited resource environment the computation requirements of the coordination tech-

nique are important. Furthermore, the factors to be considered are number of agents, hetero-

geneity of agents, agent complexity, extent of agent interaction, degree of dynamism and

distributivity. Three types of coordination mechanisms described in [11] are: (i) conventions–
they are the simplest form of coordination, agents interact by means of “social rules” describ-

ing ways for agents to interact with other agents; (ii) communication–involves information-

sharing bound by timeliness and bandwidth constraints; and (iii) learning–these evolve coordi-

nated policies within uncertain state spaces.

The approaches below elaborate on how local coordination and self-organisation in the

form of local knowledge, local interaction and local decision-making can contribute towards

satisfying the global aims of the system. The approaches also describe how coordination can

emerge from the autonomous and dynamic behaviour of the autonomous intelligent agents.

In [12] is proposed a hierarchical local coordination solution to the global stabilisation

problem in context of the electricity domain. The agents interact and use local knowledge

towards stabilising the global energy consumption of an electricity network. In this approach,

the agents are arranged in a hierarchy and each of the child nodes generate unique energy con-

sumption plans. An aggregate of these plans is sent to their respective parent nodes–this is

done as a recursive process. All the plans thus obtained from the nodes are aggregated and

passed down to each of the nodes in the hierarchy. In successive rounds, a plan which is least

deviating from the previous aggregate plan is selected–this is called the stabilising goal. Thus,

the agents at each level of the tree, select a plan that satisfies this goal locally, and also elimi-

nates the less promising options. Experimental results with this hierarchical coordination sug-

gested reduction in the deviation of the global plan in the range 36.54–78.71%compared to

greedy agents.

In [13] is proposed the integration of the Ant Colony Intelligence (ACI) approach with

MAS for dynamic manufacturing scheduling. The system contains entities such as job,

machines and order with their respective goals. In the proposed approach, the machine agent

acts as an ACI agent for solving the task sequencing problem. Every machine is regarded as an

ant and the machine with the shortest processing time will have the highest pheromone value.

After an operation is processed, the pheromone value of the machine agent is updated depend-

ing upon its current local status and the total processing time of the machine entity. Similarly,

the job agent is also regarded as an ACI agent. The job agent with closest due date of its job has

the highest initial pheromone level; and delayed jobs possess a higher pheromone level to
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attract the machine agents. Experimental results showed that the MAS with ACI outperformed

the MAS with FIFO in regards to measurements such as reduced buffer size, reduced mean

flow time, and reduced tardiness. The results demonstrated that local coordination results in

efficient job sequencing and machine utilisation, and can adapt dynamically to the changing

circumstances on the shop floor.

In [14] is described a cooperative satisficing MAS based approach to free flight for air traffic

management. In this approach, which is based on the satisficing game theory during every

round, an agent is assumed to have a current list of information about every plane within 50

miles. In this approach, the aircrafts adopt a satisficing approach which allows conditional

altruism which means taking into consideration desires of others while making their own deci-

sions. This is to ensure efficiency (arriving at the destination) and safety (avoiding collisions).

The final solution selected is the option with maximum difference between the selectability

and rejectability criteria. The selectability and rejectability criteria are designed to identify

solutions which are good enough. The selectability criteria are the ones which allow the agents

to achieve their goal. Aircraft headings and a particular option allowing the agent to follow its

nominal route more closely are defined as the selectability criteria in this context. Any option

which will lead to probable conflict with another plane is the rejectability criteria. The aircrafts

rank each other using information on the current velocity, heading, altitude, desired direction,

time in the air and current delay time.

It can be seen from the above examples, how distributed agents can cooperate locally either

directly (with communication) or indirectly (without communication) and still regulate the

overall results in the form of global optimization or in the form of a satisficing solution (for a

resource, time and communication constrained environment).

An overview of CARAVAN

CARAVAN is a traffic congestion management algorithm which uses inter-agent coordination

and negotiation strategies for cooperative route allocation. If the vehicles are made aware of

each other’s intentions (route choices), they can adjust their own routes and cooperate with

each other to minimize any conflicting route choice decisions. The algorithm aims to achieve

this by forming a number of localized interaction groups of vehicles which make cooperative

route choices before they approach the road junctions resulting in coordinated movement of

vehicles as they pass the designated junctions. These local interactions result in the self-organi-

zation of the vehicles along the road segments around the junctions, which in turn leads to an

overall regulation of the traffic. The junctions act as the decision points to distribute the vehi-

cles along the alternative routes leading from it. The local interaction between the vehicles is

enabled by the inter-vehicular communication used to exchange their route preference infor-

mation. The route allocation problem entails reducing the overall cost of vehicle traversal in

terms of travel time and for the driver it entails traversing on his/her preferred route. These

objectives which can be conflicting at times are formulated in an equation to evaluate the ‘util-

ity’ of an allocation given as follows:

uiðsÞ ¼ p � pi;rðsÞ � c � ci;rðnrðsÞÞ ð1Þ

where, p and c are the constant multipliers, pi,r(σ) corresponds to the preference utility index

