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SUMMARY

The advances in information and communication technologies led to a general trend towards the availability
of more detailed information on dam behaviour. This allows applying advanced data-based algorithms in its
analysis, which has been reflected in an increasing interest in the field. However, most of the related literature
is limited to the evaluation of model prediction accuracy, whereas the ulterior objective of data analysis is
dam safety assessment. In this work, a machine learning algorithm (boosted regression trees) is the core of
a methodology for early detection of anomalies. It also includes a criterion to determine whether certain
discrepancy between predictions and observations is normal, a procedure to compute a realistic estimate of
the model accuracy, and an original approach to identify extraordinary load combinations. The performance
of causal and non-causal models is assessed in terms of their ability to detect different types of anomalies,
which were artificially introduced on reference time series generated with a numerical model of a 100-m
high arch dam. The final approach was implemented in an on-line application to visualise the results in an
intuitive way to support decision making. Copyright c© 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Dam safety is an area of growing interest: our societies demand increasing safety levels, and
the average age of dams is high in many countries, which increases the need for control and
maintenance operations. The advances in information and communication technologies led to
relevant improvements in the performance of monitoring systems, both in terms of accuracy and
reliability of the devices, security of the communications and reading frequency. All this resulted in
more information available on the behaviour of the structure [1].
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2 F. SALAZAR

This increase in the amount of available data led to the use of more powerful tools for its analysis,
from enhanced versions of the multiple linear regression (e.g. [2]), up to algorithms developed in
the field of machine learning, such as neural networks [3], support vector machines (SVM) [4], [5],
or adaptive neuro-fuzzy inference systems (ANFIS) [6], among others [7], [8].

However, these methods are still not widely applied by practitioners, who mostly limit the data
analysis to graphical exploration of the time series of data [9], along with simple statistical models
[1], [10].

The vast majority of examples of application of advanced tools focus on the development
of behaviour models to predict the value of a given response variable of the dam (e. g. radial
displacement) as a function of the loads. The prediction is compared to the actually observed data
and some error index is computed. In most cases, the results are more accurate than those obtained
by conventional methods (e.g. [3]).

In general, these techniques offered some advantages over conventional statistical methods, in
terms of greater accuracy, flexibility, or ability to interpret dam behaviour [11].

However, the main objective of dam safety is to prevent failures, for which anomalies need to be
detected at early stage. The capability of predictive models to identify anomalies has been much
less frequently studied. Mata et al. [12] developed a model based on linear discriminant analysis for
the early detection of developing failure scenarios. This methodology belongs to the Type 2 among
those defined by Hodge and Austin [13]: the system is trained with both normal and abnormal
behaviour data, and classifies new inputs as belonging to one of those categories. The drawback
of this approach is that the failure mode must be defined beforehand and simulated with sufficient
accuracy to provide the training data. Hence, the system is specific for the failure mode considered.

Jung et al. [14] used a similar approach: abnormal situations were defined based on the
discrepancy between the model predictions and the observed data. This method focuses on
embankment dam piezometer data, and only the reservoir level is considered as external variable
(although they acknowledge that the rainfall can also be influential). It is not clear whether this
methodology could be applied to other dam typologies or response variables.

Cheng and Zeng [15] presented a methodology based on the definition of some control limits,
which depend on the prediction error of a regression model. In addition, they proposed a
classification of anomalies based on the trend of the deviation and on how the overall deviance
is distributed among the devices considered. It has the advantage of being simultaneously applied
to a set of devices, although the case study presented is simple and the test period considered very
short (30 days), as compared to the available data (1555 days).

Other examples of application of advanced tools together with prediction intervals have been
published by Gamse and Oberguggenberger [16], who employed the procedure of probabilistic
quality control, Yu et al. [10], based on principal component analysis (PCA), Kao and Loh [17], who
used PCA together with neural networks (NN), Li et al. [18], who considered the autocorrelation of
the residuals and Loh et al. [19], who presented models for short and long term prediction.

Most of these works follow a conceptually similar methodology: a prediction model is built, the
density function of the residuals is calculated and used to define the prediction intervals, which are
applied to detect anomalies. In all cases, the efficiency was verified by means of its application to a
short period of records. As an exception, Jung et al. [14] and Mata et al. [12] used abnormal data
obtained from finite element models (FEM).
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EARLY DETECTION OF ANOMALIES IN DAM PERFORMANCE 3

The main differences among authors lie in the prediction method used (parametric or non-
parametric; static or autoregressive, etc.). In this article, a similar methodology is presented, with
some innovative features:

• The prediction model is based on boosted regression trees (BRTs), which showed to be more
accurate than other machine learning and statistical tools in previous works [8].

• Causal, non-causal and auto-regressive models are considered and jointly analysed.
• Artificially-generated data are taken as reference. They were obtained from a FEM model

considering the coupling between thermal and hydrostatic loads. This allows to identify
normal and abnormal behaviour, as observed by some authors ([14], [12]). In this work, the
FEM results are compared to actually observed data to verify their reliability.

