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Abstract. A simple and yet physically motivated continuum-micromechanical model for crazing
is developed, focussing on cyclic loading. The model features fibril drawing and fibril creep
deformation, loose hanging fibrils upon unloading and the morphology change fibrils undergo
between craze initiation up to a fully developed craze.

The crazing model is implemented in a user material subroutine in the commercial finite ele-
ment programme ABAQUS. The performance is investigated on a mode I crack growth boundary
value problem under cyclic loading. Experimentally measured craze/crack opening profiles from
the literature are reasonably-well captured by the model. The results exhibit further interesting
model characteristics, such as a variation of the craze length in the course of a load cycle.

1 INTRODUCTION

Crazing, i.e. the localized formation and growth of narrow zones of fibrillated matter inter-
spersed with voids (schematically illustrated in Figure 1), is the key damage mechanism in glassy
thermoplastic polymers. Crazes are typically oriented normal to the direction of maximum ten-
sile stress and are in shape similar to cracks. Yet, contrary to cracks, crazes have a load carrying
capacity owing to a multitude of thin fibrils of stretched polymer material which bridge the craze
surfaces. The mechanical response of this fibrillated craze matter is hence of central interest in
the behaviour of crazes. From intense studies over the past decades – see e.g. the reviews in
[1, 2, 3] – a reasonable understanding of the involved macromolecular and continuum-mechanical
processes has emerged. For instance, it is nowadays well accepted that the formation and growth
of crazes is governed by two deformation mechanisms: firstly, drawing of new material into fibrils
at the craze/bulk interface, referred to as "active zone", and secondly, creep deformation of the
existing fibrils. The latter becomes particular important under cyclic loading.

The aim of the present work is a first step in establishing a physically motivated constitutive
model on the continuum-scale able to investigate the drawing/creep competition in the course of
crazing under cyclic loading. In a rather simplified fashion, e.g. neglecting the effect of cross-tie
fibrils [4], we consider the response of a single fibril as a "representative element" of the craze
matter, essentially under uniaxial tension. An ansatz based on the extension ratio is introduced
to incorporate the morphology change during craze cavitation, describing the transition from
"primitive fibrils" to "mature fibrils". Resorting to experimental findings from the literature,
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Figure 1: Schematic of craze ahead of crack tip.

a proper, yet simple model for the viscoelastic deformation of the fibrils is utilised, while fibril
drawing is described as a viscoplastic process. The bulk material form which material is drawn
into the fibril, is modelled linear elastic. To facilitate comprehensibility of the accounted phys-
ical features, the model is placed in a linear kinematic setting. This also allows to reduce the
parameter space defining the drawing/creep interplay to few dimensionless parameters.

The paper is organized as follows: In section 2, the physical motivation and the underlying
assumptions along with the constitutive equations are introduced. A detailed numerical study
of the model response based on dimensionless parameters and the boundary value problem of
mode I crack growth is subject of section 3. Finally, conclusions are discussed in section 4.

2 CRAZING MODEL FOR CYCLIC LOADING

2.1 Model motivation

We first provide an concise overview of the necessary physical features which we believe are
important to be accounted for in a continuum-micromechanical crazing model for cyclic loading.
This also motivates the model components introduced hereafter. As this work focuses on cyclic
loading, it is helpful to separate special considerations distinct to cyclic loading from the those
used in monotonic loading models. From continuum-mechanical modelling, so far focussing on
monotonic loading (e.g. [5, 6, 7, 8]), the following issues are known to be of importance:

• Idealisation of the complex microstructure of primary and cross-tie fibrils,
• craze initiation, growth and breakdown of fibrils,
• transition from bulk to fibril matter while pulling in matter from the active zone and
• homogenisation of the fibrils, void space and active zone (i.e. bulk material).

Under cyclic loading further traits need to be added: Craze thickening is a competition
between creep fibril deformation and fibril drawing, evoking the necessity for an adequate fibril
deformation model. Moreover, fibrils undergo a morphology change from craze initiation up
to fully developed, mature fibrils as indicated in Figure 1. In the context of cyclic loading, this
transition for a given fibril may occur over several load cycles and thus, the current fibril geometry
impacts the mechanical response of the interaction of drawing/creep deformation. Finally, the
microstructural response in case of unloading and the craze response in case of compression
needs to be specified. In the following, a model is presented accounting for all the discussed
components.
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2.2 Micromechanical model considerations

craze fibril
void space

macro stretch λ̄1

macro stress σ̄1

e1

e3e2

1

2
χ0(t)

ξ0(t)

1

2
χ0(t)

bulk materialh0

Prior to craze initiation

After craze initiation

direction of maximum principal
stress at craze initiation

bulk material

bulk material

Figure 2: Schematic of craze material.

