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SUMMARY

In this paper the necessary requirements for the good behaviour of shear constrained Reissner—Mindlin
plate elements for thick and thin plate situations are re-interpreted and a simple explicit form of the
substitute shear strain matrix is obtained. This extends the previous work of the authors presented in
References 18 and 31. The general methodology is applied to the re-formulation of some well known
quadrilateral plate elements and some new triangular and quadrilateral plate elements which show
promising features. Some examples of the good béhaviour of these clements are given.

1. INTRODUCTION !

Recent work in the development of efficient plate finite elements has been mostly based on the
so-called Reissner—Mindlin thick plate theory.!”2* This by-passes the difficulties caused by the
C* requirement of the classic Kirchhoff theory.?®3° However, its djrect applications to thin plate
situations can induce locking, and various artifices to eliminate this effect like the introduction of
reduced or selective integration procedures® 113932 grithe use of constrained substitute shear
strain fields'-3~ 5871218, 19.28.3% have been proposed. .

Tt is now clear that both these approaches can be re-interpreted in the more general framework
of a mixed formulation in which shear forces and displacements ar¢ approximated independ-
ently.20:27-2%.31 Moreover, the mixed form provides the necessary requirements that the ele-
ments should satisfy to be applicable for both thick and thin plate situations. This has allowed
a general methodology to be defined for the formulation of successful shear constrained plate
elements,*® and some of these have been recently reported by the. authors. 13192831

In this paper we re-examine the problem of thick plate elements based on constrained shear
strain fields. We show that the condition of vanishing shear strain for the thin plate limif €an be
naturally achieved only if the coefficients defining thé-approximating shear strain polynomial are
a linear function of both nodal rotations and deflections. This explains the success of reduced
integration techniques and the use of constrained transverse shear strain fields which lead to the
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satisfaction of such a condition. In the paper, the methodology proposed in Reference 18 for
defining ‘a priori’ adeguate constrained (or assumed) shear strain fields and for the derivation of
the correspondirg substitute shear strain matrix is detailed. This methodology-is applied: to re-
formulate the well-known four and nine node guadrilateral plate elements of Bathe aund
Dvorkin®*? and Hinton and Huang,*3 the new triangular element of Zienkiewicz et al3* and
$OINS NEW quadrﬁaterai and triznguiar elements. Finally, examples of the good behaviour of these
clements is given.

2. BASIC CONCEPTS
The basic expressions of Reissner-Mindlin pl_zite theory are the following:

Plate curvatures
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In the above w, fl, and 8 are the deﬂectxon and _rotatwns of a pomt in the plate mld—surface For
sign convennon see Flgure 1.

Bendmg moments/curuature relattonsh:p (1sotrop1c condmons only presented)
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Figure 1. Definition of displacement variables in a plate
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Shear forces/shear strains relationship A : CLo v e e anhy

_ 19l Lo v _
s={gd=edo 13-

In the above E, G, v, t are the Young's modulus, shear modulus, the Poissor’s ratio and the plate
thickness, respectively and o is the warping coefficient accounting for non-uniform shear distribu-
tion (usually taken as a = 5/6). B

Total plate energy T - R P

ﬂ:ijj yTmdA -i—-l-J‘J‘ *yTsdA-—‘”- wgdA )
2 A 2 A . A‘ o . .

The first tﬁ#b iiltegrals of {5) represent the bending and shear énergiés; requct_i\}éiyi whe}'e;as“t};e‘
third one represents the external energy due to a distributed force g acting over the plate area A..

3. FINITE ELEMENT DISCRETIZATION

Consider a finite element discretization of the plate using isoparametric elements.®>® The deflec-
tion w and the rotations f, 8, can be interpolated using a different approximation as. =~ .
, w=N,% 8=N8 2 e ()

wher_jé_(f) dcﬁotﬁs nodal (or internal parameters) values (%; = [wi), 8 =[Fx,» Qy‘]T); '
Eguations (6) can be combined to give R S o

w = [w, 0, 6,]T = Ni - . - D

with | | B
- T N.. .

U; = [wia an 9})‘{] » Ni = s Nﬁ; = NB,-IZ (S)

: :,Nrﬁl- . . : B

where N, and Ny, are the C° shape functions. interpolating the deflections and the rotations,

respectively. _
Substitution of equations (6)—(7) in (1)—(2} yields

x =18 = LN,8 =B, ' (9)
Y = Su = SNu = B.u . (10)
where B, and B, are the standard bending and shear strain ;ﬁatrice;s_, respectively given by
- oNY - R o
" —- N} O J—
BN; 0x

., By= 10 0 — [ By= {11)

; dy eny o N

1o oN? ON? ay .