• A methodology is proposed to neglect false anomalies due to the occurrence of extraordinary
loads. It is based on the values of the two main actions (thermal and hydrostatic).

• Three types of anomalies are considered, affecting both to isolated devices and to the whole
structure.

• Although radial displacements in an arch dam were selected for the case study, the method
can be applied to other dam typologies and response variables. Moreover, it adapts well to
different amount and type of input variables, due to the great flexibility and robustness of
BRTs.

The rest of the paper is organised as follows. A brief introduction to BRT is included, together
with the main ingredients of the methodology. Then, the case study is described: the dam, the
available data, the FEM model, and the artificial anomalies considered. Section 3 contains the results
in terms of ability to detect different types of anomalies. The final version was implemented in an
interactive tool, which is presented in the same section. Finally, overall conclusions are derived and
suggestions for practical application are provided.

2. METHODS

In previous studies, BRTs showed to be appropriate to build predictive models, mainly because
of its high accuracy and flexibility [8]. The algorithm was further analysed in terms of model
interpretation, and it was verified that useful information can be drawn as regards dam performance
[11]. As a result, BRT was selected in this work as the predictive model, though the overall
methodology may also be employed with other algorithms.

In what follows, Y ∈ R stands for the output variable (radial displacement), which is estimated as
a function of some inputs X (e.g. reservoir level, air temperature): Y ≈ Ŷ = F (X). The observed
values are denoted as (xi, yi), i = 1, ..., N , where N is the number of observations. Each xi is a
vector with p components, each of which is referred to as xji . Similarly, Xj , j = 1, ..., p stands for
each dimension of the input space.

The outputs considered correspond to 8 radial displacement in 4 plumb lines (2 measurements
per each plum line). The employed notation and their location within the dam body are shown in
Figure 7.
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2.1. Boosted regression trees

BRT models belong to the category of ensemble methods, because the prediction is based on the
contribution of a number of simple models (weak or base learners). In particular, two algorithms are
combined in BRTs: decision trees [20] for the base learners, and boosting [21] for averaging. The
fundamentals of both algorithms and that of BRTs can be found in the scientific literature (e.g. [22],
[23], [24]), as well as in previous studies ([11]). For the sake of completeness, a brief introduction
follows.

Regression trees are based on the recursive division of the training space into disjointed regions.
The prediction is generally the mean of the output variable for the observations within each region.
They were first proposed by Breiman et al. [20] and underwent high degree of development from
then on.

In the general case, when several inputs are considered, the best split point for each is calculated,
and that resulting in greater error reduction is chosen. This procedure allows for automatic selection
of the most relevant predictors.

Regression trees are robust, require little data pre-processing, and can automatically reproduce
non-linear relations, as well as interaction among predictors. By contrast, they are unstable, i. e.,
small variations in the training data may result in highly different results [24].

Boosting is a general procedure to build ensemble predictive tools [21], based on the combination
of a number of simple models. The overall prediction is computed as a weighted sum of the output
of each model in the ensemble. The rationale behind the method is that the average of the prediction
of many simple learners can outperform that from a complex one [25].

The main steps of the original boosting algorithm for regression trees and the squared-error loss
function can be summarised as follows [26]:

1. Start predicting with the average of the observations (constant):

F0 (X) = f0 (X) = ȳi

2. For m = 1 to M

(a) Compute the prediction error on the training set:

ỹi = yi − Fm−1 (xi)

(b) Draw a random sub-sample of the training set (Sm)
(c) Consider Sm and fit a new regression tree to the residuals of the previous ensemble:

ỹi ≈ fm (X) , i ∈ Sm

(d) Update the ensemble:
Fm(X)⇐ Fm−1(X) + fm(X)

3. FM is the final model
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A regularisation parameter ν ∈ (0, 1) is typically added to avoid over-fitting, so that step (d) turns
into:

Fm(X)⇐ Fm−1(X) + ν · fm(X)

Based on the results of previous studies [8], [11], the models employed in this work initially
contained 1,000 trees of two levels (four leaves) which were later pruned to the final shape via
5-fold cross-validation. The regularisation parameter ν was set to 0.01. All the calculations were
performed in the R environment [27] with the gbm library [28].

2.2. Prediction intervals

As mentioned above, most of the published works on the application of data-based models in
dam monitoring are limited to the assessment of the model accuracy. However, the main practical
utility of these models is the early detection of anomalies, for which it is necessary to compare the
predictions with monitoring readings, and verify whether they fall within a predefined range. If the
residual density function follows a normal distribution, that range can be defined in terms of the
standard deviation of the residuals. For example, Kao and Loh [17] presented the 99% prediction
intervals for models based on neural networks, while Jung et al [14] tested 1, 2 and 3 standard
deviations of the residuals as the width of the prediction interval.

