
 

Investigation of the motion processes of 
wastewater in sewerage of high-rise buildings 
Valentina Pomogaeva 1,* Lyudmila Metechko2, Dmitry Prokofiev2, and Tamara Narezhnaya3 

1Voronezh State Technical University, Moscow Avenue, 14, Voronezh, 394026, Russia 
2Moscow Aviation Institute (National Research University), Volokolamskoe highway, 4, Moscow, 
125993, Russia; 
3Moscow State University of Civil Engineering, Yaroslavskoe sh. 26, Moscow, 129337, Russia 

Abstract. When designing, constructing and operating sewage pipelines in 
high-rise buildings, issues of failure-free operation of a network arise. 
Investigation of the processes of wastewater moving allows identifying 
problem areas during operation, assessing the possibility of obstructions and 
breakdowns of plumbing traps on the gravity drainage sections of the 
pipeline. The article performs the schemes of the water outflow from the 
floor sewer into the riser, including the places where the riser is bent, of air 
delivery to the working riser under the change of the direction of drain 
movement with the dropout line set-up, with the installation of an automatic 
anti-vacuum valve, with the installation of the ventilation pipeline. 
Investigations of the process of sewage waste flow in a sewage riser were 
carried out, in order to select the appropriate structure. The authors consider 
structure features of some sections of sewerage in high-rise buildings. The 
exhaustion value in the riser is determined from the rarefactions that occur 
below the compressed cross-section of the riser and the loss of the air flow 
pressure coming from the atmosphere into the riser during the deflooding of 
the liquid. Preventing the formation of obstructions and breakdowns of 
plumbing traps is an integral part of sewage networks.       

1 Introduction 
Engineering networks ensure normal life activity of people living and working in high-

rise buildings. Therefore, the networks should be reliable and safe. Water supply and sewage 
systems are the obligatory part of each building where people reside. The discharge of 
wastewaters into the sewage system depends on the water consumption regime. Preventing 
the formation of obstructions and breakdowns of plumbing traps is an integral part of sewage 
networks. The present work investigates the process of flow of sewage in a sewer pipe.  

The sewage riser consists of a working vertical part, an exhaust part and a horizontal 
pipeline transporting the waste liquid to a centralized sewerage network. The exhaust part of 
the sewer riser is designed for air inflow from the atmosphere, when the sewage fluid moves 
through the riser, for normal air exchange. At the minimal wastewater removal, the sewage 
gases from the sewerage network emerge from the exhaust to the atmosphere. At the 
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maximum wastewater removal through the exhaust part, air is taken from the atmosphere, for 
normal operation not only of the sewer riser, but also of the external drainage network. 

The flow of wastewater in a sewer riser is possible under different conditions: laminar, 
mixed or turbulent. In some parts, a water blockage can occur, covering the entire section of 
the pipe. In this case, a sharp pressure fluctuation arises in the riser, which can lead to a 
breakdown of the hydraulic shutter. The level of rarefaction will obviously depend on the 
speed of the falling wastewater. Since the velocity is a function that depends on the geometric 
length through which the volume of liquid passes during the certain time, for example, so 
when the liquid falls from a height of 50 m, the speed can be 4 m/s. This can lead to the 
occurrence of critical-value exhaustion, leading to a breakdown of the plumbing trap. As a 
result of analytical calculations for sewer risers not exceeding 41 m in diameter 100 mm, the 
throughput is 4.4-4.5 l/s, for the diameter 125 mm - 6-6.98 l/s, for the diameter 150 mm - 10 
l/s, and breakage of the plumbing trap is possible at a flow rate of 9 l/s for 100 mm and 20 l/s 
at 200 mm. 

2 Materials and Methods 
When moving in a vertical sewer pipe, the sewage liquid ejects a certain volume of air (Fig. 
1). The volume of air drawn into the riser first increases, then reaches a maximum value 
depending on the volume of water, then decreases. As a result, a water-air environment with 
a certain amount of sanitary waste is formed in the riser. The formation of different regimes 
of motion can be considered taking into account the volume gas content β and the gas 
saturation of the mixture α, which can be determined from the expressions:  
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where 0wu - adjusted liquid phase velocity; 0au - adjusted velocity of the gas phase; "
0Q - 

 liquid discharge; '
0Q - attracted airflow rate; ω - liquid surface area; i - the number of 

sections considered in a certain period of time. 