(PUI) of agent i in an allocation σ for route r and, ci,r(nr(σ)) corresponds to the cost of alloca-

tion σ experienced by agent i due to nr(σ) number of agents on route r.
The PUI of a route is the compact representation of the ranked agent preferences. It

depends on the Preference Utility Weight (PUW) derived from various factors such as travel

time and distance tolerance of an agent, deviation index (degree of flexibility to deviate from
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the preferred route), availability of the alternative route, compliance pattern of the driver and

the level of familiarity with the route as explained in [1]. The cost of the allocation depends on

the number of vehicles taking the route and the average travel time on that route.

The allocation is altered by every agent individually and iteratively per round of the virtual

deals. CARAVAN addresses the problem of route allocation using Multiagent Based Route

Allocation (MARA) technique [15] consisting of a finite number of agents (vehicles) and a

finite number of indivisible but sharable resources (routes). As shown in (1), the utility func-

tion for CARAVAN is a multi-objective function with objectives to maximize the preference

utility index factor, whose value is between 0 and 1, and to minimize the cost factor, whose

value is a positive integer. A multi-objective problem is of the form given as:

min
x∊S
ff1ðxÞ; f2ðxÞ . . . fkðxÞg

where, f1(x). . .fk(x) are the functions to be minimized and S is the solution space. Clearly, the

values of the objective functions of the PUI and the cost do not fall within the same range. It is

therefore inappropriate to compare and use these values directly in an equation. Hence, it is

necessary to normalize these values before they are compared. Function transform methods

are used for scalarization of the utility function. Scalarization of a multi-objective utility func-

tion means to transform it into a single-objective utility problem [16]. The functions for evalu-

ating the preference utility index and the cost are each normalized using the transform

function in (2) given in [17], and then used in the utility function in (1).

FTrans ¼ ðFiðxÞ � F
0

i Þ=ðF
m
i � F

0

i Þ ð2Þ

where, FTrans is the final normalized value, Fi(x) is the value of the function in the current itera-

tion, Fmi is the maximum value and F0
i is the minimum value of the function evaluated till the

current iteration. The above function yields a maximum value of 1 and minimum value of 0.

To solve the route allocation problem in CARAVAN, we use the weighted sum method, for

evaluating the utility (in (1)), which is given as below:

minx∊S
Pk

i¼1
wifiðxÞ ð3Þ

where, the weights of the objectives, wi> 0.

Here, the aim is to maximize the preference utility index function, say f1(x) and minimize

the cost, say f2(x); and hence as per the convention of (3) is represented as minimizing the neg-

ative of the function f1(x).
In a vehicular environment with constantly changing vehicular topology, there is a con-

straint on the communication resource availability and also on the time for communication

and solution determination. To address the challenges of the vehicular environment, we pro-

pose the technique of virtual negotiation by means of the so-called “virtual deals” which

require actual communication only at the start and end of the route-allocation process. In a

virtual deal, an agent does not actually communicate with other agents but only enacts the

process of inter-agent communication in its “mind”. The negotiation entails proposals and

counter-proposals and in CARAVAN, it is in the form of virtual deals which involves simple

inter-agent exchange of resources (routes) to arrive at a better allocation with the final agreed

solution being a sub-optimal solution. The types of deals considered in the algorithm are:

ADD, SWAP and DROP deals, explained later.

Three categories of welfare strategies considered in CARAVAN are: (i) Social Welfare–it

aims to increase the overall utility of the allocation; (ii) Rational Welfare–it aims to increase

the individual utility of the agent in the allocation; and (iii) Mixed Welfare–it aims to increase

individual as well as the overall utility of all the agents in an allocation.

Cooperative vehicles for robust traffic congestion reduction
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It is also to be noted that although the formulation in (3) applies to the optimization prob-

lems, we adopt a satisficing approach in CARAVAN, which means that the resulting value of

the equation, may or may not be optimal.

The final satisficing solution obtained by the agents is exchanged and the best allocation in

terms of the utility value of the: (i) allocation is accepted for Social and Mixed Welfare strate-

gies; and (ii) poorest agent for Rational Welfare strategy as explained in Section IV.

For selfish agents in a non-cooperative environment, Braess Paradox arises which indicates

that adding an extra link between the source and destination may not necessarily benefit users

[18]. This happens because the agents do not coordinate their route choices with other agents.