Based on previous studies with models based on BRTs [29], the prediction interval in this work
was set to [µ− 2 sdres, µ+ 2 sdres], being µ and sdres the mean and the standard deviation of
the residuals, respectively. Special attention was paid to the determination of a realistic residual
distribution. It is well known that the accuracy of a machine learning prediction model must be
calculated from a data set not used for model fitting [30] (validation set). In the case of time series,
this validation set should be more recent in time than the training data, since in practice the model
is used for predicting a time period subsequent to the training data [31].

The hold-out cross-validation method meets this requirement, with the most recent data in the
hold-out set (Figure 1).

Training Validation

Time

Figure 1. Hold-out cross-validation scheme.

However, this implies discarding the most recent data for the model fit, which are generally the
most useful, since they represent the most similar behaviour to that to be predicted (assuming there
may be a gradual change in behaviour over time). Moreover, the validation data may be biased, if
they correspond, for instance, to a especially warm (or cold) period.

To overcome these drawbacks while maintaining good estimate of the prediction error, an
approach based on the hold-out cross validation method suggested by Arlot and Celisse [31] for
non-stationary time series data was employed.

The proposed method takes into account the following specific aspects of dam behaviour: a)
changes in the dam-foundation system are generally gradual, and b) dam behaviour models are
typically revised annually, coinciding with the update of safety reports.
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Let us consider that a behaviour model is to be fitted at the beginning of year Zi, to be applied for
anomaly detection during that year. The available data corresponds to the years Z1 . . . Zi−1, with
Z1 being the initial year of dam operation. With the simple hold-out method, a model is fitted with
data in years Z1 . . . Zi−2, whose accuracy is evaluated on data in Zi−1.

In this work, a minimum training period of 5 years was considered. This value was chosen in view
of a) the results of previous studies [8], and b) the evolution of model accuracy on the reference data,
as described in section 3.2. Then, an iterative process is followed to reduce potential bias in the loads
during Zi−1. A set of predictions is generated as follows:

• For k = 5 . . . i− 2

• Fit a model Mk trained with the period Z1 . . . Zk.
• Compute Rk as the residuals of Mk when predicting year Zk+1.
• Compute the mean (µk) and standard deviation (sdres,k) of Rk

At the end of the process, residuals for a set of models Mk, k = 5 · · · i− 2 are obtained, with the
particularity that they are computed over different time periods, always subsequent to the training
set (Z6 · · ·Zi−1). That is, the amount of observations in the training sample increases, and is used to
predict the following year. The potential bias of some abnormal loads for one year is compensated by
averaging, while a realistic prediction error is achieved, since it is always based on precedent data.
A similar approach was employed by Herrera et al. to estimate demand in water supply networks,
who employed the term growing window strategy [32].

Additionally, since the model accuracy typically increases as the training data grows, the actual
model accuracy for the application period (year Zi) will be more similar to that obtained for Zi−1.
Hence, Ri−2 is more representative of the expected model performance for Zi. To account for this
issue, the prediction intervals are based on a weighted average of µk and sdres,k. In particular, the
weights for each year decrease geometrically from the most recent to the first available. A schematic
representation of the procedure is included in Figure 2.

Z i

k=5

k=6

k=7

..
.

k=K ...

Z 1
Train

Validation

Online model ...

Prediction

...

i-1

Z k+1

Residuals

Z

Weights 11/21/3
1

i-(k+1)

Figure 2. Graphical representation of the weighted growing-window cross-validation procedure. The
prediction interval is estimated as a function of the weighted average of the standard deviation of the

residuals for previous years, each one is computed from a model trained with a different training set.

Finally, to take advantage of all the available data, a model is fitted with the entire period
Z1 . . . Zi−1, with which the predictions for the following year (Zi) are computed.

Since the test set becomes part of the validation period in the subsequent years, the residuals
generated during the application of the model in the test period can be added to those computed for
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EARLY DETECTION OF ANOMALIES IN DAM PERFORMANCE 7

previous years, so that there is no need to repeat the whole process: the previous residuals can be
employed to obtain the new prediction interval, after updating the correspondent weights.

2.3. Causal and non-causal models

BRT models are robust against the presence of uninformative or highly correlated predictors [21],
[11]. Hence, variable selection is much less influential for tree-based methods than for other machine
learning tools [33].

In the vast majority of published works, variables correspondent to environmental actions are
considered as predictors: air temperature and hydrostatic load. Also, a time-dependent term is
typically included, to identify possible variations in dam behaviour over the period of analysis.
This criterion leads to causal models, since there is some causality relation between each input and
the dam response, which can be identified by means of model interpretation [11]. This approach
was also followed in this work to build the Causal models, though several variables derived from
those actually measured at the dam site (reservoir level and the average daily temperature) were also
included. They are listed in Table I. A priori, a model of this type is expected to detect reading errors
and changes in dam behaviour. However, its accuracy might be improved, since the response of the
dam may depend on variables not available, such as the maximum and minimum daily temperatures,
or the solar radiation.

