
D1.1 Solvers “stub” implementation of the
capabilities to be delivered

Document information table

Contract number: 800898
Project acronym: ExaQUte
Project Coordinator: CIMNE
Document Responsible Partner: CIMNE
Deliverable Type: Report, Other
Dissemination Level: CO
Related WP & Task: WP 1 Task 1.1
Status: Final version

Deliverable 1.1

Authoring

Prepared by: Riccardo Rossi
Authors Partner Modified Page/Sections Version Comments
Riccardo Rossi CIMNE V0 Creation of the docu-

ment
Riccardo Rossi CIMNE Pages 1-8 V1 Added main body
Inigo Lopez TUM Pages 1-8 V2 Added some correc-

tions

Change Log

Versions Modified Page/Sections Comments
V0 Creation of the document
V1 Added main body
V2 Added some corrections

Approval

Aproved by:
Name Partner Date OK

Task leader Riccardo Rossi CIMNE 30.7.18 OK
WP leader Riccardo Rossi CIMNE 30.7.18 OK
Coordinator Riccardo Rossi CIMNE 30.7.18 OK

Page 2 of 9

Deliverable 1.1

Executive summary

The current deliverable describes the initial API available for the solvers. The API is
intended to be based on the Kratos Multiphysics fraemework and will evolve during the
project. The current deliverable describes the essential features of the interface and pro-
vides an initial working implementation to be used as a basis for the future developements.

The initial implementation described here is currently operative on the master branch
of Kratos. As of the end of July 2018 (moment of handing in of current deliverable)
the interface is operative and is being used “in production”. Nevertheless, it still does
not fully support the model serialization capabilities that are needed for pyCompSS and
HyperLoom.

The interface is documented in the project wiki page [wiki]. The same documentation
is also presented in the current deliverable.

Page 3 of 9

https://github.com/KratosMultiphysics/Kratos/wiki/Common-Python-Interface-of-Applications-for-Users

Deliverable 1.1

Table of contents

1 AnalysisStage 4
1.1 Introduction . 4
1.2 AnalysisStage . 4

1.2.1 AnalysisStage: Overview . 4
1.2.2 AnalysisStage: Responsibilities and provided Functionalities 5
1.2.3 AnalysisStage: Usage . 5

2 PythonSolver 7
2.1 PythonSolver: Overview . 7
2.2 PythonSolver: Responsibilities and provided Functionalities 7
2.3 PythonSolver: Usage . 8
2.4 Outlook (Kratos-Project, Multi-Stage Simulation) 8

3 Kratos “Model” Object 9

4 Kratos “Parameters” Object 9

1 AnalysisStage

1.1 Introduction

Solving a problem with Kratos is divided into two Python-objects : The AnalysisStage
and the PythonSolver.

The “PythonSolver” is responsible for everything related to the physics of the problem
(e.g. how to setup the system of equations), whereas the “AnalysisStage” is related to
everything that is not related to the physics (e.g. when and what output to write).

This means that coupling of physics is done on solver level. A coupled solver would
contain the solvers of the involved physics as well as for example the coupling logic,
the data exchange, etc. The coupling of things not related to physics is done in the
“AnalysisStage”, this includes for example the combined output.

The “PythonSolver” is design to act as a member of the “AnalysisStage”, therefore the
“AnalysisStage” can be seen as ”outer” layer and the “PythonSolver” as ”inner” layer.

1.2 AnalysisStage

1.2.1 AnalysisStage: Overview

The baseclass of the “AnalysisStage” is located in the KratosCore ([KratosKore]). It
provides a set of functionalities needed to perform a simulation. Applications should
derive from this object to implement things specific to the application.

In coupled simulations everything that is not related to the physics of a problem is done
in the “AnalysisStage”. This can be for example a special user scripting or a combined
output.

These derived classes replace what was formerly done in “MainKratos.py”. This means
that also the user scripting should be in these classes. The idea is that instead of having
a custom “MainKratos.py”, the user derives a class from the “AnalysisStage” of the

Page 4 of 9

https://github.com/KratosMultiphysics/Kratos/blob/master/kratos/python_scripts/analysis_stage.py

Deliverable 1.1

application to be used. Only the functions that require modifications are being overridden,
the remaining implementation is used from the baseclass. In this way, updates to the
baseclass are automatically being used in the users custom “AnalysisStage”.

1.2.2 AnalysisStage: Responsibilities and provided Functionalities

The “AnalysisStage” handles everything not related to the physics of the problem. This
includes for instance:

• Managing and calling the “PythonSolver”

• Construction and handling of the Processes

• Managing the output (post-processing in GiD/h5, saving restart, ...)