However, CARAVAN involves cooperative and informed decision making; hence, adding an

extra link would in fact benefit the network users as the vehicles will be spread more evenly

along the network depending on the cost of a route allocation and the agent preferences. We

also note that the problem of allocating routes to vehicles has been well-studied using user

equilibrium concepts and system-wide perspectives, but we approach the issue from a multia-

gent perspective, where cooperation among agents is localized and opportunistic (only if and

when they meet at junctions), and not global, and investigate the large scale (i.e., global) effects

of such local peer-to-peer style cooperation.

Design of multiagent based virtual negotiation mechanism in

CARAVAN

This section describes the design rationale of the virtual negotiation mechanism used in CAR-

AVAN and provides guiding principles we used in the design, which is based on the notion of

acceptable deals.

The inter-agent negotiation in CARAVAN takes place in the form of virtual deals. The

types of deals for the sample initial allocation {v1-r1, v2-r2, v3-r3}, where ri (i< = 3) denotes

the route assigned to vehicle vj (j< = 3) are described below:

• ADDDeal: In an ADD deal, an agent virtually assigns itself one of its preferred routes. For

example, v1 assigns itself to route r2.

• SWAP Deal: In a SWAP deal, an agent exchanges its route with another agent. For example,

v1 and v3 swap routes.

• DROP Deal: In a DROP deal, an agent assigns itself a route that has currently been assigned

to some other agent, whereas the other agent is assigned another route from the available set

of routes. For example, v1 drops its route and is assigned the route of agent v3, and v3 is

assigned another random route r1.

A deal (ADD/SWAP/DROP) is said to be acceptable if the difference in the utilities of the

final allocation (allocation resulting from the application of the deal) and the initial allocation

is greater than or equal to zero. The difference in utilities is the sum of the difference in the

aggregate preference and the difference in the aggregate cost for all the agents in the allocation.

If a deal between agents i and j in an initial allocation σ results in a final allocation σ’, and Δ
denotes the difference in values (preference utility index and cost), i.e. the difference in the

final utility u(σ') and the initial utility u(σ) of the allocation, the overall difference in utility for

the allocation can be represented as follows:

DðuÞ ¼ uðs0Þ � uðsÞ ð4Þ

The value of Δ(u) is necessarily positive because only those deals which result in increase in

the utility value are accepted.

Cooperative vehicles for robust traffic congestion reduction
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In [1], CARAVAN was evaluated for Social, Rational and Mixed Welfare types.

The aggregate difference in the utility (Δ(u)) for Social and Mixed Welfare is the sum of: (i)

the difference in the aggregate preference utility index value of the agents i and j involved in

the deal, denoted as: Δpi + Δpj; and (ii) the difference in the aggregate cost for all the agents,

denoted as:
Pn

k¼1
Dck. It is represented as follows:

DðuÞ ¼ Dpi þ Dpj þ
Pn

k¼1
Dck ð5Þ

A deal is said to be acceptable if the aggregate difference in the utility is greater than or

equal to zero. It is represented as:

DðuÞ � 0 ð6Þ

The aggregate difference in the utility (Δ(ui)) of agent i for Rational and Mixed Welfare, ini-

tiating the deal is the sum of: (i) the difference in its preference utility index value, denoted as

Δpi; and (ii) the difference in cost of an allocation for agent i, denoted as Δci. It is represented

as follows:

DðuiÞ ¼ Dpi þ Dci ð7Þ

A deal is said to be acceptable for an agent if its utility in the resulting allocation is same or

greater than its utility in the initial allocation.

DðuiÞ � 0 ð8Þ

Note that the deals help the participating agents increase the utility of their choice of routes

since a deal (ADD/SWAP/DROP) is acceptable and only done if the difference in the utilities

of the final allocation (i.e., the allocation resulting from the application of the deal) and the ini-

tial allocation is zero or more.

Experiments and analysis of CARAVAN

In our previous work [1], the algorithm was tested for small and large synthetic and real-

road networks for the three welfare types. The results compared the percentage reduction in

travel time against the Shortest Path Algorithm. It was observed that the percentage reduc-

tion in travel time increased from single to large real-road networks as also with increase in

the number of vehicles. It was 21–43% when the traffic was below the network capacity and

13–17% when the traffic was above network capacity. The travel time savings increased with

the availability of the amount of real-time information than with just the static traffic infor-

mation. It was consistent, around 23%-36% for the 5 scenarios with 80 vehicles and random

source-destination pairs. The results demonstrate that the Rational and Mixed Welfare

strategies perform as well as the Social Welfare strategy. For this reason, for the experimen-

tal evaluations presented in this paper we will be concentrating only on the Social Welfare

strategy of CARAVAN.