L dy Ox -

Substitution of equations (9)—(10) in the expression of the Iﬁotentiai energy (5) yields, after
_minimization, the discretized equilibrium expressions, and the usual form of :the bending and
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shear stiffness matrices 1s obtained as . R
| K© = K + X ” (12
with

_KL" *:JJ‘ BZDbBbdA; Kgc)-ﬁl J-J. BTD B, dA
Aler A“"

where indices b and s refer to bending and shear contributions, respectlvely.

. 4. THIN PLATE LIMIT

In the thin plate limit Kirchhoff’s assumptions of vamshmc transverse shear strain must be
satisfied. This ‘itplies 7 = 6. From equation (10) we can wnte for rectangular or stralght sxdes
triangular elements with n nodes :

¥ = B8 = a; (W, 0) + o2(W, B)¢ + a3 (%, B)yp + - - - + o, (W, B) P = 0 (14)
Satisfaction of (14) implies of course that
o Lo aj(w,8)=0;- ]—1 n. . o {(15)
n being the total number of nodal variables. ' - ‘ s
-Equation (15) imposes a set of linear relationships between nodal deflections and rotations
wh1ch usually can also be interpreted on physical grounds. Only elements satisfying (15) 1dent-
ically can, in the Hmit, Teproduce naturally the thin plate condltzons with absence of locking.
However, in many elements the a;s are a function of the ‘nodal rotations only, and the
condition «;{8;) = 0, requiring that 8; = 0 for the thin plate solutiomn, prevents any bending strains
and hence leads to locking. .
The above concepts will be applied to two well-known beam and plate elements in next section.

;I 1. Two node linear Timoshenko beam element

- The gcomctry of the element is shown in ‘Figure 2(a). The displacemeént field is mtcrpolated as

W—ZNW,, G—ZNB
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The one dimensional shape functions N,(€) are also shown in Flgure 2: The shear strainfield 4s

obtained as

Caw wl'—fw; 81+92 [ o
”_6x+3‘.,[,, PR |- 0t

:Cxl(wna)“f'az(e )6 . ":'-'. ' : I )
The Euler*Bernoulh condition {(y = 0) implies L PO T
5 . _0 1 '-Wl_-wz"_81+92 U .- .
S oy == alT l'ﬂ"f._‘ -] ‘"" ’.27:_‘- T -
d=0 ie- 0 =0,

The condition on ¢, physically means that the average element rotation equals thé e'Ie'ment sl‘o"pe
which is clearly satisfied for slender beams. On the.other hand, «; = 0imposes a uniform or zero

rotation on-the element This invariably leads to a vanishing of" the bendmg energy and thus te
iockmu o

4 2. Four node rectangular Rezssner—Mmdlm plate element
" The element. geometry is shown in F1gure 2(b}. The dISpIacement field is given by

: 4. L N . oA Lo 0 e
W= Z Nw, 8=10.,.06,1"=73 N s L (19

i=1 i=1
where the bilinear shape functions N;are also shown in Figure 2.
Let us consider the exprcssmn of the transverse shear strain 7,:

5_ ‘ & G ;
B[ (Bt

+ (il A )6 + (é:f‘! x:)énjl = 0y (wia. e.m)

+ 2(Wi, B2 +05(0:)¢ + aa@iln - 1 - S (20)

A sumlar expressmn can be obtamed fer Ty by sxmpiy mterchangmg x and 5 by ¥ and n s
The lzmltmg Klrchhoff COIldlthIlS {yz =y, =0) imply now a; = @, =23 = o4 = 0. Clearly, the

condxtlons on 2, and a, impose a linear relat10nsh1p betwcen the nodal deﬂecnons .and, the

averaoe . rotation (9 fory,)on the element. This can be physwa]ly 1nterpreted smu}ariy asin the.
case of the condition &; = 0 for the beam element of the previous example. However, the element
is unable to satisfy naturally the conditions a3 = o4 == 0, and this leads to the trivial solution
., = 0 (0,, = 0 for ,} and thus to locking. _ 7 . A

4. 3 Some remedzes to auozd lockmg . YT T P S

- From these examples it can be déduced that a 31mp1e way to av01d 1ock1ng is to evaluate ‘the

shear strains only in points where the spurious «(0;) vanish, using’for instande'a mimerical
quadrature based on such points. Thus, forthe two node beam element, computation of y at the
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clement mid-point eliminates the undesirable o, coefficient, leading to - . .

o [wamws B8] [ 111170, o
m‘:““_“‘—[ T2 ]"[ 1’_2’7’51““35“ 1)

Matrix B, is termed in the literature ‘substitute shear strain matrix’.13+1% Computation of the
element stiffness matrix simply implies now we use B, instead of the standard shear strain matrix
B, in the computation of K, while the bending contribution K{? remains unaitered (equation
(13)). ' ' ] o N