The main public functions are listed together with a brief explanation in the following.
For a more detailed explanation it is referred to the docstrings of the respective functions.

• Run this function executes the entire simulation

• Initialize this function initializes the ‘AnalyisStage‘, i.e. it performs all the opera-
tions necessary before the solution loop

• RunSolutionLoop this function runs the solution loop

• Finalize this function finalizes the ‘AnalyisStage‘, i.e. it performs all the operations
necessary after the solution loop

The main protected functions that are supposed to be used in derived classes are:

• GetSolver : This function returns the “PythonSolver”. It also internally creates
the “PythonSolver”, if it does not exist yet

• GetListOfProcesses : This function returns the list of processes. It also inter-
nally creates it if it does not exist yet

• GetListOfOutputProcesses : This function returns the list of output processes.
It also internally creates it, if it does not exist yet

1.2.3 AnalysisStage: Usage

In order to use the “AnalysisStage” it has to be constructed with specific objects:

• ‘KratosMultiphysics.Model’: The model containing all the modelparts involved in a
simulation ([WIP](Model))

• ‘KratosMultiphysics.Parameters’: The settings for the simulation. The following
settings are required to be present:

– ‘problem data’ : general settings for the simulation

– ‘solver settings’ : settings for the “PythonSolver”

– ‘processes’ : regular processes, e.g. for the boundary conditions

Page 5 of 9

https://github.com/KratosMultiphysics/Kratos/pull/2137

Deliverable 1.1

– ‘output processes’ : processes that write the output

{
” problem data ” : {

” e c h o l e v e l ” : 0
” p a r a l l e l t y p e ” : ”OpenMP” # or ”MPI”
” s t a r t t i m e ” : 0 . 0 ,
” end time ” : 1 . 0

} ,
” s o l v e r s e t t i n g s ” : {
. . .
s e t t i n g s f o r the PythonSolver
. . .
} ,
” p r o c e s s e s ” : {

” my processes ” : [
l i s t o f Kratos Proce s s e s
] ,
” l i s t i n i t i a l p r o c e s s e s ” : [
l i s t o f Kratos Proce s s e s
] ,
” l i s t b o u n d a r y p r o c e s s e s ” : [
l i s t o f Kratos Proce s s e s
] ,
” l i s t c u s t o m p r o c e s s e s ” : [
l i s t o f Kratos Proce s s e s
]

} ,
” ou tpu t p roc e s s e s ” : {

” a l l o u t p u t p r o c e s s e s ” : [
l i s t o f Kratos Output Proce s s e s
]

}

Objects deriving from the “AnalysisStage” have to implement the ‘ CreateSolver’ func-
tion which creates and returns the specific “PythonSolver”

Note: If the order in which the processes-blocks are initialized matters (if e.g. some
processes would overwrite settings of other processes), then the function ‘ GetOrderOfPro-
cessesInitialization‘ (resp. ‘ GetOrderOfOutputProcessesInitialization‘) has to be overrid-
den in the derived class. This function returns a list with the order in which the processes
will be initialized.

As example we consider the settings above: We want the processes “list initial processes”
to be constructed first and “list custom processes” to be constructed second. The order
in which the other processes are initialized does not matter. In this case we have to over-
ride the ‘ GetOrderOfProcessesInitialization’ function to return ‘[“list initial processes”,
“list custom processes”]’. With this we achieve the desired behavior.

Page 6 of 9

Deliverable 1.1

2 PythonSolver

2.1 PythonSolver: Overview

The baseclass of the “PythonSolver” is located in the KratosCore ([KratosKore]). It pro-
vides a set of functionalities that are needed for solving a physical problem. Applications
should derive from this object to implement the application-specific tasks.

If physics are being coupled (e.g. for Fluid-Structure Interaction) then this should be
implemented on solver-level. The coupled solver used the solvers of the involved physics
and does also other tasks such as coupling logic or data exchange. E.g. an FSISolver
would have a fluid and a structural solver.

2.2 PythonSolver: Responsibilities and provided Functionali-
ties

The “PythonSolver” is responsible for everything related to the physics of a problem.
This includes for instance:

• Setting up and solving of the system of equations

• Importing and preparing the ModelPart

• Advancing in time

The main public functions are listed together with a brief explanation in the following.
For a more detailed explanation it is referred to the docstrings of the respective functions.