In this paper, we test the robustness and scalability of the approach for different topologies

and sizes of the real road networks such as a large real-road network and a grid network. The

performance of the algorithm in terms of travel time reduction was evaluated over a range of:

(i) environmental parameters, to test the effect of constituent entities in the traffic environ-

ment by varying the number and placement of junctions and the road segment capacity; (ii)

algorithmic parameters, to test the effect of variations in the algorithmic entities used to evalu-

ate the route preferences and allocation utility; and (iii) agent-related parameters, to test the

effect of varying percentage of equipped vehicles and compliant drivers. The results are pre-

sented in the form of graphs that compare the performance of CARAVAN against the

Cooperative vehicles for robust traffic congestion reduction
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Dijkstra’s algorithm [19], which is one of the de-facto shortest path algorithms [20]. The per-

formance of the algorithm in terms of aggregate travel time or percentage reduction in travel

time was evaluated and analyzed for variations in the algorithmic, environmental and agent-

related parameters. The performance of CARAVAN in terms of driver preference satisfaction

is measured for variation in algorithmic parameters where applicable. The roads in this net-

work are single-lane roads and run from left to right and have speed limits. Every junction

splits into two or three alternate routes. CARAVAN was simulated using JADE as the agent

simulator and VanetMobiSim as the mobility simulator. We clarify that negotiation happens

at the junctions among vehicles that come near to each other in a dynamic way as the simula-

tion progresses with the movement of cars—our simulation is dynamic, considering actual

vehicles travelling from an origin to a destination, cooperating along the way with cars they

come near to at junctions.

Large real road network

The large real-road network in Melbourne depicted in Fig 1 was used to further test the

robustness of the algorithm for variations in different types of environmental, algorithmic

and network parameters. For the purposes of simulation, the road length, and speed limits

were reduced to scale while maintaining the original topology. The road network contains

10 junctions at nodes 2, 4, 9, 10, 15, 21, 22, 27, 28 and 34 (marked using ovals). At every

junction, each vehicle agent applies twenty iterations of random deals (empirically found to

be an effective number for generating efficient allocations). The experiments use combina-

tions of 1 to 6 junctions as per the requirements of the scenario. The effect on the travel

Fig 1. Large real-road network in Melbourne.

https://doi.org/10.1371/journal.pone.0182621.g001
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time and/or the preference utility index is shown in the form of a graph for each of the sce-

narios in the following sections.

Variations in algorithmic parameters

We investigate the following parameters:

1. Effect of Variations in the Preference Utility Weight Factors on Route Allocation: In this sce-

nario, the PUW multipliers were varied and their influence on the aggregate PUI of the ini-

tial and final allocations were compared. The scenario analyzes how the algorithm adapts to

the varying significance attached to a preference criteria in the evaluation of Preference

Utility Weight. The PUW of a vehicle for a particular route is calculated using the weighted

combination of the following factors: Choice of Alternate routes, a (weight: 0.3), Previous

compliance, c (weight: 0.3), Deviation Index, i (weight: 0.1), Time Tolerance, t (weight: 0.1),

Distance Tolerance, d (weight: 0.1), Familiarity Index, f (weight: 0.1). The choice of the val-

ues assigned to the weights can vary, and we study and compare five cases of variations

below, each highlighting the importance of a particular aspect. In this scenario, these weight

multiplying factors are varied and the aggregate value of the PUI from the initial and final

allocations was compared. For this scenario, 75% of the vehicles are configured with Short-

est Time as their primary preference criteria and the remaining 25% with Shortest Distance

as their primary preference criteria. The simulation is performed for a single junction

20-vehicle scenario and for non-zero values of both p and c. The results for the effect of var-

iations in the PUW multiplying factors are summarized as below and the results are com-

pared in Fig 2.

i. Equal Priority Casewith a, c: 0.3 and i, t, d, f: 0.1—The algorithm tries to improve the util-

ity of the allocation by allocating as many vehicles as possible to the primary preference

(most desired) route type i.e. Shortest Time route, while also not compromising on the

preferences of the other vehicles to a large extent. The number of vehicles switching to

their preferred routes is seven.

ii. Familiarity Index priority case with c, f: 0.3 and a, i, t, d: 0.1—The “familiar” routes car-

ries more weightage (i.e. is the most preferred route type). The number of vehicles on

their familiar routes in the final allocation improves from six in the initial allocation to

ten in the final allocation.

iii. Deviation Index case with c, i: 0.3 and a, i, t, d: 0.1—The algorithm tries to improve the

utility of the allocation by allocating the vehicles to their primary or secondary route

Fig 2. Effect of varying weight multiplying factors for the preference utility weight.

https://doi.org/10.1371/journal.pone.0182621.g002
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choices. Higher weightage to the deviation index (or devindx, for short) factor indicates

that the vehicles are less flexible to deviate from their route choices. “Shortest Time”

route type is the most preferred route choice. The results show that five vehicles switch

to their preferred route type.