A more accurate model can be obtained by adding dam response variables to the set of inputs. This
means that each radial displacement is included in the input set to predict other radial displacements.
This version will in principle give greater precision, since the record from a neighbouring device
(e.g. another station of the same pendulum) implicitly contains the effect of external variables not
considered in the causal version. By contrast, this model might not be able to detect anomalies
affecting several devices. For example, a slide in a block of a concrete gravity dam will be reflected
in all stations of the correspondent plumb line; therefore, the relation between the hydrostatic load
and the displacement would be abnormal, while the relationship between several readings of the
same pendulum could be normal. These models are termed Non-Causal herein.

A further degree of complexity can be incorporated by considering the lagged values of non-
causal variables as predictors. This kind of models are frequently termed auto-regressive with
exogenous inputs (ARX)∗, and were previously employed in dam safety [34], [6]. Specifically,
the response at time ti is estimated based on the readings at ti−1 and ti−2, both for the variable to
predict and other response variables.

One of the objectives of this work is to test the ability of all three models to detect various types
of abnormalities, and draw conclusions for practical purposes.

2.4. Case study

La Baells dam is a double-curvature arch dam located in the Llobregat river, in the Barcelona
region (Spain). The crest length is 403 m, whereas the maximum height above foundation is 102 m.
Monitoring data were provided by the Catalan Water Agency for the period 1981-2008. These data

∗The ARX model is also non-causal, in the sense that variables with non-causal relation with the outputs are included as
predictors. The acronym ARX was employed to distinguish both models when necessary, although they are occasionally
jointly referred to as “non-causal models”. For the sake of clarity, the capitalised version (“Non-Causal”) is used to
specifically refer to the second model, excluding the ARX.
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8 F. SALAZAR

Table I. Predictor variables considered for the Causal BRT model.

Code Group Type Period (days)

Level Hydrostatic load Original

Lev007

Hydrostatic load Moving average

7
Lev014 14
Lev030 30
Lev060 60
Lev090 90
Lev180 180

Tair

Air temperature Moving average

1
Tair007 7
Tair014 14
Tair030 30
Tair060 60
Tair090 90
Tair180 180

Rain

Rainfall Accumulated

1
Rain030 30
Rain060 60
Rain090 90
Rain180 180

NDay Time Original -
Year -

Month Season Original -
n010

Hydrostatic load Rate of variation
10

n020 20
n030 30

correspond both to environmental and response variables. In this work, the air temperature (Figure
3) and the reservoir level (Figure 4) time series were considered as inputs to a finite element (FE)
model. The results of this model in terms of radial displacements at the location of the pendulums
were extracted and compared to the actual measurements (Figure 5). The objective was to check
that the FE model could provide realistic data to generate reference time series of dam behaviour.
These artificial data are free from any temporal variation (the reference numerical model does not
vary with time; only environmental loads do).
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Figure 3. Time series of the mean air temperature at La Baells dam site.
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Figure 4. Time series of the reservoir level at La Baells Dam.
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Figure 5. Time series of radial displacements at La Baells Dam. The location of the devices is depicted in
Figure 7.

The dam was considered as a three-dimensional solid discretised in hexahedral serendipity 27-
node elements. A portion of the foundation was also included, resulting in a total of 13,029 nodes
and 2,530 elements. The thermal and mechanical problems were solved separately on the resulting
finite element mesh (Figure 6), generated with the software GiD [35]. The material properties are
shown in table II.

Table II. Material properties considered in the FE model

Property Dam Foundation

Young modulus (N ·m−2) 4.76 · 1010 3.10 · 1010

Poisson ratio 0.25 0.25
Density (kg ·m−3) 2,400 3,000
Thermal conductivity (W ·◦ K−1 ·m−1) 2.4 2.2
Thermal expansion coeficient 10−5 10−5

Specific heat (J · kg−1 ·◦ K−1) 982 950
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10 F. SALAZAR

(a) Plan view (b) Perspective from upstream

Figure 6. FE model.

For the thermal problem, a transient computation was run over the 1981-2008 period with time
step of 30 days. The temperature was imposed in both dam faces, with different values for the wet
and dry areas. For the boundaries below the reservoir level, the temperature was considered as equal
to that of the water, which in turn was estimated by means of the Bofang formula [36]. Although it
allows accounting for the temperature variation with depth, a unique value was considered in this
work for all the wetted boundaries, equal to that obtained for 50% depth. For the dry faces, the
30-days moving average of air temperature was imposed, to take into account the thermal inertia.
The result was increased by 2 degrees to account for the solar radiation, following the approach
proposed by Perez and Martinez for Spanish dams in the North-East region [37]. The temperature
evolution for the first year was repeated 4 times to ensure that the result was not influenced by the
initial conditions.