 
Fig. 1. Circuit of the flow of liquid from the floor sewer to the riser [1]. 

The differential equation for the equilibrium of forces acting in a flowing-down film has the 
following form: 

,0 wdX
d 

       
(1) 
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The differential equation for the equilibrium of forces acting in a flowing-down film has the 
following form: 
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where 
dX
dиw

w   is viscous shear, Pa; w - liquid specific density, N/m3; w - coefficient of 

dynamic viscosity of liquid, Pa.s; wи - local velocity of liquid, m/s. 
To obtain the expression describing the change in the velocity of particles in the plane of the 
living section of the liquid film, we integrate equation (1) under the boundary conditions 
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where w - boundary layer thickness, m. 

When wХ  , the velocity on the outer surface of the film reaches a maximum value 
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Taking into account equation (2), the average velocity will be: 
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The volume flow of liquid in the film flowing down the inner surface of the pipe is 
determined by the equation: 
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where D  is the diameter of the pipe, m. 
From equation (4), the thickness of the flowing fluid film is determined: 
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 From (3) and (5) the average velocity in the wetted section of the liquid film is: 
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The velocity of the gas layer at the outer boundary of the flowing liquid film in the 
velocity of its wetted section is not the same and is subjected to a complex dependence. At 
the interface between the liquid and the gas, the velocity of the fluid is equal to the velocity 
of the water. In the first approximation, the velocity of the gas can be assumed to change 
linearly; hence, the magnitude of the viscous shears is constant across the width of the layer. 
In this case, the equation of equilibrium of the forces acting in the gas layer has the form: 
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where а - coefficient of dynamic viscosity of air,  Pa.s; аи - local velocity in the gas layer, 
m/s; па.  - the distance along the normal line from the surface of the film in the cross section 
of the wetted section of the gas layer, m 

The local velocity in the gas layer is determined from equation: 

 
 ,/1 .max, aпаwа ии  where a - thickness of the gas layer, m.
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The average velocity of motion in the plane of the live section of the gas layer, under 
boundary conditions max,. 0 wапа ии   и 0.  аaпа и  equals: 

.
2

1 max,
.

0
,

w
паа

a
сра

и
dии

а

  




      
(8) 

Hence, the average velocity of motion in the plane of the wetted section of the gas layer is 
a function of the maximum fluid velocity. 

The volume flow of air entering the riser can be determined as follows: 
,,

'
cpaaaа uDQ         (9) 

where '
aD - The diameter of the gas layer along the upper surface of the liquid film. 

The thickness of the gas layer can be assumed according to the distance from the outer 
boundary of the liquid film, at which its velocity is maximum, that is: 
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where a - kinematic viscosity of air ,m2/s; 5- the Blasius coefficient. 
The surface of the liquid film of the wastewater carries the air. To determine its 

volumetric flow, equalities (3), (6), (8), (10) are used. Taking into account that the thickness 
of the liquid film is much smaller than the diameter of the tube, the volume flow of air can be 
assumed equaling to: 
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By formula (11), it is possible to determine theoretically the ejecting capacity of a liquid 
when local resistances are absent. 
 There are local in the sewage system. For example, when wastewater leaves the floor sewer, 
a local hydraulic resistance arises in the riser in the form of a water-air mass acting as some 
kind of a piston. Consequently, there is some air deficit below the section pressed by a 
"piston" (Fig. 1.). In this case, the formula obtained from the Bernoulli equation can be used 
to determine the air flow; 
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where   - discharge coefficient; a - area of the wetted section of air in the compressed 
section of the riser, m2; a  - specific gravity of air, kg/m3; р  - pressure difference (Pa); g – 
gravitational acceleration m/s2. 

To determine the pressure difference or the exhaustion in the sewage riser, equations (11), 
(12) are solved relatively to the pressure difference р :  
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where  - local resistance coefficient; - air velocity in the compressed section of the riser, 
m/s. 
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where   - local resistance coefficient; - air velocity in the compressed section of the riser, 
m/s. 