iv. Time Tolerance case with c, t: 0.3 and a, i, d, f: 0.1—The “Shortest Time” routes carries

more weightage (i.e. is the most preferred type of route), the algorithm tries to improve

the utility of the allocation by allocating the vehicles to the Shortest Time route. The

results show that the number of vehicles which have switched to their preferred route

type of ‘Shortest Time’ has increased to nine from five.

v. Distance Tolerance case with c, d: 0.3 and a, i, t, f: 0.1—The “Shortest Distance” routes

carries more weightage (i.e. is the most preferred type of route), there was a gain in PUI

values. However, there was no new switch to the Shortest Distance route by any vehicle,

as the initial allocation already had preferred routes assigned to those vehicles with

Shortest Distance route preference.

It is observed that for each of the settings, the final aggregate PUI value resulting from

the application of the algorithm was better than the initial value. The results also show

that the vehicles switch to their preferred route type according to the weightage carried

by that route type.

2. Effect of Variation in Cost and Preference Multipliers on Travel Time Reduction for Congested
Segments: The scenario demonstrates the ability of the algorithm to adapt its route alloca-

tion to maximize the travel time savings for different values of preference and cost multipli-

ers in case of congested segments. This scenario is simulated for a set of 20 vehicles (source

nodes 2) and 30 vehicles (source nodes 2 and 41) and 8 junctions (nodes 4, 9, 10, 15, 22, 27,

28 and 34) with three congested road segment. The vehicles travel at lowest speed on these

congested segments. This scenario assumes that information about the congested road seg-

ments is available to the vehicles. The scenario was simulated for different values of p and c:
(i) c = 1 and p = 0: the vehicles completely avoid the congested road segments by adaptively

routing to another route; (ii) c = 1 and p = 1: the vehicles try to avoid the congested road

segment as much as possible. However, as the value of p is 1, the vehicles also try to follow

their preferred routes; (iii) p = 1 and c = 0: the vehicles only follow their preferred routes

irrespective of the few of them being congested; and (iv) adaptive routing: the algorithm

adaptively ignores the route preferences in cases where there is a possibility of the vehicle

going on to a congested route without the further possibility of re-routing. For each of the

cases, percentage reduction in travel time against the Shortest Path Algorithm was

recorded. As shown in the graph in Fig 3, the results overall suggest that for all the

Fig 3. Percentage reduction in travel time over the Shortest Path Algorithm for a congested scenario.

https://doi.org/10.1371/journal.pone.0182621.g003
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combinations of values of p and c, CARAVAN offers considerable reduction in travel time

as compared to the Shortest Path Algorithm.

For the cases where CARAVAN is simulated with value of c set to 0 and p set to 1, there is

the lowest percentage reduction in terms of travel time. This is because the agents entirely

follow their preferences in spite of the forthcoming congested segments. In such cases, if

CARAVAN switches the value of c to 1, the percentage reduction in travel time obtained

increases by up to about 4%. Furthermore, if the value of p is set to 0 (preferences not taken

into consideration), the savings obtained by reduction in travel time further increases by

around 21–26%. For the case of adaptive routing, as CARAVAN selectively takes the route

preferences into consideration and ignores them otherwise, the travel time savings is 50–

56% more than the Shortest Path Algorithm. The flexibility in tuning the algorithmic values

proactively avoids the congested segment and adapts the route allocation. As can be seen

from the graph, this improves the network performance resulting in reduction in the travel

time.

Variations in environmental parameters

We investigate the following parameters:

1. Effect of Road Segment Threshold Capacity on Travel Time: The scenario demonstrates the

effect of variations in segment threshold capacity on CARAVAN (practical / threshold

capacity of a road is the number of vehicles that can traverse the road at free-flow speed per

unit time, and beyond which congestion starts to build up). In this scenario, small and large

sets of vehicles from 30 to 80 vehicles are considered for simulation. Six junctions (nodes 2,

4, 9, 10, 15 and 22) are used for the simulation. For the sets of 30 and 35 vehicles, all of them

start from one source node. For the set of experiments with 60, 70 and 80 vehicles, the first

35 vehicles start from source A (node 1)–they encounter 6 junctions till they reach the desti-

nation and the rest of the 25, 35 and 45 vehicles, respectively start from the other source

node (node 8)–they encounter only 4 junctions till they reach the destination. The average

difference between the segment capacity and threshold is about 7 for the network. In this

scenario, the segment capacity threshold capacities are incremented by counts of 7 and 14

and the effect on percentage reduction in travel time over the Shortest Path Algorithm

using CARAVAN is observed and depicted using the graph in Fig 4.