The micromechanical craze element is schematically shown in Figure 2 and follows the work
of Boyce and co-workers [7, 8]. That is, (finite) elements with the constitutive law of the craze
material are referred to as craze elements. Prior to craze initiation the craze element consists
solely of bulk material with an initial thickness, the so-called primordial thickness h0. Upon
craze initiation, the craze element comprises fibril matter with the length ξ0 and bulk material
with the length χ0. As fibril drawing progresses, the fibril length ξ0 grows while the bulk length
χ0 shrinks. From conservation of mass, the thickness of the two phases are related by

χ0 +
ξ0
λc

= h0 , (1)

where λc denotes the fibril extension ratio, defined as ratio of bulk density ρb to craze density
ρc:

λc =
ρb
ρc

. (2)

The complex craze microstructure is idealised by neglecting cross-tie fibrils (cf. Figure 2).
That is, fibril deformation and the fibril stress σf is one dimensional. The force equilibrium
between bulk (with bulk stress σb) and fibril in the direction of maximum principal stress at
craze initiation (i.e. 1-direction in Figure 2)

σ̄1 = σb =
σf

λc
(3)

along with the linear kinematic relation

λ̄1 = (1 + εb)
χ0

h0
+ (1 + εf )

ξ0
h0

(4)

couple the mechanical behaviour of bulk and fibril to macro stretch λ̄1 and macro stress σ̄1.
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To account for different loading/unloading responses, the string-like fibrils are assumed to be
loose hanging when unloaded, i.e. the fibrils cannot bear compressive forces. This assumption
is motivated by the microstructure of the craze and is enforced by the constraint that the fibril
stress σf is non-negative:

σf ≥ 0 . (5)

Once the macro stretch λ̄1 is compressive, i.e. λ̄1 < 1, the response of the craze element is
governed by the bulk material.

Morphology change. The transition from craze initiation up to a fully developed craze
with mature fibrils comprises a morphology change from isolated voids to an interconnected void
space with isolated fibrils (Figure 1). An appropriate quantity to model such a transition on the
continuum scale is the extension ratio λc (cf. Equation 2). A continuous morphology transition
from craze initiation (i.e. λc = 1) to mature fibrils (i.e. λc = λ∗c) is modelled with an exponential
ansatz (see Figure 3)

λc = λ∗c + (1 − λ∗c) exp

(
− ξ0
αh0

)
, (6)

where αh0 defines the initial slope and ξ0 the current fibril length. The continuous transition
is in contrast to the literature (e.g. [8]), where mature fibrils are assumed to exist directly after
initiation, corresponding to a jump from λc = 1 to λc = λ∗c .

λc

ξ0
ξ0,max = λ∗c h0

λ∗c

1

mature fibrils

only bulk
material

Figure 3: Ansatz for morphology change in continuum model.

It is acknowledged that much research has been devoted to quantifying experimentally the
extension ratio and that it is generally neither constant along the thickness nor along the length
of the craze (e.g. [2]). Nonetheless, for simplicity, λc is modelled here to be constant along the
craze thickness.

Fibril model. To provide an overview of the fibril response and involved quantities, the
rheological model is illustrated in Figure 4. The individual components of the model are discussed
in the following.
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Figure 4: Fibril model.

2.3 Fibril deformation behaviour

Under cyclic loading, the interaction of fibril (creep) deformation and drawing of new material
into the fibrils plays a major role in the craze thickening process. This evokes the necessity for
a proper description of the fibril deformation behaviour, which is often assumed to be purely
elastic in studies (e.g. [5, 6, 7, 8]) focussing on monotonic loading.

The uniaxial thickening by sole straining of a polycarbonate craze, i.e. without drawing in
new material, was experimentally investigated by Kambour and Kopp [9]. The craze response
in the force-controlled loading/unloading experiments is shown by the black curves in Figure 5.
It exhibits a non-linear hysteresis in the first loading cyclic and a tendency to a nearly elastic
response upon reloading in the subsequent four cycles. After a long recovery between the 8th

and the 9th cycle, the large initial hysteresis is to a certain degree retrieved.
From a modelling point of view, we believe that the recovery of the hysteresis and the tendency

to an elastic response are the key feature which needs to be reflected by a constitutive model.
Especially the strain recovery is a strong indication of viscoelastic effects. Indeed, a simple linear
viscoelastic Poynting-Thomson model, defined as

σf = E2

(
εf − εv

)
ε̇v =

σf − E1ε
v

η1
, (7)

where E1 and E2 are the Young’s moduli of the springs and η1 is the fibril viscosity (cf. Figure 4),
is already capable to capture the aforementioned essential traits as shown by the yellow curves
in Figure 5. Note, the parameters are fitted based on a least-square optimisation.

