International Center for Numerical Methods in Engineering

generating knowledge and solutions

Time domain simulation of coupled sloshing-seakeeping problems by coupling PFEM-2 and SeaFEM

Jonathan Colom-Cobb, Borja Serván-Camas, Julio García-Espinosa, Pablo Bécker, Sergio Idelsohn

OUTLINE

- \checkmark Introduction to the Internal flow in tanks problem
- ✓ Hydrodynamics solvers:
 - ✓ Seakeeping Solver: SeaFEM
 - ✓ Internal Flow Solver: PFEM 2
- ✓ Coupling strategy
- ✓ Validations

- ✓ Sloshing effect in barge
- ✓ Anti Roll Tank

CIMNE[®] INTERNAL FLOWS IN TANKS

- Flows in tanks can be found in:
 - ✓ LNG carriers
 - ✓ Offshore extraction structures
- ✓ Free-surface effect is already a known problem
- Problematic when the movement of the fluid becomes harsh: Compromised stability and sloshing

CIMNE® INTERNAL FLOW IN TANKS

- Our work focuses on two different problems.
- First, if it negatively affects the seakeeping behavior of the floating object
- Second if it improves it: Anti Roll Tanks (ART)
 - ARTs used to improve seakeeping behavior at certain frequencies
- We have coupled Kratos PFEM – 2 to SeaFEM using an effective coupling algorithm.

Governing equations based on incompressible and irrotational flow

- $\Delta \varphi = 0$ incompressible and irrotational flow in Ω
- $\frac{\partial \xi}{\partial t} + \frac{\partial \varphi}{\partial x} \frac{\partial \xi}{\partial x} + \frac{\partial \varphi}{\partial y} \frac{\partial \xi}{\partial y} \frac{\partial \varphi}{\partial z} = 0 \quad on \ z = \xi \quad \text{free surface kinematic boundary condition}$
- $\frac{\partial \varphi}{\partial t} + \frac{1}{2} \nabla \varphi \cdot \nabla \varphi + \frac{P_{fs}}{\rho} + g\xi = 0 \quad on \ z = \xi \qquad \text{free surface dynamic boundary condition}$
- $\boldsymbol{v}_p \cdot \boldsymbol{n}_p + \boldsymbol{v}_{\varphi} \cdot \boldsymbol{n}_p = 0$ on $P \in S_B$ body boundary condition $\boldsymbol{v}_{\varphi}\cdot\boldsymbol{n}_{p}=0$ on $P \in S_S$ seabed boundary condition

$$P_p = -\rho \frac{\partial \varphi}{\partial t} - \frac{1}{2}\rho \nabla \varphi \cdot \nabla \varphi - \rho g z_p$$

pressure at a point P.

 Use a Taylor expansion and a perturbed solution to simplify free-surface boundary conditions

$\Delta arphi^1 = 0$	in Ω	Incompressible and irrotational flow
$\frac{\partial \xi^1}{\partial t} - \frac{\partial \varphi^1}{\partial z} = 0$	on $z = 0$	Free Surface kinematic boundary condition
$\frac{\partial \varphi^1}{\partial t} + \frac{P_{fs}}{\rho} + g\xi^1 = 0$	on $z = 0$	Free Surface dynamic boundary condition
$oxed{v_p^1}\cdotoldsymbol{n}_p^0+oldsymbol{v}_arphi^1\cdotoldsymbol{n}_p^0=0$	on $P \in S_B^0$	Body boundary condition
$oldsymbol{v}_arphi^1 \cdot oldsymbol{n}_\mathrm{p} = 0$	on $P \in S_S$	Seabed boundary condition

✓ Limitations:

- ✓ Limited slope and non-breaking free-surface
- ✓ Small body movements

Solution is split into two components:

 $\varphi^1 = \psi^1 + \phi^1$

 ψ^1 : Incident waves velocity potential.

 $\xi^1 = \zeta^1 + \eta^1$

- ζ^1 : Incident waves free surface elevation. ϕ^1 : Diffracted-radiated waves velocity potential.
- η^1 : Diffracted-radiated waves free surface elevation

✓ Incident waves (modelled analytically)

Diffracted-radiated waves

Solution is split into two components:

- ✓ Incident waves (modelled analytically)
- ✓ Diffracted-radiated waves

$\Delta \phi^1 = 0$	in Ω
$\frac{\partial \eta^1}{\partial t} - \frac{\partial \phi^1}{\partial z} = 0$	in z = 0
$\frac{\partial \phi^1}{\partial t} + \frac{P_{fs}}{\rho} + g\eta^1 = 0$	in z = 0
$egin{aligned} oldsymbol{v}_{oldsymbol{\phi}}^1 \cdot oldsymbol{n}_p^0 &= -ig(oldsymbol{v}_p^1 + oldsymbol{v}_{oldsymbol{\psi}}^1ig) \cdot oldsymbol{n}_p^0 \end{aligned}$	on $P \in S^0_B$
$ig oldsymbol{v}_{oldsymbol{\phi}}^1 \cdot oldsymbol{n}_p = -oldsymbol{v}_{oldsymbol{\psi}}^1 \cdot oldsymbol{n}_p$	on $P \in S_S$