3 Results 
Therefore, by analyzing the expression (13), it is possible to determine the exhaustion 
volume in the riser and the effect of the main parameters of liquid and air motion. The 
exhaustion volume will increase with an increase in the flow rate of the waste liquid. As the 
volume of the liquid increases, its ejecting capacity increases, and the area of the wetted 
section of air in the compressed section of the riser will decrease. For example, if the area of 
the wetted section of the air is doubled, then by (13) the pressure drop is reduced by a factor 
of four. Accordingly, it is necessary to increase the cross-sectional area of air in the 
compressed cross-section of the riser when the condition of the fluid inlet into the riser, for 
example, the angle of attachment of the sub-assemblies or the reduction in their diameter, 
changes. If we consider the option of reducing the diameter of the venting part of the riser, 
for example, during freezing in the winter period, then the magnitude of the discharge in the 
riser will tend to infinity at the area of the live cross section of air in the compressed cross 
section of the riser tending to zero. In this case, increasing the diameter of the venting part of 
the riser in comparison with the diameter of its working part is ineffective, since the airflow 
depends on the working diameter of the riser.  

Analyzing expression (13), several conclusions can be made: 
1. The exhaustion (vacuum-gauge pressure) will reach a maximum value "at the end of 

the length of the initial section L. Further increase in the height of the riser does not affect the 
volume of the exhaustion [2]". 

2. The change in air parameters slightly affect the amount of exhaustions in the sewer 
riser and can be neglected in calculation, since the specific gravity of the air a and the 
kinematic viscosity a placed in the numerator change proportionally.  

3. As the roughness of the pipeline material increases, the length of the initial section 
decreases, and the volume of exhaustions arising in the riser decreases. 

The use of expression (13) in practical calculations is very difficult, since it is practically 
impossible to determine the exact values of the area of the wetted section of air а  in the 
compressed cross section of the riser, as well as and the flow coefficient  . 

Experiments conducted by A.Y. Dobromyslov [3] on sewerage systems of different 
diameters, heights, attachment angles, and the heights of the hydraulic seal, have shown the 
necessity of determining Δp. It was found that "the amount of ejection capacity increases 
only in the riser section equal to 90 diameters from the point of entry of liquid into it. With an 
increase in the working height of the riser ... the air flow rate does not change [2] ". As a 
result of experimental studies [1], a formula was obtained for determining the amount of 
exhaustions in the riser (14), which is used for practical calculations in the design of the 
sewage systems in Russia [6]: 
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where ∆р – volume of exhaustions in the riser, mm w.g.; wQ – design flow rate of 
wastewater, m3/s;   - angle of junction of the floor sewer to the riser, degr; D- design 
(internal) diameter of the riser, m; d - design (internal) diameter of the floor sewer, m; L - 
working height of the sewer riser. 
Y. Dobromyslov theoretically established and experimentally confirmed that "the air flow 
rate coming above its compressed section is affected not by the entire height of the riser, but 
only by the length of its initial section equal to 90D" [4]. Thus, formula (14) will be 
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considerably simplified when calculating the sewerage system of high-rise buildings, in 
which the height of the working riser is much larger than its diameter. For risers of big 
height, the multiplier LD /90 is not taken into account, so the formula takes the form of 
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Calculations in the design of sewage systems of buildings of various purposes, including 
high-rise ones are made using the formula (14). When calculating by this formula, the critical 
fluid flow rates Qw, cr are determined. When critical fluid flow rate exceeds, the plumbing trap 
can be detached. For example, with a 70 mm high plumbing trap, the critical flow rate is: 
- at D = 100mm, d = 100mm and  =450  Qw,cr = 7.32 l/s, and at  =900  Qw,cr = 4.2 l/s; 
- at D = 125mm, d = 100mm and  =450  Qw,cr = 12.5 l/s, and at  =900  Qw,cr = 4.3 l/s; 
- at D = 150mm, d = 100mm and  =450  Qw,cr = 19.3 l/s, and at  =900  Qw,cr = 11.34 l/s. 
If the height of the hydraulic shutter is 60 mm, the critical flow rate will be:  
- at D = 100mm, d = 100mm and  =450  Qw,cr = 6.1 l/s, and at  =900  Qw,cr = 3.54 l/s; 
- at D = 125mm, d = 100mm and  =450  Qw,cr = 10.4 l/s, and at  =900  Qw,cr = 6.12 l/s; 
- at D = 150mm, d = 100mm and  =450  Qw,cr = 16.1 l/s, and at  =900  Qw,cr = 9.45 l/s. 
If the height of the hydraulic shutter is 50 mm, the critical flow rate will be: 
- at D = 100mm, d = 100mm and  =450  Qw,cr = 4.9 l/s, and at  =900  Qw,cr = 2.8 l/s; 
- at D = 125mm, d = 100mm and  =450  Qw,cr = 8.32 l/s, and at  =900  Qw,cr = 4.9 l/s; 
- at D = 150mm, d = 100mm and  =450  Qw,cr = 12.88 l/s, and at  =900  Qw,cr = 7.56 l/s. 
From critical flow rates above, one can see that the higher the hydraulic shutter is, the greater 
the flow can pass the sewer riser and the system will operate without disruption. It has been 
experimentally established that the hydraulic shutter failure occurs when the air pressure in 
the riser becomes less than atmospheric pressure by an amount equal to or slightly higher 
than the height of the hydraulic shutter. The rarefaction in the riser arises from the 
discrepancy between the amount of the ejecting capacity of the liquid (ie, the ability of water 
moving down the riser to entrain air) and the value of the actual airflow entering the riser 
through its exhaust. 