The mechanical response was assumed to be elastic and instantaneous (without inertia), hence for
each time step, the hydrostatic load correspondent to the actual reservoir level was applied.

The results of both models (thermal and mechanical) were added, and the displacement evolution
at the location of the monitoring devices was extracted. The model results, which are generated in
global axes, were later transformed to the local axes correspondent to the radial displacements, as
measured by the monitoring devices.

Finally, weekly values were obtained via interpolation, according to the average reading
frequency for the available data.

In addition to radial displacements, also the temperature evolution in the dam body was compared
to observed data from several thermometers embedded in the dam body.

The goodness of fit of the FE model was computed in terms of the mean absolute error (MAE):

MAE =

∑N
i=1 |yi − Fem (xi)|

N
(1)

where N is the number of observations, yi are the observed values and Fem(xi) the FEM model
results.
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EARLY DETECTION OF ANOMALIES IN DAM PERFORMANCE 11

2.5. Anomalies

As described in the previous section, the reference time series were those obtained with the FEM
model for the 1980-2008 period, where the boundary conditions and loads correspond to the
reservoir level and air temperature actually measured in the dam site. Three different types of
anomalies were later introduced to modify those data:

• Scenario 1: Progressive breakdown of an isolated device. An increasing value was added to
the reference series, with constant rate (a mm · year-1).

• Scenario 2: The same as scenario 1, though the magnitude of the deviation is constant (a mm)
• Scenario 3: Imposed displacement of the left abutment. The data for this scenario were

obtained from a modified FEM model representing a hypothetical sliding of the left abutment.
For that purpose, the boundary condition at that region was set to a mm both in x and y axes
(instead of null displacement, as for the reference case).

It is important to note that the anomaly of scenario 3 affects differently to each of the devices
analysed. Since a displacement in the left abutment was imposed, the results in the left half of the
dam body are anomalous. However, those in the right half are not affected. This can be observed in
Figure 7, which depicts the displacement field in the dam body generated by the imposed anomaly
with a = 2mm.

|Displacement| (mm)

P6IR3

P6IR1

P2IR1

P2IR4 P1DR4

P1DR1
P5DR1

P5DR3

Right bank Left bank

Figure 7. Displacement field resulting from the anomaly in scenario 3. View from downstream.

Table III contains the mean absolute deviation between the reference and the anomalous time
series for each device for a = 2mm. Since the anomaly in scenario 3 does not affect to some devices,
those values considered as abnormal by the system will be false positives.

For each scenario, the performance of the three models considered (causal, Non-Causal and auto-
regressive) was analysed. 4,000 anomalous cases were generated, where the following parameters
were randomly selected:

• Initial date of abnormal period
• Anomaly scenario
• Output variable
• Magnitude: 0.5, 1.0 or 2.0 mm · year -1 for scenario 1; 0.5, 1.0 or 2.0 mm for scenario 2; 1.0

or 2.0 mm for scenario 3.
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Table III. Discrepancy between the normal displacements, as computed with the FEM model, and those
imposed in scenario 3 for a = 2mm. Mean absolute error (mm)

Device MAE (mm) Device MAE (mm)

P1DR1 0.61 P5DR1 1.42
P1DR4 0.52 P5DR3 1.05
P2IR1 0.10 P6IR1 0.02
P2IR4 0.13 P6IR3 0.01

Each anomalous case was presented to all three models to compare their ability for anomaly
detection. This was computed in terms of the detection time (tdet), defined as the elapsed time from
the start of the anomaly until the first observation considered anomalous by each model, measured
in days (Figure 8). Since the abnormal period was limited to 1 year, the models which did not detect
any anomaly were assigned a tdet value of 365 days.

Moreover, the effectiveness of an anomaly detection system also depends on the number of false
positives (observations considered abnormal by the model, which are actually normal) and false
negatives (abnormal values not detected as such by the model). The two most commonly used
metrics to account for these are precision (2) and recall (3). In this paper, the comparison was
mainly based on the F2 index (4) [14], which jointly considers precision and recall, giving more
importance to the latter.

precision =
true positives

true positives+ false positives
(2)

recall =
true positives

true positives+ false negatives
(3)

F2 = (1 + 22)
precision · recall

4 · precision+ recall
(4)

However, these indexes are not useful for model performance assessment when analysing the
unaffected devices in scenario 3. In these cases, there are not true positives (all records are normal,
since these devices are not affected by the anomaly). Hence, both precision and recall equal zero.
Nonetheless, it is highly relevant to know whether the proposed models correctly identify these
records within the prediction interval. For that purpose, scenario 3 was analysed by means of
the amount of false positives, whose computation depends on the device. For those in the left
half of the dam body (as viewed from upstream), which are actually anomalous, the observations
above the upper limit of the prediction interval are considered as false positives, since they would
imply a deviation towards upstream (while the actual anomaly corresponds to a displacement in the
downstream direction). By contrast, for the unaffected devices, every record outside the prediction
interval is a false positive, both above the upper limit and below the lower limit of the interval.