✓ Solver is called SeaFEM

Numerical model

- ✓ FEM used for the spatial integration
- ✓ Time integration uses a fourth order compact Padé scheme
- Wave absorption and radiation condition for the diffractedradiated waves

Capabilities

- 3D time-domain 1st and 2nd order wave diffraction-radiation solver
- Multi-body dynamics solver including body-links
- Non-linear hydrodynamics, drift and current effects
- ✓ Mooring solver
- Coupled with FAST for the analysis of floating wind turbines
- Other (non-linear hydrostatics, non-linear user defined forces, slender elements, fluid-structure interaction, ...)
- Coupling with external solvers: Internal flow solvers, power take off systems ...

```
✓ See http://www.compassis.com/seafem
```


INTERNAL FLOW SOLVER

- Governing equations are the incompressible Navier-Stokes equations
- ✓ Solved using a semi-lagrangian method
- ✓ Convective part of the equation is solved using particles Lagrangian governing equations: $d_t U_\lambda = A_\lambda$ $d_t X_\lambda = U_\lambda$

Integration along trajectory: $\frac{U_{\lambda}(X_{\lambda}^{n+1}) - U_{\lambda}(X_{\lambda}^{n})}{\Delta t} = A_{\lambda}(X_{\lambda}^{n+1})$

$$\begin{cases} \frac{U_{\lambda}^{*}\left(X_{\lambda}^{n+1}\right) - U_{\lambda}(X_{\lambda}^{n})}{\Delta t} = 0 \rightarrow U_{\lambda}^{*}\left(X_{\lambda}^{n+1}\right) = U_{\lambda}(X_{\lambda}^{n})\\ \frac{U_{\lambda}(X_{\lambda}^{n+1}) - U_{\lambda}^{*}\left(X_{\lambda}^{n+1}\right)}{\Delta t} = A_{\lambda}(X_{\lambda}^{n+1}) \end{cases}$$

Lagrangian splitting:

INTERNAL FLOW SOLVER

- Velocities are projected onto the FE mesh
- Mesh computes the rest of the NS equations using a monolithic approach

$$\frac{u^{n+1} - u^*}{\Delta t} = a^{n+1} = -\frac{1}{\rho} \nabla P^{n+1} + \nu \Delta u^{n+1}$$

- ✓ Interpolate acceleration to the particle location using FE interpolants $A_{\lambda}(X_{\lambda}^{n+1}) = a_i^{n+1}N_i(X_{\lambda}^{n+1}) = \frac{u^{n+1}-u^*}{\Delta t}N_i(X_{\lambda}^{n+1})$
- ✓ Update particle velocities at t^{n+1} : $U_{\lambda}(X_{\lambda}^{n+1}) = U_{\lambda}(X_{\lambda}^{n}) + \Delta t A_{\lambda}(X_{\lambda}^{n+1})$

INTERNAL FLOW SOLVER

✓ Solver is called: PFEM – 2

✓ Capabilities

- ✓ 3D Navier-Stokes solver
- ✓ Integrated into the Kratos environment
- ✓ Incompressible approach used
- ✓ Open Source
- ✓ Python extensible

✓ See http://www.cimne.com/kratos/

COUPLING SCHEME

COUPLING SCHEME

✓ Use TCP/IP

- ✓ Solve Multiple tanks
- \checkmark Use different machines for internal flow solver.
- \checkmark No overhead as forces and movements are vectors of six components
- Internal Flow Solver has lower time-steps (linear interpolation of movements
- Seakeeping solver extrapolates loads from the internal flow solver using a five point Lagrange polynomial

BODY DYNAMICS

 SeaFEM solves the body dynamics

- Implicit solver using two nested loops
 - ✓ Laplace equation solver
 - ✓ Body dynamics solver
- Includes Internal flow solver forces are inserted into the body dynamics loop

VALIDATIONS OF THE COUPLED PROBLEM

PREVIOUS WORK

 Coupling done using an SPH algorithm: AquaGPUSPH

Results where given using around 100K to 200K particles per tank

✓ See paper at:

B. Servan Camas, J. Cercós-Pita, J. Colom Cobb, J. García- Espinosa and A. Souto-Iglesias, "Time domain simulation of coupled sloshing–seakeeping problems by SPH–FEM coupling", Ocean Engineering, 123, (2016), 383–396

https://www.scipedia.com/public/Servan_Camas_et_al__2016a

CIMNE® BARGE WITH WATER IN TANKS

- The first validation case is based on the experiments presented in Molin et al., 2002.
- They consist on the study of the seakeeping response of a barge-like ship.
- There are two tanks next to each other at the mid-ship whose transverse dimension is close to the model breadth.