The initial hysteresis for typical glassy polymers, i.e. the progressive hardening upon yielding
is not well-captured by the chosen model. However, in the context of cyclic loading, the initial
behaviour in the first cycle appears to be less important than the subsequent response, which is
reasonably well approximated.
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Figure 5: Experimentally measured cyclic stress-strain response of polycarbonate for 5 successive
loading cycles and additionally reloading after long recovery between 8th and 9th cycle [9] as well
as the response of the fitted linear viscoelastic Poynting-Thomson model (Equation 7).

2.4 Initiation, drawing and breakdown

Fibril drawing is modelled in a linear viscoplastic fashion

ξ̇0 =
h0
η2

< σb − σy > , (8)

where <> denotes the Macaulay bracket, η2 is the drawing viscosity, σb the bulk stress and σy the
"yield" stress, representing the resistance against drawing (cf Figure 4). This simple approach
is in contrast to the more established Eyring-type formulation (e.g. [5, 6, 7, 8]).

Equation 8 intrinsically comprises craze initiation, which originates in the direction of the
maximum principal stress. Although not yet included, the approach can easily be extended to
account for the well-known influence of hydrostatic stress at craze initiation. Fibril breakdown
occurs upon complete consumption of the primordial length h0, i.e. at

ξ0,max = λ∗c h0 . (9)

2.5 Bulk deformation behaviour

The response of the bulk material in the craze element (Figure 2) is modelled linear elastic:

σb =
Eb

1 + νb

(
εb +

νb
1 − 2νb

εbkk

)
, (10)

where Eb and νb are the Young’s modulus and Poisson’s ratio of the bulk material, respectively.
The macro stresses in transversal directions (i = 1, 2) are then obtained via

σ̄i =
χ0

h0

Eb

1 + νb

(
ε̄i +

νb
1 − 2νb

εbkk

)
, (11)

with
εbkk = εb + ε̄2 + ε̄3 . (12)

The above described crazing model is implemented as a user material subroutine in the com-
mercial finite element software ABAQUS [10]. Using a kinematically linear framework allows to
condensate the constitutive equations into one single non-linear equation, which is solved with
the Newton method.
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3 NUMERICAL SIMULATION OF MODE I CRACK GROWTH

3.1 Setup of boundary value problem

A 2D plane strain boundary value problem of mode I crack growth is investigated. A rectan-
gular plate with an edge crack of initial length a0 is subjected to a cyclic displacement loading
with the period T as shown in Figure 6. With solely the analysis of the craze material of inter-
est, the surrounding bulk material is modelled linear elastic and one layer of craze elements is
placed along the ligament. To alleviate mesh distortions at the initial crack tip, the notch tip
radius rt is introduced. Symmetry along the x-axis is exploited and the boundary value problem
is solved with the commercial finite element software ABAQUS [10] using 17740 CPE4R plane
strain elements and the craze material as user subroutine. The element-removal technique is
used to model the failure of the craze elements.

x
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craze elements
with initial
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rt = 5h0

y

x

2h = w

t

uy(t, T )

0
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Figure 6: (a) Mode I crack growth with (b) displacement controlled cyclic loading history and
(c) detail of the crack tip.

The performance of the model, in particular the contributions of fibril drawing and fibril
creep deformation, in the course of craze/crack propagation under cyclic loading is analysed in
the following parametric study by focussing on the characteristic times of the two mechanisms,
defined as τ2 = η2/E2 and τ1 = η1/E1, respectively (cf. rheological model in Figure 4). Along
with the period T of the imposed loading (cf. Figure 6), they can be cast into the two dimen-
sionless parameters τ2/T and τ1/T . Increasing τ1/T while maintaining τ2/T , enhances the fibril
viscosity, whereas vice versa, elevated values of τ2/T characterise a higher resistance to drawing.
The remaining parameters are also normalised and summarised in Table 1.

Table 1: Dimensionless parameters.