The graph shows that for threshold capacity increments of 7 and 14, the percentage reduc-

tion in travel time is on an increasing trend for the cases of 30- and 35-vehicle sets (as all

Fig 4. Effect of segment capacity threshold on percentage reduction in travel time over the Shortest

Path Algorithm.

https://doi.org/10.1371/journal.pone.0182621.g004
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vehicles encounter 6 junctions) and decreases further from 60- to 80-vehicle sets (as most

of the vehicles encounter only 4 junctions). With the lesser opportunities to negotiate, the

percentage reduction in travel time obtained drops after the 35-vehicle case. For the case

with threshold capacity increment of 7, the percentage reduction in travel time dropped for

the set of 60 vehicles as the network reaches its threshold capacity. It decreased further for

the 70 and 80 vehicles sets. For the threshold capacity increment of 14, the percentage

reduction in travel time obtained drops for the 60-vehicle set and again increases for the

70-vehicle set which is the network threshold capacity and hence thereafter decreases for

the set of 80 vehicles. For the case with lower value of threshold increment (value of 7), con-

gestion sets in earlier for higher vehicle sets (60 to 80) and hence percentage reduction in

travel time compared to the Shortest Path Algorithm is less. However, when the segment

capacity threshold increment value is 14, the saturation point of the network shifts further

up as more vehicles can travel at free-flow speed.

2. Effect of Varying the Number of Junctions on Travel Time: This scenario demonstrates the sig-

nificance of repetitive cooperative decision-making on the performance of CARAVAN in

terms of percentage reduction in travel time by varying the number of junctions (decision-

making points). In this scenario, the simulation is carried out for a 60, 70 and 80 vehicle set.

For each of the vehicle sets, the number of junctions on the path is varied from 2 (nodes 2

and 4), 4 (nodes 2, 4, 15 and 27) and 6 (nodes 2, 4, 9, 10, 15 and 27). The percentage reduc-

tion in travel time as compared to the Shortest Path algorithm obtained for each case is

depicted in the form of a graph in Fig 5. The results show that the percentage reduction in

travel time as compared to the Shortest Path algorithm increases, with the increase in the

number of junctions. The greater the number of decision points (junctions), the greater the

opportunity vehicles get to negotiate and make cooperative routing decisions. This allows the

vehicles to be distributed more evenly along the routes resulting in better travel times.

Variations in agent-related parameters

We investigate the effect of non-equipped vehicles on travel time. The scenario demonstrates

the significance of cooperative route allocation in CARAVAN by varying the percentage of

equipped vehicles. In this scenario, the simulation was carried out for 60, 70 and 80 vehicle

sets. For each of the vehicle sets, the percentage of equipped vehicles is varied from 0−75%.

When none of the vehicles are equipped, all the vehicles take the Shortest Path. The effective

travel time for each of the cases with varying percentage of equipped vehicles is compared to

the time obtained with the scenario where none of vehicles are equipped and the percentage

difference in travel time is computed. The simulation results are shown in the form of a graph

in Fig 6. For example, in the case of 25% equipped vehicles, the overall travel time reduction is

Fig 5. Effect of Number of junctions on percentage reduction in travel time over the Shortest Path

Algorithm.

https://doi.org/10.1371/journal.pone.0182621.g005
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18–21% higher than the overall travel time obtained when none of the vehicles are equipped.

For 50% or more of the equipped vehicles, the overall travel time reduction is 27–37% higher

than the overall travel time when none of the vehicles are equipped. The results show that even

with the penetration rate of 25% (75% non-equipped vehicles), CARAVAN offers travel time

gains outperforming the Shortest Path Algorithm.

Real-road grid network

To validate the stability and scalability of CARAVAN, it was applied to an 8x4 real grid net-

work with 80 vehicles as shown in Fig 7. The network comprises of the busier road segments

in Melbourne Central Business District. The network contains 8 junctions as marked by an

oval in the figure below (nodes 1, 3, 5, 7, 19, 21, 32 and 34). The scenarios were tested with var-

ious source nodes and with destination node 45 (‘B’). We expect similar results on the algorith-

mic parameters as that with the real-world network, and focus here on the effects of varying

environmental and agent-related parameters, since the grid network offers a different topology

and tends to increase the intensity of agent negotiations (i.e., more cooperation).

Variations in environmental parameters

We investigate the following parameters:

1. Effect of Varying Spatial Distribution of Junctions on Travel Time: This scenario demon-

strates the effect of junction placement on the travel time savings with CARAVAN. In this

scenario, the percentage travel time was compared for 2 configurations of the road junc-

tions. In configuration 1, all the junctions are in the beginning of the journey i.e. junctions

Fig 6. Effect of varying percentage of equipped vehicles on travel time reduction.

https://doi.org/10.1371/journal.pone.0182621.g006

Fig 7. Real road grid network.

https://doi.org/10.1371/journal.pone.0182621.g007
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1,19,3 and 21 in Fig 7 and in configuration 2, there are 2 junctions each at the beginning

and end of the journey i.e. junctions 1,19,7 and 34 in Fig 7. The simulation was carried out

for sets of 50 to 90 vehicles. For the 70-vehicle set, nodes 0 and 2 are the source nodes. For

the 80- and 90-vehicle set, nodes 0 and 3 are the source nodes. For the 50-vehicle set, 0 is

the source node.