For the four node rectangular plate element we observe that the spurious coefficients «y and
a, vanish automatically if y, is sampled on quadrature points along the line £ = { (conversely

7, should be sampled along the line n = 0). The derivation of the resulting B, matrix for this case is

obvious and can use either the standard single point quadrature for and y,of E=n =20, 01
alternatively 2 points for y, and two separate points for y,. o

The preceding arguments are the -basis of the well known reduced integration-procedures
widely used in practice.? 1% 16:21:30:32 However, reduced integration techniques have proved not
to be generally sufficient for the development of robust isoparametric-thick plate elemernts,
leading frequently to mechanisms which can pollute the solution.}#1%:3%:32 An alternative
procedure is to impose ‘a priori’ a shear strain field which satisfies condition (15), thus allowing
the natural satisfaction of the limit thin plate condition. The shear strains are now written as

A=) Nyn=N7 o B (22)
= : o

where v, are the values of the shear strains at some selected points within the element. Combining
equations (22) and (10) yields ' :

=Y N.Buw=Ba . .. ... @

k=1

Tt is easy to check that equation (22) satisfies equation (1 5) to guarantee the absence of locking.
The approximation to the total potential energy can now be written using equations {9) and
(22) as : - ‘

m=1 H [LOI"D,LOdA + H [N,71"D,N,7dA4 — ﬂ wqdA (24)
2 A 2 4 o A

_The above expression, can be used for generation of stiffness equations written in terms of
u only when constraints relating u and y have been imposed (equation (2)). In the next section we
shall discuss how such constraints are imposed. Note that in (24) C° continuity is required for the
rotations 8, whereas the deflection w, and the substitute shear strains 7, can be disdontinuéﬁs;‘:I‘his
possibility has been exploited by Arnold and Falk in the development of a three node triangular
plate element with a discontinuous defiection field.? R R

e

_. 5. CHOICE OF SUBSTITUTE STRAIN FIELDS

Adequate substitute strain fields can be successfully chosen by direct o_bservation, having in mind

the objectives of obtaining strain fields satisfying equation (E5).- =~ o om0 A
“Thus, from the expression of y for the 2D linear beam element (equation (17)) it is easy. to define

a constant substitute strain field as L R , ' -

oy e @8)

LB
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.The value of @; can be obtained by sampling y at the element mid-point, thus in effect-achicving
the constraint of equation (2). by collocation at that point This leads to-an expression for the
substitute shear strain matrix identical to that given in equation (21) using one point selectwe

integration. The analogy between both procedures becomes quite evident in this case.:

- For the bilinear rectangular plate elcment we can write, a.fter observatmn of thé mmal stram
field (see equation (209), -~ -~ - : : o

]

V=
Ty

The values of the «;’s can be computed by sampling the shear strains (or collocating equation
(2)) at the four points shown in Figure 3(a) and the substitutive shear strain matrix can be-readily
obtained. The reader wiil immediately recogmze this elcment to.be 1dentical to that proposed by
Bathe and Dvorkin.>- 12 o Caf -

It is interesting to note that the shear stlﬁ'ness matrix. for thls case usmg exact (2 x2) mtegratlon
is identical to that obtained with the original shear strain field and the four pomts selectlve
quadrature rule shown in Figure 3(b). . O . L E

The.reason for this is that: : : C o N

ay (W, B2 + oa(wy, 05,7

26)
a3(wi: 8)'.-) + a;i-(wi’ 6)’:‘)5

(i) a collocatlon of the initial shear strain field (viz. equatmn (10} along ‘the lines &= O and
" y=0fory, and vy, respectwely yields preczsely the strain field of equatlon (26), J
(11) the two points quadrature along the lines ¢ = 0 and 77 = 0 for the ongmai v, and y, ‘termis,
‘tespectively (Figure 3(b)), integrate exactly the quadranc terms in # and &f contained in the
‘shear stiffness matrix, thus yielding the same final exprcssmn for K as that dlrectly
obtamcd starting from equatlon (26).

For a creneral quadrilateral with 1soparametnc co- ordmates tand gy the sxtuatlon is. 1dent1cal as
far as the first point above is concerned providing Ve and v, are used instead of y, and y,. However,
the two Gauss point integration of Figure 3(b) is no longer exact and yields a different shear
stiffness matrix (and worst numerical results} than that obtained using a2x2 integration.

a) b) . 7
A
A my d d
3 B 3 B 4 - 3
2 % —
d=L
c Do - ! o
- ¥, = @5 a7 =
: £ _ 4 at ——
4 &
2 A 2 A E— -
) D
E : . .1 and 2 for Y
Integration points
V=0 e 0 E 3 and 4 for vy,