νb Eb/E2 E1/E2 σy/E2 λ∗c α

0.3 1 1 0.05 3 0.003
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3.2 Results

The craze/crack opening profile has been extensively studied in experiments, making it a
suitable quantity for comparison. The first row in Figure 7 shows the normalised crack opening
profile at peak load for two different drawing viscosities. The crack opening displacement (COD)
δ̄ measures the y-displacement, i.e. in craze thickness direction, at the craze element/bulk ma-
terial interface (cf. coordinate system in Figure 6). Each plot features three different loading
cycles to illustrate the evolution of the crack opening profile. In the second row in Figure 7,
the corresponding stress distribution along the ligament is depicted from which the crack tip
(defined as traction free) can be identified. The length scales are normalised with the primordial
thickness h0. Comparisons of the craze/crack opening profile with experimental measurements,
e.g. by Döll [11], yield a reasonable agreement.
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Figure 7: Normalised crack opening displacement (COD) and stress distribution along the liga-
ment at peak load for τ1/T = 1 and (a) τ2/T = 0.01 and (b) τ2/T = 0.1.

The variation of the craze length lc and the crack length a in the course of loading are shown
in Figure 8 for two different values of τ2/T . In Figure 8(a) the normalised loading programme is
also added to facilitate the visualisation.

The model exhibits an interesting characteristic concerning the non-continuous variation of
the craze length lc due to different rates of craze tip and crack tip advance during a load cycle.
The second cycle in Figure 8(a) is subdivided by vertical lines into three regions. In stage 1,
loading is increased while lc/h0 reduced to approximately 85, which is caused by an acceleration
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Figure 8: Normalised craze length (solid black curves) and crack length (dashed black curves)
for τ1/T = 1 and variation of drawing viscosity with (a) τ2/T = 0.01 and (b) τ2/T = 0.1.

of the crack growth (see dashed curve). Stage 2 features a rapid jump in lc (lc/h0 ≈ 117) and
occurs around the load maximum while stage 3 is characterised by a decay of lc (lc/h0 ≈ 100)
and a deceleration of the crack growth during unloading.
This interplay results from the inhomogeneous stress distribution at the crack and craze tip. The
stress is highest at the crack tip and decays rapidly towards the craze tip (cf. Figure 7). Hence,
fibril drawing commences at the crack tip in the course of a loading cycle. Vice versa, during
unloading, it stops first at the craze tip and continuous the longest at the crack tip. Therefore,
stage 1 in Figure 8(a) features pronounced fibril drawing at the crack tip, yielding the observed
crack advance. With the stress at the craze tip still below the "yield" stress σy, the craze length
lc eventually shrinks. However, in contrast to the crack tip, the rapidly decaying stress field
leads to a fairly homogeneous stress level in the vicinity of the craze tip. As consequence of the
load increase and the stress redistribution during crack propagation, the stress magnitude in that
vicinity is raised above σy, leading to the observed very rapid craze tip growth in stage 2. Once
the load is sufficiently reduced during unloading in stage 3, the stress redistribution alone is not
sufficient to maintain the necessary stress level enabling drawing at the craze tip and thus, fibril
drawing at the craze tip ceases and the crack eventually arrests.

The comparison of both plots in Figure 8 show that the amplitude fluctuation of lc as well as
the crack growth rate declines with increasing τ2/T (i.e. higher drawing viscosity). Also crack
initiation is delayed. Since the initiation criterion is unchanged, craze initiation occurs for all
parameters at the same time. Nonetheless, high drawing viscosities τ2/T (Figure 8(b)) hinder
fibril growth and thus give rise to a slower crack advance. Therefore, only small amounts of stress
redistribution within one cycle take place and the continuation and amount of drawing at the
crack and craze tip is significantly governed by the macro load level. Concluding, the amplitude
fluctuation of lc, as it is lower in Figure 8(a) than in Figure 8(b), appears to be more affected by
the stress redistribution during crack propagation than by the sole increase in loading.

Figure 9 shows the stress distribution at four loading stages for the same load cycle and for
three different values of τ2/T . The four loading stages are colour-coded (cf. legend in Figure 9)
and refer to equidistant intervals with stage 1 and stage 3 indicating 50 % of the peak load, but
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during ramping loading up and down, respectively. Stage 2 marks the peak load and stage 4 the
complete unloading.
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Figure 9: Normalised stress along ligament for different loading stages of the same loading cycle
and for the parameters τ1/T = 1 and (a) τ2/T = 10−2 , (b) τ2/T = 10−1 and (c) τ2/T = 1.