4   Discussions 
Under conditions of modern construction, little attention is paid to the height of plumbing 
traps. This is particularly evident in the free planning of apartments, when the owners of the 
apartments have the opportunity to install sanitary equipment themselves. However, the 
minimum height of the hydraulic shutter of 50 mm will always be respected due to the 
design of the plumbing traps and the height of installation of sanitary devices. 

In modern design of high-rise buildings, rooms of uninhabited purpose are located on 
floors 1-3 and the location of sanitary equipment of those floors do not coincide with the 
placement of sanitary conveniences of residential floors. When the location of equipment 
and sewage compositions of different floors are strongly differ, it is advisable to use a 
separate sewage system, for example using automatic vacuum valves to supply air to the 
lower part of the sewerage of a high-rise building. Connecting the venting part of the riser to 
the working riser or to a separately venting riser creates additional costs. One of the options 
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- at D = 125mm, d = 100mm and  =450  Qw,cr = 10.4 l/s, and at  =900  Qw,cr = 6.12 l/s; 
- at D = 150mm, d = 100mm and  =450  Qw,cr = 16.1 l/s, and at  =900  Qw,cr = 9.45 l/s. 
If the height of the hydraulic shutter is 50 mm, the critical flow rate will be: 
- at D = 100mm, d = 100mm and  =450  Qw,cr = 4.9 l/s, and at  =900  Qw,cr = 2.8 l/s; 
- at D = 125mm, d = 100mm and  =450  Qw,cr = 8.32 l/s, and at  =900  Qw,cr = 4.9 l/s; 
- at D = 150mm, d = 100mm and  =450  Qw,cr = 12.88 l/s, and at  =900  Qw,cr = 7.56 l/s. 
From critical flow rates above, one can see that the higher the hydraulic shutter is, the greater 
the flow can pass the sewer riser and the system will operate without disruption. It has been 
experimentally established that the hydraulic shutter failure occurs when the air pressure in 
the riser becomes less than atmospheric pressure by an amount equal to or slightly higher 
than the height of the hydraulic shutter. The rarefaction in the riser arises from the 
discrepancy between the amount of the ejecting capacity of the liquid (ie, the ability of water 
moving down the riser to entrain air) and the value of the actual airflow entering the riser 
through its exhaust. 

4   Discussions 
Under conditions of modern construction, little attention is paid to the height of plumbing 
traps. This is particularly evident in the free planning of apartments, when the owners of the 
apartments have the opportunity to install sanitary equipment themselves. However, the 
minimum height of the hydraulic shutter of 50 mm will always be respected due to the 
design of the plumbing traps and the height of installation of sanitary devices. 