Fig 8 depicts the gain in travel time obtained with configuration 1 over configuration 2. The

results in Fig 8 indicate that the sooner the junctions are encountered in the journey, the

better is the travel time. With configuration 1, as the vehicles encounter the junctions dur-

ing the initial part of the journey rather than later, the vehicles can distribute themselves

efficiently during the initial part of the journey itself. The vehicles in this case take less time

to reach the destination than with configuration 2, where the vehicles encounter 50% of the

junctions only during the later part of the journey. This indicates that the more the number

of junctions (decision points) earlier on in the journey, the vehicles get a chance to negoti-

ate at the right time and distribute efficiently along the routes. When the junctions are

encountered in the later part of the journey, the vehicles get a chance to re-distribute them-

selves along the routes rather late. They might already have congested a few routes until

then, thereby taking more time to reach the destination.

2. Effect of Varying the Number of Junctions on Travel Time: This scenario demonstrates the

significance of frequent cooperative decision-making in CARAVAN for travel time savings

by varying the number of junctions. In this scenario, the number of junctions is varied

while keeping the number of the vehicles the same. This scenario is tested for each of the

sets of 50, 80 and 90 vehicles with 2, 4, 6, and 8 number of junctions and with nodes 0 and 3

as source nodes. Each of the travel times obtained was compared with the Shortest Path

Algorithm and represented using graph in Fig 9. Simulation results indicate that with the

Fig 8. Effect of spatial distribution of junctions.

https://doi.org/10.1371/journal.pone.0182621.g008

Fig 9. The effect of varying number of vehicles (50, 80 and 90) and number of junctions on travel time.

https://doi.org/10.1371/journal.pone.0182621.g009
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increase in the number of junctions, the total travel time decreases as the vehicle agents get

more opportunities to negotiate, which distributes them evenly along the road networks. It

is also observed that for each of the sets of 50, 80 and 90 vehicles, the variation in percentage

reduction in travel time, between the 6-junction and 8-junction scenario is 1 to 4%. This is

because the percentage reduction in travel time obtained with the increase in the number of

junctions almost starts stabilizing at the junction count of 6.

Variations in agent-related parameters

We investigate the following parameters:

1. Effect of Non-Equipped Vehicles on Travel Time: This scenario demonstrates the significance

of cooperative route allocation in CARAVAN by varying the percentage of equipped vehi-

cles. In this scenario, the percentage of non-equipped vehicles was varied from 25–100% for

sets of 40 to 90 vehicles with nodes 0 and 3 as the source nodes. 100% non-equipped vehi-

cles indicate that none of the vehicles are equipped and they take the shortest path. The

effective travel time for each of the scenarios was compared with the time obtained with the

scenario where there are 100% equipped vehicles and the percentage difference in travel

time was computed. The results are depicted in Fig 10. The simulation results show that as

the percentage of non-equipped vehicles increases from 25% to 100%, the difference in

travel times between the all-equipped and given percentage of non-equipped vehicles

increases. This indicates that the savings in travel time reduce with the increase in the num-

ber of non-equipped vehicles. For example, in the case of 50% of non-equipped vehicles,

the overall travel time is higher by about 20–34% than the overall travel time with the all-

equipped case. This trend continues until the case with 75% non-equipped vehicles. For

75% or more non-equipped vehicles, the overall travel time is over 22–40% higher than that

with the all-equipped case. It remains constant from 75–100% of non-equipped vehicles

indicating that the effect with the 75% non-equipped vehicles is same as the one when none

of the vehicles are equipped. Even with 50% non-equipped vehicles, the reduction in travel

time obtained is better than the Shortest Path Algorithm (100% non-equipped vehicles).

Overall, the data series trend lines show that the percentage reduction in travel time

obtained increases from 40-vehicle to 50-vehicle set and then reduces as the vehicle count

approaches the average network capacity from 70-vehicle to 90-vehicle set.