Figure 3. Four node quadrilateral plate element: (a) assumed shear strain field; (b) mtegration pomts for the y; and
9, terms in the original shear stiffness matrix _
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We ‘would indeed anticipate the elemert to give.very similaritesults.(and to have.some
deficiéncies) if a single point quadrature were used for the shear tetmsiin: the manner’ ongmally
suggested by Hughes et al.** o : i s

It has been shewn27 2% that the chorce of the subsntute stram feld. must sat1sfy certam
additional requirementsif singularity and locking are to be avoided. Starting with-the mixed form’
in which deflections, rotations and shear strains are independently interpolated the necessary
conditions to be satisfied are \

Mgy zn, . (@79
nZn, [T ... (@)

There iy ng and n, stand for the number of “free’ vanables (after d1scount1ng the. prescnbed
boundary.conditions) in each set of interpolating parameters W, 8 and 7, respectively. " The above
inequalities have to be satisfied for any element patches as a condmon whlch is necessary
(although not always sufficient) for convergence.?® :

.1t is interesting to. note that the inequality (27a) can also be mterpreted as a: crenerahzatron of
the well-known ‘singularity rule’ widely used in the context of reduced mtegratron techmques to
define approximate quadratures giving a singular shear stiffness matrix. K, thus preserving the
existence of the correct numerical solution. 21, 30:32 Elements satisfying (27a) have therefore
a singular K. This giyes further evidence of the analogles between shear constramt methods and
reduced integrations techniqueés., The proof of this mterpretation is given in the Appendlx

In Reference 31 the authors have examined a number of currently used plate elements ‘and
found that all those proving to be successful in praetlce satisfy equatlons (27). Also in Reference 31
the authors have proposed general new triangular plate elements ‘which show very promising
features. In the next section a general methodology for the denvatxon of the subst1tute shear stram
matrix for isoparametric plate elements 1§ presented ‘ o G

6. A METHODOLOGY.FOR THE DERIVATION OF THE SUBSTITUTE SHEAR:
STRAIN MATRIX

We consider the derivation of the substitute shear strain matrix of an isoparametric plate element

“of n nodes with an independent interpolation of deflections, rotations and shear strams defined by

equations (6} and (22), and sat1sfymg conditions (15).

Step 1. The starting point is the expresswn of the natuxal shear strains in a polynormal form
using the natural co-ordinate system &, n, ie.

=37l V&g &n .. Mt |0
. Vy 0000 ... 0 |1

The Cartesian shear strains are directly obtained as

=Aa (28)

where J is the standard 2x2 Jacobis.n-ma'trix of the transformation x, v —> &, 7







glving the substitute shear strain matrix. .
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We also define the tangential shear strain along a particular naturai dlI'CCthI] E as

yg = cos f;y: + sin By,

where Bl is thc anclc that the dlrectmn & forms with the natural & dn‘ecnon Tha natu:al dlrectmns
{i over the element edges can be chosen as the direction of i mcreasmg elabal node numbers for the
end pomts at each clement edge. - ; P

HEED IERFEN

o IR R

Step 2 The tanoentlal shear strams '}rgi are sampled at. n), seiected pomts along natural
directions &;. Thus, substituting equation (30) in (28) and sampling the resulting equation at the
n, points we obtain the following system of equations: -

P(é:: s B )d - Yq . . T (31)

WhCI'f: Ti= [y 2 yé,. e yg]T contalns the prescnbed shear strams at the ny samphno pomts
From equation (31) we obtain

a=P iy @

' " Step 3. The tangential shear straiﬁé'yg are related to the natural shear strains at the n, sampling
points by the simple transformation

ayp=TE . e (33)
with 7' = [y, 13,9, ¥7» - - - V8, 7 1

Step 4. The natural and Cartesian shear strains at the sampling points are related by
0 Fro | fs

where§; = [%, y.] and J* is the Jacobian matrix at the ith sampling point.

Step 5. The Cartesxan shear stralns at the samphng points_ are related to the nodal displace-

'ment by

(T B;
§= {1 y= ¢ ! la=Ba (33)

Pl T

where B is the standard shear strain matrix of equation (11) computed at the ith sampling point.

* —

Step 6.1 Combining-sf;ps {(28), (29), (32)--(35) we can finally obtain

= J"AP‘ITCESIG = B.u (36)
with "

B.=J-tAP-!TCE, | . 37)
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Remark I..In quadrifateral plate elements with shear collocation -points‘along-the sides the
expression relating the natural shear strains with their values at the coliocation point can
sometimes be directly obtained. This avoids the computations of matrices A, P™* and T ang of
the corresponding matrix product. S - P

Remark 2. 1t should be noted that point sampling is not the only way to relate the tangential
natural strains with the nodal displacements. Any weighting specified along the ¢ directions will
suffice to achieve this. For instance, we can write . - SRR L D

! ’ : e i aw '.~ 7_.-:_' 5,. -_‘.' “.:"“

4

where W is an appropriate weighting'function. 'EQuattion‘(38) allows us to directly obtain an
expression relating the tangential natural strains yz and the nodal displacements (steps 3-35} as

vs = [TCBJi B9
The substitute strain matrix is now readilyl obtained as '

B,=J"'APT![TCB]. N )

o . o
P . e . e o .