Figure 9(a) displays a very pronounced non-linear dependence of the peak stress magnitude
on the loading stage, originating from the increase of the craze element thickness. The width
of the load-free craze element (i.e. sum of fibril and bulk length) is influenced twofold: On the
one hand, the total craze width growths with drawing in bulk material due to the lower craze
density (cf. Equation 1) and on the other hand, fibrils are elongated due to the remaining viscous
deformation at reloading. A central role causing the non-linearity plays therefore the current
length of the fibrils. Thus, taking into account that the retardation of fibril drawing is directly
linked to elevated values of τ2/T , the non-linearity attenuates for Figure 9(c) with the craze
being not fully developed yet in the depicted loading cycle. The amount the stress distribution
changes between loading stage 1 and 3 is also an indication of the quantity of drawing during
that cycle. Similar stress profiles, as shown in Figure 9(c), are in contrast to a more distinct
stress decay at unloading due to enhanced fibril drawing, as illustrated in Figure 9(b).

Finally, the contributions of fibril drawing and fibril deformation to the craze opening displace-
ment are investigated, which is inspired by the experimental investigation by Könczöl et al. [12].
The craze opening displacement δ is defined as

δ = (1 + εb)χ0 + (1 + εf )ξ0 − h0 , (13)

which coincides with the above defined craze element/bulk material interface displacement δ̄ in
regions where the crack does not yet exist. The craze opening displacement δ can be separated
into the contributions due to drawing, i.e. displacement due to the change of craze thickness,

δ0 = ξ0 + χ0 − h0 , (14)

creep deformation of the fibril
δf = ξ0 ε

f , (15)

and bulk deformation
δb = χ0 ε

b . (16)
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Normalised by δc,0 = h0(λ
∗
c − 1), these contributions are presented for three different load cycles

at peak loading in Figure 10. The value τ2/T = 1 considered here corresponds to a high drawing
viscosity, leading to a rather late crack initiation in the 32nd cycle. The cycle prior to crack
initiation is shown in Figure 10(c). Note, δ0/δc,0 = 1 is equivalent with Equation 9, i.e. fibril
breakdown, and therefore, δ0/δc,0 provides a direct indication of the relative fibril length to
failure.
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Figure 10: Contributions to normalised craze opening displacement (CrazeOD) at peak load for
the parameters τ1/T = 1 and τ2/T = 1 at three different load cycles with cycle 31 being the
cycle prior to crack initiation.

As long as fibrils are short, the bulk deformation has the main contribution to the craze
opening displacement (cf. Figure 10(a)). It is interesting that "medium" sized fibrils revert this
trend already, as it is shown in Figure 10(b) where δ0/δc,0 = 1/3. This trend is expected to get
even more pronounced with increased fibril extension ratios λc.
A further interesting characteristic is the trend of the contributions between δ0 and δf . The
absolute increase between the depicted cycles is higher for the contribution due to fibril creep δf
than for drawing δ0. Still the ratio δf/δ0 monotonously decreases from δf/δ0 = 2.9 (Figure 10(a))
to δf/δ0 = 2.4 (Figure 10(b)) and eventually δf/δ0 = 1.6 (Figure 10(c)). It is not yet entirely
understood how these results comply with the measured contributions reported in [12].

4 CONCLUDING REMARKS

A physically motivated micromechanical crazing model for cyclic loading was introduced. The
constitutive equations were deliberately formulated in a kinematically linear setting to facilitate
comprehensibility of the incorporated physical features. In addition, the parameter space defining
the creep-drawing interaction is reduced to two main parameters, enabling an efficient model
analysis.

The performance of the crazing model is assessed on a mode I crack growth boundary value
problem, showing that the model is able to predict reasonably-well experimentally measured
craze/crack opening profiles. The model is also able to predict a non-constant craze length due
to different rates of craze tip and crack tip advance during a loading cycle.

An analysis of the craze opening contributions due to drawing and fibril creep deformation
indicated that the craze opening displacement is in the course of loading increasingly dominated
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by drawing, raising questions how this aligns with the findings by Könczöl et al. [12]. Additionally,
it revealed that the fibril deformation significantly exceeds the valid range of the small strain
assumption. This points towards the necessity of a model modification accounting for a non-
linear continuum mechanical setting, even though we expect the results to alter in a quantitative
and less in a qualitative manner. Concerning the model modification, it is also remarked that
the fibril model eventually needs to be extended to account for physically more plausible model
components, e.g. 8-chain backstress. Those aspects will be subject of further research.
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