2. Effect of Non-Compliant Vehicles on Travel Time: The scenario demonstrates the signifi-

cance of cooperative route allocation in CARAVAN by varying the percentage of compliant

Fig 10. Effect of non-equipped vehicles—comparison of travel time with all-equipped vehicles.

https://doi.org/10.1371/journal.pone.0182621.g010
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vehicles. In this scenario, the percentage of non-compliant vehicles is varied from 25–100%

for sets of 40 to 90 vehicles with nodes 0 and 3 as source nodes. 100% non-compliance indi-

cates that all the vehicles are non-compliant and they take the shortest path. The effective

travel time for each of the scenarios was compared with the time obtained with the scenario

where there are 100% compliant vehicles and the percentage difference in travel time was

computed.

The simulation results in Fig 11 show that as the percentage of non-compliant vehicles is

increased from 25, 40, and 75 to 100%, the difference in travel times of the all-compliant

and (given percentage of) non-compliant vehicles increases. This indicates that the savings

in travel time reduce with the increase in the number of non-compliant vehicles. For exam-

ple, in the case of 40% non-compliant vehicles, the overall travel time is higher by about

15–30% than that with the all-compliant case. This trend continues until with 75% of non-

compliant vehicles, the overall travel time is over 22–40% higher than the overall travel time

with the all-compliant case. It remains constant from 75–100% of non-compliant vehicles

indicating that the effect with the 75% non-compliant vehicles is same as the one when

none of the vehicles are compliant. The results show that even with 50% non-compliant

vehicles, the reduction in travel time obtained is better than the Shortest Path Algorithm

(100% non-compliant vehicles). Overall, as the vehicle count approaches the average net-

work capacity, the data series trend lines show that the percentage reduction in travel time

obtained reduces from 40-vehicle set to 70-vehicle and then further up to 90-vehicle set as

the vehicle count approaches the network capacity.

We note that a vehicle being non-compliant is different from one being non-equipped,

since the preferences of non-compliant vehicles are involved in the CARAVAN route alloca-

tion algorithm (even if the non-compliant vehicles are not following CARAVAN allocated

route choices).

Summary of results

Table 1 summarizes the experimental results.

Conclusion

This paper has presented a comprehensive evaluation of CARAVAN for different types of

road networks and analyzed its performance in terms of travel time reduction for a variety of

parameter settings. We observed that effective global behaviors can emerge from local

Fig 11. Effect of non-compliant vehicles—comparison of travel time with all-compliant vehicles.

https://doi.org/10.1371/journal.pone.0182621.g011
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negotiation regulated by an appropriate combination of individual behavior, local group inter-

action, and environmental factors. We also observe that a cooperative vehicles approach can

be robust across different variations in participation, road network structure and agent

behaviours.

Much future work remains. For example, we investigated the scenario of having some

non-equipped vehicles among equipped vehicles–a likely scenario in the near future, where

there will be some vehicles not equipped and some equipped, during a transition phase

where uptake could be gradual; we showed the effect on the travel time of all the vehicles

(equipped or not) in the experimental results. One intuition is that having non-equipped

vehicles among equipped vehicles will reduce the extent of negotiation (or cooperation) for

all vehicles (whether equipped or not) and they will be affected just as much. But the ques-

tion remains as to whether equipped vehicles will still be better off than non-equipped vehi-

cles, or what proportion of vehicles at junctions will need to cooperate (and how often) in

order to get travel time savings. Also, the results might vary depending on the distribution

of equipped and non-equipped vehicles in the mix and their intended routes—much more

experimentation is required to investigate these “transition” scenarios.
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The scenario with c = 1, p = 0 gives highest reduction in travel

time. Even for congested road segments, CARAVAN offers

considerable reduction in travel time compared to the Shortest

Path Algorithm.

This shows the ability of CARAVAN to do proactive, reactive

and adaptive routing.
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Number of Junctions There is a greater percentage reduction in travel time with an
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With greater number of junctions, vehicles get more

opportunities to negotiate, leading to more evenly distributed

traffic, reducing the aggregate trip time.
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Junctions

Percentage reduction in travel time for the first four junctions is

better than that for the distributed junctions.

The sooner the vehicle get an opportunity to negotiate, the

better is their distribution along the road network

Segment Threshold

Capacity

The percentage reduction in travel time obtained improves as

the threshold capacity value increases. The saturation point of

the network shifts with the increase in the Segment Capacity

Threshold.

CARAVAN can give more effective gains for wider roads with

higher capacities.

Agent-related Parameters

Non-equipped

vehicles

Percentage reduction in travel time obtained with CARAVAN

reduces as the number of non-equipped vehicles increases.

For large real road network, CARAVAN offers travel time
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In terms of reduction in travel time, CARAVAN outperforms the

Shortest Path Algorithm even for 50% equipped vehicles.

Non-compliant

vehicles

Percentage reduction in travel time obtained with CARAVAN

reduces as the number of non-compliant vehicles increases.

In terms of reduction in travel time, CARAVAN outperforms the

Shortest Path Algorithm even for 50% compliant vehicles.
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