7. APPLICATIONS TO SOME OLD AND NEW PLATE ELEMENTS |

7.1. Four node quadrilateral plate element with linear shear strains

The above methodology will be applied to the derivation of the substitute shear strain matrix of
4 the well known four node plate element of Bathe and Dvorkin.® We choose a standard bilinear
field for the interpolation of 8 and w and the following linear shear strain field in the natural
co-ordinate system: :

y5=ai+a2r}
L . 11 o0
ay +ayé; le A=[0 g ) éi"

Tt is easy to check that the assumed shear strain field satisfies the inequalities (27) for meshes of ;
more than 2 x 2 elements, which guarantees the good behaviour of the element in practice.

@

3

p 4 node{QLLL} element 9 node (QQQQA) elément Variables :
I L |
afw] |







SHEAR CONSTRAINED REISSNER-MINDLIN PLATE ELEMENTS 355

~.The four a;'s are obtained by sampling 'the tangential shear strain yz of at the four points-over
the & directions shown in Figure 4, This gives : B

} 1 =10 0. Ly 1.0 1 0 :
' Jo o1 1 L il -t 01
i ‘ : =1 and P7l= ) (42) 0
1 U o b -2 01 0 1 |
o o 01 - Yol 1010 <1 T
pett T .- P 1‘
gﬁ_} i
The tangential shear strains yz are related to the y%, v, by .
: . ]
S ‘ ve- :
o N L 0l
Fj*‘a 2 .‘E 0 1 _ﬂ TA. B J(éﬂ)
; i ' o= = T7 3
e v 10 . -
i < 0 0 1 .
&% Ve
é’;., 1 It-ri's‘intgres'tin.g to pote that , - - ,
L ; 1fg-m 00 o0 | d+mp 00 0 o
"‘s AP 'T] =~ : 44
e L =31 o o0 @+sn.1 0 00 (=9 (“44)
Bl -t . ' . : : ) .
E‘ o This expression could have been anticipated if the assumed shear strain field-would have been
i directly written in the form . : ‘ ) :
; ve=3(1—nyi + 31+ n)vi 452)
. | ya= 41+ 72+ 31— Ok
el -1 ) : . ) : ) L Lo )
R which gives .. . . L .. . e P
REATNa v (45b)
T © AT o
e from where the matrix product AP~ 1T can ‘be d1rectly obtained. - o
< L%‘ The substitute $hear strain matrix is finally obtamed by equanon (37) wath
“5{’ 4 . ’
.Jl. 0 1 ‘
- C= g and B.=.{ s | {46)
W . oL . TR
B 0 J* BS .
i)
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‘For further reference this element will:be termed. QLLL (refermcr 10 Ouadnlateral bJLmua.r
deflections, biLinear rotations and Linear shear). . R '

7.2. Nine node quadrilateral plate element with quadratic shear field" S

This element was originally presented by Hinton and Huang'® apd Bathe et al* Erom the
expressions of the standard quadratic shape functions for w and 0°° and the arouments of
previous sections the following ‘correct’ quadratic shear field can be obtained:

Ve == oty + g & + aan + agfy + asn® f*“ 056‘57?“ -
?n=a7+a8§+a9n+‘x1of’7'E‘fxiiéz"'chzﬂéz

It can be checked that this element satisfies the conditions (27 for all element patches. - :

_ Figure 4 shows the 12 sampling points for computation of the o;’s. The derivation of matrix
B, follows the steps given in-previous section.

The computations can be simplified if the matnx product AP™'T 1s dzrectly obtained by
wntmg equations (45) as : 0

§—4[A?.; + By:ln(l + n) + 2[Ay: + B?;] (1~—n )]
+1[A1/¢ + Byilnin — 1) ' {48)

with A =1+ \/_ fand B=1-— \/_ £ A similar expression can bé written for y,,' by simply
interchanging £ by » and points 1 to 6 by 7 to 12, respectwe]y Fromi-{48) the matrix product
AP” 'T is obtained as

(47)

3 - RS
AZ o P, o A o P2 g AT” o, P, o,
AP_‘IT-—- T . " _ L — o L __, _ ) A"l‘
224 0.0 21 g B AL oo B, 44
1!12’ 2 4 2 b3 ) 4 ,. 3 4I) ‘,‘. 2 L] kl 2 k4 2

W‘lthA——l—I—\/_ﬂ, m1~fﬂ,sl—s(1+s) 32—1 s3—s(s—1),s—-§, _
The remaining C and B, matrices necessary for computatlon of B, by equation (37) are given by
gy 0 o le , ‘
c=| , B= { (50)
XU P € 5
The same ideas can be used for obtaining the substitute shear strain matrix of the eight node

and other higher order quadrilateral plate elements. Details of the adequate shear constrained
fields for some of these elements can be found in Reference 13. T

For further reference we will denote. this elcment as. QQQQ, (Quadrﬂateral Quadratlc deﬁec—
tions, Quadratic rotations and Ouadratlc shears).