2.6. Load combination verification

In general, model accuracy is dependent on the values of the input variables. The more input data
available for similar situations to that to be predicted, the more accuracy is to be expected. In dam
behaviour, it will depend on the thermal and hydrostatic loads.
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This effect is more important when input values are out of the training data range [38].
In particular, the accuracy of data-based models as BRTs may decrease dramatically when
extrapolating.

Cheng et al. [15] defined a possible abnormal state of the dam (State 3), that “may be caused
by extreme environmental values variables”. In this work, this issue was explicitly verified, and
out-of-range (OOR) instances were considered as potential false positives.

This verification was carried out following an original procedure, specifically designed for the
dam behaviour problem, where there are three main loads: thermal, mechanical (hydrostatic head)
and temporal.

If the behaviour of the dam does not change over time, the importance of time variable is
negligible. This was checked when fitting BRT models to the reference data, which correspond
to time-independent dam behaviour. The inclusion of these variables is useful for retrospective
analysis, as confirmed by previous studies [11]. In practice, a previously trained model is employed
to predict future values. Hence, it is obvious that the model prediction is an extrapolation in time
axis and thus does not need to be verified.

As for the other two loads (thermal and hydrostatic), the simplest approach would be to check
whether their values for the test period are greater (lower) than the maximum (minimum) within
the training data set. However, that would not consider that both effects are coupled: the water
temperature is different to that of the air, hence the water surface elevation affects the boundary
condition in the upstream dam face and, as a result, conditions the thermal response of the dam
[39].

Moreover, there is not a widely accepted agreement on what extrapolation is and how to handle
it [38]. In dam behaviour modelling, it seems obvious that a hydrostatic load above the maximum
in the training set is out-of-range. However, a more detailed definition seems appropriate to account
for the “empty space phenomenon” [40], i.e., the existence of areas without training samples within
the range of the inputs.

To account for this issue, the criterion employed in this work is based on the combination of both
loads:

1. The training data are plotted in the (Reservoir level, Air temperature) plane.
2. A two-dimensional density function is computed by means of the kernel density estimation

(KDE) method.
3. The training instance with lower density value is localised, and the corresponding isoline is

plotted.
4. The input values for the new data are plotted on the same plane. Those falling outside the

isoline are considered as out-of-range.

With this procedure, it is taken into account that the predictive accuracy can be poor for a load
combination not previously presented, even though their values, if considered separately, are within
the training range. An example of this issue is presented in Figure 8.
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Figure 8. Model performance indicators. Left: typical output plot, with the observations (circles), the
predictions (dotted line), and the prediction interval (shaded area). Before the start of anomaly, some data
fall outside the prediction interval (in red). Of those, some are false positives, whereas others correspond to
out-of-range inputs (blue circles), since they fall in a low-density region in the 2D density plot (right). In
this case, a combination of high temperature and low reservoir level was presented for the first time in dam

history.

Figure 9. FEM results versus observations for P1DR1

3. RESULTS AND DISCUSSION

3.1. FE model accuracy

Figure 9 shows the comparison between the observed radial displacements for P1DR1 and those
obtained with the FE model for the period 1994-2008. Results for other outputs are similar (Table
IV). The FEM model accuracy is comparable to that obtained in previous studies with data-based
models [8].

As regards the temperature, Figure 10 shows the numerical results and the observed data for
4 thermometers and the January 2007 - June 2008 period. Both the devices and the time period
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Table IV. Deviation between the radial displacements as computed with the FEM and the actual records for
the 1994-2008 period. Mean absolute error

Output MAE (mm) Output MAE (mm)

P1DR1 0.70 P5DR1 0.81
P1DR4 0.65 P5DR3 1.01
P2IR1 1.08 P6IR1 0.96
P2IR4 0.98 P6IR3 0.58

2007-01-01 2008-01-01 2007-01-01 2008-01-01

2007-01-01 2008-01-01 2007-01-01 2008-01-01

Figure 10. Comparison between numerical and measured temperature in 4 locations within the dam body

correspond to the results published by Santillán et al. [41], who employed a highly detailed thermal
model, also for La Baells Dam.

Since this study does not specifically focus on predicting the thermal response, relevant
simplifications were employed to generate the reference data (neglecting the variation in water
temperature with depth, using a relatively large time step). Nonetheless, the temperature within
the dam body was well captured.

This, together with the results for displacements, confirm that the resulting data series mostly
reproduce the dam response to the main loads. Therefore, they are representative of the normal
behaviour of the dam and useful to evaluate the ability of the methodology to detect anomalies.