 Molin, B., Remy, F., Rigaud, S., de Jouette Ch., 2002. "LNG-FPSO's: frequency domain coupled analysis of support and liquid cargo motions". In: Proceedings of INAM Conference, Rethymnon, Greece

VALIDATION I: CASES

✓ Two cases were analysed:

- Case 1: same water level in both tanks (19cm) plus an additional mass of 40kg added on the deck of the barge to achieve the target draft of 10.8cm.
- ✓ Case 2: different water level in tanks (19cm and 39cm).
- Numerical simulations carried out with free sway, heave and roll
- Linear roll damping of 11% of critical value was used in both cases

CIMNE[®] VALIDATION I: NUMERICAL DATA

✓ Jonswap spectrum used to reproduce experimental conditions

Peak enhancement factor	2
Significant wave height	6.6 cm
Peak period	1.6 s

- \checkmark Kratos PFEM2 data:
 - ✓ Convergence analysis performed using different mesh sizes
 - Results are given for a case that has 15346 elements and 300K particles
- ✓ SeaFEM data:
 - Model calibrated to have the most approximate roll RAO of experimental results
 - ✓ Results are given for the case using 236K tetrahedras

VALIDATION I: VIDEOS

CIMNE⁹

CIMNE[®] VALIDATION I: CONVERGENCE

- Monochromatic wave test:
 - ✓ Simulation time: 30s
 - SeaFEM time-step: 0.01s
 - Same fill in the two tanks
- Coupling with SPH shows convergence to a lower value
- Faster convergence and faster compute times using Kratos – PFEM2

SPH Roll amplitude convergence test

Number of	RAO Roll
particles	[rad/m]
10,000	2.29
35,000	2.45
100,000	2.55
250,000	2.60
500,000	2.64

Kratos – PFEM2 amplitude convergence

Number of	Number of	RAO Roll	
elements	particles	[rad/m]	
7901	39505	2.74	
11371	56855	2. 80	
15346	76730	2.84	
22584	112920	2.83	
31460	157300	2.83	

SPH Computational time

Number	Computational	SPH	FEM
of particles	time (s)	(%)	(%)
10,000	1938	33.5	66.5
35,000	4109	68.4	31.6
100,000	13110	88.5	11.5
250,000	41577	95.5	4.5
500,000	98616	98.2	1.8

Kratos – PFEM2 Computational time

Number of	Number of	Computational	PFEM2	FEM
elements	particles	time (s)	(%)	(%)
7901	39505	3695	34.59	65.41
11371	56855	4583	45.86	54.14
15346	76730	5472	54.41	45.59
22584	112920	7545	67.33	32.67
31460	157300	11075	78.12	21.88

CIMNE[®] VALIDATION I: CASE 1 RESULTS

- This case was calculated using only one tank and then the obtained forces were duplicated
- ✓ PFEM 2 obtains the most approximate results

CIMNE® VALIDATION I: CASE 2 RESULTS

Ludvigsen, A., Pan, Z.Y., Gou, P., Vada, T., 2013. "Adapting a linear potential theory solver for the outer hull to account for fluid dynamics in tanks". In: Proceedings of the ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering OMAE2013 June 9–14, Nantes, France

B. Servan Camas, J. Cercós-Pita, J. Colom Cobb, J. García-Espinosa and A. Souto-Iglesias, "Time domain simulation of coupled sloshing–seakeeping problems by SPH–FEM coupling", Ocean Engineering, 123, (2016), 383–396

CIMNE[®] ANTIROLL TANK ANALYSIS

- The second validation case is based on the experimental work by Bai and Rhee, 1987. They provided experimental RAOs, obtained in a model basin, for a supply vessel equipped with an anti-roll tank (ART).
- ✓ Used a modified S175 type of hull
- ✓ Particulars of the ART:

Length	2. 8 m
Breadth	13.699 m
Draft	2.4 m
XR (mid tank)	-0.73 m
YR (mid tank)	0 m
ZR (base tank)	-1.8564 m

Bai K.J. and Rhee K.P., "Roll-Damping Tank Test". Project report, 1987, Seoul National University

VALIDATION II: VIDEOS

CIMNE⁹

VALIDATION II: RESULTS

RAO reduction due to the ART effect

When inserting the ART effect in the calculations, the results are quite similar to those obtained by Bai and Rhee with a very similar reduction of roll movements.

THE END

✓ Conclusions:

- The coupled solver showed to be effective for solving seakeeping dynamics coupled with internal flows including sloshing. It was validated for three cases against available experimental data, providing good agreement.
- ✓ Proves the capability of handling highly non-linear phenomena
- The resulting solver could be used to solve real problems including complex sloshing phenomena under different sea conditions
- ✓ Thank you for your attention
- ✓ Questions?

www.cimne.com