7.3. Six node quadratic triangular plate elemient with linear shear strain field

- Recently!®%-3! the authors have shown the good performahce of the six node triangular
elernent with quadratic vdriations for both ‘the deflection and the rotation fields and a linear
interpolation of the shear strain (here termed TQQL for Triangular, Quadratic w, Quadratic
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: The 10cat1on of the six-shear sampling points-is shown in Figure 4. It is easy to check that the
: : elerent passes satisfactorily thé conditions (27) for all elément patches. 18,31 a C
A

- - .The local directions - are shown in Figure 5. It can be €asily found for this case that
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From equations (31) and (52) the substitute shear strain matrix of equatior (37) can be readily :
obtained. . . :
. It has been checked that this element behaves well and it converges to the exact solution in all
examples analysed.18’31 However, for coarse meshes its behaviour is too fiexible. A way to reduce
the fiexibility of the element, still preserving satisfaction of equations (27),.is- to. eliminate the
normal rotations at the mid-side nodes. This can be simply done. by introducing the constraint
B — 3(657 + 6i71) = 0 in a penalized manner into the expression of the total potential energy
(5) as ' ‘ '

- BT i e ) Lo

HzI’I—!;E B,‘,—E(B; + G : (53)

where § is an appropriate penalty parameter. Numerical g:xperieqé:_e has shown% that § = 10°Gt

suffices to obtain good results. o o _ Lo .
A method of imposing this constraint explicitly is given in the next section. '

|
] 7.4. Linear/quadratic triangle
|

i An improved version of the quadratic triangle of the preceding section, also- presented by the
At authors in References 18, 19 and 31, is the following. ;

1. The deflection w varies linearly over the element as

3 ) )
w = Z Liw; i (54)
=1 X E
| 2. An incomplete quadratic variation of the rotations within the element is obtained according i
: to the following interpolation, - :
% 3 = . = S '
E 0= Z Lgﬂ; -+ 4L1 Lzelegr‘ + 4L2L382'3A9“ + 4L3L1813Af9:6 (55) H
where L; are the standard linear shape ﬁ.tnctions of the three node triangle, Ad, is g
a hicrarchical tangential rotation paramicter ‘at the element mid-side and e;; is a unit vector ‘
i indicating the direction of the element sides (Figure 6). E
4 The vector of nodal variables can be written as , 3
Et' = !:w].: BIU 9_‘“: WZ: zes 8)‘2! w3! 93731 8)‘33 ABH! Aslss ABIGJT.M“ A (56) i"hl" %
i i
| 3. The shear strain field is again assumed to be linear in each element but the tangential shear - fE ,;
strains are assumed constant along each side. .~ ‘ i
‘; ‘From equation (35) it can be deduced that the normal rotation varies linearly along the sides, =
wheréas the tangential rotation variés quadratically over the. element. o - L
i It can also be verified that the elemeént satisfies condition (27) for all patches. kg
:‘ THe derivation of the substitute shear strain for this element, DRM in References 19 and 31 and ]

i TLQL hereafter {for Triangular, Linear.w, Quadratic 8 and Linear v), is simple if we start from the
six points strain ficld of the quadratic triangle of Figure 6. This immediately gives matrices A and

P identical to those of equations (51) and (52), respectivély. Condition (3) is now accomplished by
setting yé— = yé— = y%z, yg— = y% = ?%3 and yf? =7yF= y?, which yields the followipg matrix
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expressiém:

o . ’yé. = 1 0 'lO- l?.l_z . LT - . L o ) a
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(T =T 57
. L o1 0 )%, (777 (57
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whef_e‘ 7 g denotes the Constant tangential natural shear strain along the element side . The value
of y¥ for each side is obtained from equation (38) with W = 1 (Galerkin) as