3.2. Prediction accuracy

The performance of all models on the reference data (without anomalies) was first assessed. The
objectives are a) verify the evolution of the prediction accuracy over time (as more data is included
in the training set), b) check the effect of averaging the standard deviation, c) compare all models in
terms of false positives, and d) evaluate the efficiency of the criterion to detect out-of-range data.

For that purpose, the iterative process described in section 2.2 was followed, i.e., each model was
re-fitted yearly over an increasing training set, and the prediction interval was updated as a function
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Figure 11. Time evolution of the prediction accuracy for all models and outputs. Top: standard deviation of
residuals per year. Bottom: weighted average.

of the actualised value of the weighted average of the residual standard deviation. Since the dam-
foundation behaviour is time-independent for the reference case, the variation in model accuracy is
due to the increase of training data.

Figure 11 shows the evolution of both the raw and the weighted average of the residual standard
deviation for all devices and models. Some conclusions can be drawn:

• As expected, the accuracy of the Non-Causal and ARX models model is higher, since the
non-causal inputs implicitly contain information regarding external variables not considered
in the causal version.

• The inclusion of lagged variables in the ARX model is not relevant, as compared to the Non-
Causal one.

• The raw values show high variance, especially for the causal model, which is eliminated by
averaging

• The time evolution of the weighted standard deviation of the residuals is similar for all models:
a sharp decrease in the first years, followed by quasi-constant behaviour. Nonetheless, the
causal model requires more data to reach the low-slope part of the curve.

Table V contains the amount of false positives for all targets and models, as well as those
correspondent to out-of-range inputs. Although the prediction interval for the causal model is wider
(due to the higher residual standard deviation), it also generates a greater quantity of false positives.
However, the average amount is low in all cases, as compared to the total amount of records (1,464).
Moreover, the procedure to identify out-of-range inputs reduces the false positives by 27 % for the
causal model and by 45% for both the Non-Causal and the ARX. As a result, the mean percentage
of false positives is 8.0, 2.8 and 2.6 % respectively. It should be noticed that the results for the Non-
Causal and ARX models are lower than the theoretical percentage of values outside the interval
within 2 times the standard deviation in a normal distribution (5%).
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Table V. Amount of false positives

Model Causal Non-Causal ARX

Target # False pos. # OOR # False pos. # OOR # False pos. # OOR

P1DR1 179 53 91 40 82 35
P1DR4 178 54 89 42 75 38
P2IR1 184 54 89 41 85 35
P2IR4 198 54 95 50 75 38
P5DR1 125 31 50 21 51 21
P5DR3 164 49 72 31 68 30
P6IR1 129 31 51 21 50 21
P6IR3 171 42 63 27 65 28

Mean 166 46 75 34 69 31

3.3. Anomaly detection

Figure 12 (a) shows the F2 results as a function of the model and the anomaly magnitude a for
scenarios 1 and 2. As expected, the larger anomalies were more easily detected in all cases. As for
the input variables, Non-Causal model performed better on average, especially for small anomalies
and as compared to the causal model. Again, the inclusion of lagged variables generated a minor
effect, in this case towards slightly poorer performance.
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Figure 12. F2 index for scenarios 1 and 2.

The results for Scenario 3 are more interesting to analyse, since they correspond to a realistic
anomaly affecting the overall dam behaviour. Since the effect of this anomaly is different to each
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Figure 13. Detection time (days) per target and model for scenario 3.

output, the results are presented in terms of the true detection time td per device, i. e. the elapsed
time until the first record identified as a deviation towards downstream. Figure 13 shows the results.

A perfect model would feature null detection time for the affected devices (P1DR1, P1DR4,
P5DR1 and P5DR3), and 365 days for the remaining (P2IR1, P2IR4, P6IR1 and P6IR3). Both the
Non-Causal and the ARX models showed almost perfect performance. As regards the causal model,
the anomaly in the most affected devices (P5DR1 and P5DR3) is detected almost instantly, but is
less effective for P1DR1 and P1DR4, whose deviation from the reference behaviour is low (see
Table IV). The detection time for P1DR1 and P1DR4 is around two months, with high variation up
to 300 days.

A complete assessment of the model performance requires analysing the amount of false
positives. They correspond to any value outside the prediction interval for the targets in the right
half of the dam body, and to anomalies correspondent to deviations towards upstream for those in
the left region. Figure 14 shows these results.

It can be observed that the causal model is clearly more effective in this regard: both the Non-
Causal and the ARX models classify around half of the observations for the unaffected devices as
abnormal (there are 52 observations in the period of analysis). This result is due to the nature of the
inputs for each model. For example, the Non-Causal model generates a prediction for P6IR1 based
on the value of P5DR1 (among other inputs, but this is particularly important for being symmetrical
within the dam body). In scenario 3, P5DR1 deviates towards downstream with respect to the
reference (training) period. Since that input is anomalous, the resulting prediction is also wrong.
In this case, the model interprets that the value of P6IR1 falls in the upstream side of the prediction
interval.
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Figure 14. False positives per target and model for scenario 3.