• AddVariables : this function adds the variables needed in the solution to the
ModelPart

• AddDofs : this function adds the dofs needed in the solution to the ModelPart

• ImportModelPart : this function imports the ModelPart used by the solver (e.g.
form an mdpa- or a restart-file)

• PrepareModelPart : this function prepares the ModelPart to be used by the
solver (e.g. create SubModelParts necessary for the solution)

• AdvanceInTime: this function advances the “PythonSolver” in time

• Initialize: this function initializes the “PythonSolver”

• Predict: this function predicts the new solution

• InitializeSolutionStep: this function prepares solving a solutionstep

• SolveSolutionStep: this function solves a solutionstep

• FinalizeSolutionStep: this function finalizes solving a solutionstep

• Finalize: this function finalizes the “PythonSolver”

Page 7 of 9

https://github.com/KratosMultiphysics/Kratos/blob/master/kratos/python_scripts/analysis_stage.py

Deliverable 1.1

2.3 PythonSolver: Usage

In order to use the “PythonSolver” it has to be constructed with specific objects:

• ‘KratosMultiphysics.Model’: The model to be used by the “PythonSolver”

• ‘KratosMultiphysics.Parameters’: The settings for the “PythonSolver”. They are
expecting that the following settings are present:

– ‘echo level’ : echo level for printing informations

– ‘model import settings’ : settings for importing the modelpart

{
” e c h o l e v e l ” : 0 ,
” mode l impor t s e t t i ng s ” : {

” input type ” : ”mdpa” # or ” r e s t ”
” input f i l ename ” : ” i n p u t f i l e n a m e ”

}
For importing the ModelPart it can also be necessary (depending on the details of the
solver) to pass the name of the ModelPart such that it can interact correctly with the
Model.

2.4 Outlook (Kratos-Project, Multi-Stage Simulation)

Note: This is a collection of ideas, to be done AFTER AnalysisStage and Solver are
implemented in a first version. Please note that the following is in a very early design
phase.

In the future the objects presented here can be used in a larger context, e.g. a Multi-
Stage Analysis. This means that e.g. a FormFinding Analysis can be performed with
doing a FSI-simulation afterwards. The above mentioned objects are already designed for
this, e.g. a ModelPart can be passed from outside to the AnalysisStage, this means that
it can be used in severals AnalysisStages.

The idea is that in the beginning all AnalysisStages are constructed (i.e. all necessary
Variables are added to the ModelPart), then the ModelPart is being read. This can be
done e.g. by a global ModelManager. For this to work, the ‘Model’ has to be enhanced,
therefore it should be done later.

This could look like this:

import KratosMult iphys ics

##cons t ruc t a l l the s t a g e s

Model = KratosMult iphys ic s . Model ()
l i s t o f a n a l y s i s s t a g e s = GenerateStages (Model ,

” ProjectParameters . j son ”)
#i n t e r n a l l y l oads the a p p l i c a t i o n s needed

f o r s tage in l i s t o f a n a l y s i s s t a g e s :
s tage . I n i t i a l i z e ()

Page 8 of 9

Deliverable 1.1

s tage . Run()
s tage . F i n a l i z e ()

3 Kratos “Model” Object

The “Model” is a new kratos entity that is designed as a container (and memory manager)
of all of the kratos “model parts”. It essentially includes all of the finite element data
needed to run a complex example.

An example of use of the model can be found [here].
A fundamental feature of the “Model” is to be serializeable. Since the model is one

of the input parameters of the stage, this constitutites a vital feature for the ExaQUte
application. It is planned to have the feature working by the end of september 2018.

4 Kratos “Parameters” Object

The “Parameters” object is in charge of passing the input parameters for the analsysis. It
can also be modified dynamically thus allowing to return simulation data. The syntax of
the parameters is based on the “json” format and the object allows serialization. The
Parameter object also has validation capabilities. The user interface is described [here].

Page 9 of 9

https://github.com/KratosMultiphysics/Kratos/blob/master/kratos/tests/test_model.py
https://github.com/KratosMultiphysics/Kratos/wiki/Python-Script-Tutorial:-Reading-ProjectParameters

	AnalysisStage
	Introduction
	AnalysisStage
	AnalysisStage: Overview
	AnalysisStage: Responsibilities and provided Functionalities
	AnalysisStage: Usage

	PythonSolver
	PythonSolver: Overview
	 PythonSolver: Responsibilities and provided Functionalities
	 PythonSolver: Usage
	 Outlook (Kratos-Project, Multi-Stage Simulation)

	Kratos ``Model'' Object
	Kratos ``Parameters'' Object