L[ fow _ 1 |
- Y=o | | =+ 07 Jd =5 —w
st . . - Vt: J;c_(:aé A ‘f) lg(.l K )

r -
TR N LA 1. o 2 et o
S laeie el e

s 1

where k =3 + i, 4 js the actual length of the element side, = B = :1,;-and,v1§f_=dzﬁ‘._._:'1"g avoid
sign ambiguities in (58) the tangential shear must be defined by a unigue: direction on each edge.of
contiguous, elements. Failure to achieve this results' in an. inconsistent definition of :the edge
incremental rotation degree of freedom Af,, . A way to overcome this difficulty is.to define vector
e; in the direction of increasing (global) node numbers for the end points of each element edge.
Equations (57) and (58) allow us to obtain an explicit form between the tangential natural shear
strains and the nodal displacemeénts as R T S

c

= T[CBIG = [TCBIS .« ~ . - . (59

|
i
"







E lE.)I\I.“J'ET o ~ZIENK1£WIC.Z"_B" REZZANDIRAL TATLOR

where T is=defined by eguation (57) and Tl

Clzpz' §,, 112 1

-1,

CpsP? 853173 0 ﬁlzs 0 | - (60)
2\/5 3 Z-ﬂ ? 2 3 H) .
Cys? §5018 2
—— —_ _113
2 H 2 H O’ 0, 3

where 5;;, C;; are the components of the side unit vector e;; = [Cy;, S;;]" of Figure 6.

The substitute shear strain matrix for the TLQL elément can now be readlly obtained by
equation (40}.

We note that a similar element was demved followzng shghtly d1ﬁ'erent arguments by Batoz and
Dhatt.” - ;

Remark 3. Obviously the choice of W =1 in equatlon (38) yleldmo the relation (58) between
the constant shear strain along each side and the nodal displacements is not the only possible one.
Many other options for the weighting of equation (38) can be attempted (point collocation,
subdomain collocation, etc.), each one yielding a different element. A study of the numerical
benefit of the different alternatives for selecting W is currently being _inyegtigga.ted,by the aut_hors.

Remark 4. The h1erarch1cal rotation Af,, can be ehmlnated by 1mposmg “the vamshmg of the'
shear strain y‘: along each side. This glves

= 0= Af, = Lyl =~ ehe, +6,) (61)

5

It 1s interesting to note that the resulting rotation field js identical to that of the standard three
ridde DKT element of Batoz et al;8 this’ ymldmg the same stiffness matrix in both cases.

Remark 5. An alternative for ehmmatmg the tangential rotations while stlll preserving some
shear resistance in, the élement is to equaté the shear strain at the mid-side pomts with the value
obtamed from the bending equilibrium’ equations. This approach has beén used by Batoz and
Latdeur® to derivea three node incompatible tnangular element whmh shows good behav;our n
the ana1y51s of thlck and thm rectangular plates AR : . :

7 5. lemear/quadratzc quadrz!ateral with Imearr shear srram ﬁeld |

The above ideas can be easily applied to derive a new quadnlateral element w1th the followlng
displacement and shear strain fields. e
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1. The deflection w varies bilinearly over the element as

4 R
w= 3 Nw (62)
Ci=1 ) T
where N; are the standard bilinear shapé functions of the €? four node rectangle.
2. An incomplete quadratic variation of the rotation is chosen as '

[ D ) . '
B Y NGB+ 7@ — erabl, TS+ Dexsdl

i=1

1O + neashl, +T) — Deredlly (63)

with f(&) =1 — & and f{n) =1 —n* o
3. The shear strain field is assumed to be linear in each element and equal to that of equation
(41). _

It is easy to check that this_element, termed QLQL. (Figure 7), satisfies condition (17) for all
glement patches. ' s :

The derivation of the substitute shear strain matrix for the QLQL.elerf;ent follows precisely the
steps explained in equations.(41)—(46} for.the standard four-node quadrilateral (QLLL) element.

A similar element was proposed by Batoz and Dhatt, although the derivation proposed here is
somehow different. Also, a quadrilateral element “with the same degrees of freedom has been
presented by Aalto! using the constant shear strains along the sides as nodal variables instead of
tangential rotations. It is -interesting to note that elimination of the hierarchical tangentidl
rotation along the sides by an equation similir t6°(61) will yield a four node Discrete Kirchhoff
Quadrilateral element similar to those presented by Batoz and Ben Tahar? and Crisfield.*?