This issue is highly relevant, since the final aim of the system is not only to detect a potentially
anomalous behaviour, but also to support the correct identification of the cause, and then the decision
making. In fact, similar results would have been obtained had the devices been analysed jointly in
scenarios 1 and 2: a real deviation towards downstream in some device is (in general) correctly
identified by the non-causal models, but that same value would generate an incorrect prediction for
other devices, of opposite sign.

Causal models do not give these spurious results, since they predict the dam response only based
on the external variables, at the cost of a generally higher detection time.

A straightforward option to avoid this behaviour is to discard non-causal models. However, their
good performance for detecting true anomalies suggests that they can be useful overall.

As an alternative, the outputs whose value is identified as anomalous by a non-causal model can
be removed from the input set. The model requires re-training, but it can still offer accurate results,
thanks to the flexibility of BRTs.

A new set of 240 cases was run for scenario 3 and the Non-Causal model. The results shown
in Figure 15 confirm that the removal of abnormal variables is effective against false positives,
while maintaining the ability for anomaly detection. The model performance is only poorer for
P2IR1 (unaffected by the anomaly in scenario 3): the detection time is lower than 365 days, which
indicates the existence of false positives. Nonetheless, the average detection time is still 270 days,
and the total amount of false positives is lower than 10 %.

This approach was implemented in a new visualisation tool, which was developed to present the
results for all devices involved. It is based on the Shiny library [42], and includes two plots for
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Figure 15. Detection time and false positives per target for scenario 3 and the Non-Causal model, once the
anomalous variables are removed from the input set.

Figure 16. Interface of the dam monitoring data analysis tool for a case from scenario 3. The imposed
displacement in the left abutment is correctly identified

each model (Figure 16). First, each device is plotted on its actual location within the dam body,
with a symbol that is a function of the deviation between prediction and observation for the date
under consideration. Then, the evolution of observations and predictions for the most recent period
is plotted for one device selected by the user. Figure 16 shows the application interface for one of
the anomalies from scenario 3. It can be observed that the anomaly is correctly localised.

With this tool, the user jointly receives the overall information on all devices under consideration,
and a more detailed plot of the selected output, where the value of the deviation, as well as the trend,
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can be observed. In this version, devices whose residuals are lower than two times the standard
deviation are plotted in green; those between two and three times are depicted in yellow, and
those above three times are shown in red. The shapes correspond to the direction of the deviation
(upstream or downstream), as interpreted by each model. This criterion can be tailored to the user
preferences.

4. SUMMARY AND CONCLUSIONS

A methodology for early detection of anomalies in dam behaviour was presented, which includes
a prediction model based on BRT, a criterion for detecting anomalies based on the residual density
function, and a procedure for realistic estimation of the prediction interval. Also, extraordinary
loads are identified by jointly considering the two most important external loads (hydrostatic load
and temperature).

Causal models (which only consider external variables) and non-causal (including both internal
and lagged variables as predictors) were compared in terms of detection time for three different
anomaly scenarios. The results showed that non-causal models are more effective for the detection
of anomalies, both affecting to isolated devices (Scenarios 1 and 2), and those resulting from an
overall malfunction of the dam (Scenario 3).

In the case study considered, the inclusion of lagged variables had minor effect both in the model
accuracy and the detection time. This suggests that the Non-Causal model (without lagged variables)
might be a better choice due to its higher simplicity.

Causal models were more robust as regards the precision (when accounting for false positives). In
abnormal periods, the prediction of non-causal models for unaffected devices is often wrong because
it is partially based on anomalous data (that from the devices actually affected by the anomaly).
This type of behaviour is a consequence of the nature of the model itself, and is the price to pay in
exchange for a greater ability for early detection of anomalies.

However, an updated version of the Non-Causal model, where the anomalous variables are
removed from the input set, avoided the above-mentioned issue, and showed to be as effective for
anomaly detection as the Non-Causal, and even more robust against false positives than the causal
model. Hence, this approach is the best option to provide useful information to the dam safety
managers. To that end, it was implemented in an interactive on-line tool, which shows the devices
whose behaviour is interpreted as potentially abnormal by the predictive model, together with the
plot of the evolution of predictions and observations for all relevant outputs.

This tool can be used as a support for decision making, since it facilitates the identification of a
potential deviation from normal behaviour. Thus, it can be used as an indicator to generate a warning
which might lead to intensify the dam safety monitoring activity. Nonetheless, all relevant decisions
influencing dam safety should be made by an expert and capable engineer, based on the analysis of
all the relevant information available.
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