8. NUMERICAL EXAMPLES

The behaviour of the different elements has been tested in the analysis of thick and thin simply
supported (SS) and fully clamped (CL) square plates under a uniform. loading ¢q and a central
point load P. The structural propertics of the plate are E = 1092,v =03, side length = 10. The
intensity of the loadings are ¢ = 1-0 and p = 1-0. Hard (w= g, = 0) bouridary conditions have
been assumed for the SS case. -+ - - o

Figures 8 and 9 show the convergence of the central deflection versus the total number of
degrees of freedom for the TLQL triangular clement of Section 7.4, for different thicknesses

A . e

Vuric\t;les

o [8,8] . -
® 86 R
o w o

o‘_'\{t

7 QLAY quedrilateral plaie element

RS

(hm‘-af“’ quadratic '8 gad Tipear shear)
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and thi;). conditions. Results show the greater efficiency of the TLQL element. Firther evidence of
the excellent, behaviour: of this element can be found in References 18 and 3%: . P

--Figure 11 shows the-convergence of the centre displacement’ for the QLQL guadrlateral
element for the same plate cases previously analysed: Again excellent convergence for all-casesis
obtained. Figure 12 compares the convergence of the QLLL, QQQQ and QLQL quadrilateral
elements under uniform loading for the SS case anid thick and thin plate*‘Situatidns.r'The;e ‘canibe

seen.the ‘great efficiency of the QLQL element for the case studied: = Lo T
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Finally, the convergence of the new QLQL quadrilateral and. the TLQL triangular elements is
compared in Figure 13, again for uniform loading, SS conditions and thick and thin situations.
Both elements show excellent convergence in all cases and less than -5 per cent error is always
obtained with meshes of just over 10 degrees of freedom. ‘ :

Lt

" 9. CONCLUSIONS. - *

In the, paper we have shown that the condition of vanishing shear strains for the thin plate limit
imposes the condition that the coefficients defining the shear strains polynomial field must be

2 linear function of the nodal Totations and deflections. This explains the success of reduced
integration techniques and the use of substitute transverse shear strain fields which satisfy that

condition. Indeed, as discussed in Reference 19, this shows why the so-called discrete Kirchhoff
constiaints-are an efficient way of designing thin plate elements. A general expression for the
substitute shear strain matrix has been obtained which can be useful for the practical derivation
of shear constrained .elements ‘hased on adequate shear/displacement, fields. This methodology
has been applied to some of the existing: plate- elements and; in particular, to the new TLQL
triangular and QLQL quadrilateral elements, which show an excellent behaviour for thick and
thin plate analysis. The possibilities of the ‘methodology presented for deriving new discrete
Kirchhoff elements have also been outlined and this opens & line for future research in this field.

APPENDIX

}’roof of the singﬁlarity rule for X, [ T R

Let us write the substitute shear strain of equation (37) for the whole mesh as

B! B! .
B =3t APt T {: = [JAP1{ : »= [J4PIB, (64)
2%n Zx2 ZXn,n,Xn,n,xln,‘r B:T - 2%, ﬁ? : .
Ll 2oy i, XA .
where
(Bl

[JAP1=J"'AP7' and B, =T

L Tt

-

In (65) n, is the total number” of ‘constraints in the shear strains and » the numberof nodal

variables. . L o
The shear stiffness matrix K, is obtained from (13) with B, instead of B,. Noting thatB, is

constant over the element, we can write C VI T

K, = H BI[JAPT'D,[JAP]B,d4
E A : : o A -

n¥n

=\E}"(ﬂ- [J4PTT D,{j}zﬁ]-é,«a:)-ﬁ;h="'i§§ BB (66)

A mx2  2x2 2Xm, R R, dyXm, mxn
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The equilibrium equations for a node 7 can be written (taking into account the contnbutzon
from X, only) IR ‘

n

f= Y K& =BI[DB, & +Db,e+ - +DBE] o (67
j=1
From equation (67) we can deduce that, if n, is the number of rows of ﬁs‘, vector f; is
a combination of n, linear relationships in @;, 0, . . . , #l,. Hence, equation (67) can be rewritten,
after eliminating the prescribed degrees of freedom, as
Cl(oclu1 T+ u,) + Ci{otu, + + o uJ) 4+ Crfeduy + +afu,) f‘-
z(alul + + afu;) + C3 (cclul + _’+,oc,~ U)o ‘>+‘,C',%,(_oc{. <+ o:JuJ) fz ;

‘ '(_6,8).

Cllau + -+ «j “J) + C’ (O¢1H1 " + whup)+ CJ (ax1u1 ~+- s odu;)=fj

-where J==n, + n,, is the number of free degrees of freedom.

The system of equations (68) will become singular if the coefficients 'C%, C4," . C‘ of any of
tht‘: above equatxons can be obtainéd in terms of those of the othet I'DWS ie. 1f we can solve
| ) CI—BC +B,C} + CeBCh L. T

“C2'=BLG;_ +~B2€2'+""+B,§CE‘ o e
(69)

=B1C,1,+B,2C,;:’+ A + BrC:

with r € j — 1. The solution of (69) is possible only if the number of coefﬁments T, 1s greater or
equal to the number of equations n,, ie.

rEn, . A
or “

..jzi‘ﬂg +:1’|‘.m.>n),

which is the singularity condition for the solution of. (67).
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