In modern design of high-rise buildings, rooms of uninhabited purpose are located on 
floors 1-3 and the location of sanitary equipment of those floors do not coincide with the 
placement of sanitary conveniences of residential floors. When the location of equipment 
and sewage compositions of different floors are strongly differ, it is advisable to use a 
separate sewage system, for example using automatic vacuum valves to supply air to the 
lower part of the sewerage of a high-rise building. Connecting the venting part of the riser to 
the working riser or to a separately venting riser creates additional costs. One of the options 

is to unite the sewer risers from the residential part of the building and other premises, with 
the arrangement of indentations or overruns. In this case, it is necessary to ensure the same 
air pressure in the riser sections as it moves to the horizontal direction, particularly at two 
inflection points (point 1, 2, Fig. 2). Consider the motion of the wastewater when creating 
an offset. 

 
 

Fig. 2. Change of flow regimes of liquid and air [5]: 1, 2 – inflection points of the riser. 

Since the liquid moves down the walls of the pipe in a vertical riser under the gravity, it 
falls in the first zone and overlap of the cross-section of the pipe surface of the horizontal 
section occurs (zone I, Fig. 2). As a result, a local resistance is created from the liquid film, 
which prevents the flow of air. The drop in the air flow rate will lead to an increase in the 
pressure in the sewer stand at the bend point (poit 1, Fig. 2). There are options for the 
appearance of a pressure that is much greater than the atmospheric pressure, in this case, if a 
sanitary and technical device falls into such a region, under the influence of excessive 
pressure, it can spill out sewage and sewage gases from the hydraulic shutter into the bowl of 
the device. When the pressure in the riser is stabilized, the water will fill the hydraulic 
shutter. 

With further movement, the liquid enters the horizontal section, where the "separated" 
motion of the liquid and air occurs (zone II, Fig. 2). Sewage flows along the bottom of the 
pipe without obstructions, air moves above it. The steady-state fluid-air flow regime changes 
dramatically at the second inflection point (point 2, Fig. 2). Here the liquid fills the vertical 
section of the riser, a compressed section is formed, which prevents the movement of air. 
Thus, a part of the sewer riser located below the offset is cut off from normal atmospheric 
pressure in the following sections: 

 at the point where the liquid enters the riser from the floor tap (cross-section A-A, 
Fig. 1); 

 at the first point of inflection of the riser (point 1, zone I, Fig.2), there is a 
dramatic increase of the air pressure in the riser; 

 under the second inflection point of the riser (point 2, zone III, Fig.2), there is a 
dramatic increase in the air deficit. 
In this case, if the sanitary-technical device is located under the second inflection point, it 

is possible to break the plumbing trap of the device, since the lower part of the riser becomes 
unventilated at some point in time. This option is possible on the lower floors of the building. 
To prevent such phenomena, it is advisable to smoothly switch from a vertical section to a 
horizontal section of a sewer pipe using 45˚, 30˚ or 22.5o bridles. Another option to prevent 
the shut-off of the plumbing trap is the installation of a bypass line (piping in the form of a 
loop) connecting riser sections with increased and reduced pressure (Fig. 3a) or riser 
equipment located below the second inflection point by a vent valve (Fig.3b, 3c) [5] .  
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Fig. 3. Circuit of air supply to the working riser with a change in the flow direction 
a) with the device of a branch line (loop-like pipeline), 
b), c) with the installation of an automatic anti-vacuum valve 
d) with the installation of a ventilation pipeline (bypass); 
1-sewer riser; 2-floor sewer; 3 – offset; 4 - branch line; 5- overturn; 
6 - automatic anti-vacuum valve; 7- - vent line (bypass) 

 

In the premises of various purposes located on the 1-3 floors of high-rise buildings, a 
large number of devices can be installed on one horizontal arrangement of the sewage 
system. If the sanitary devices are removed far from the riser, it is advisable to install an anti-
vacuum valve (Fig.3c) or a vent line (Fig. 3d) to prevent self-siphoning of the plumbing 
traps. The anti-vacuum valve is installed near the far device counting from the working riser 
(pos. 6, Fig. 3c). The ventilation pipeline also connects the sanitary equipment with the 
ventilation riser, connected to the horizontal pipeline and the working riser (pos.7, Fig. 3d), 
which is far from the working riser. Particular attention is paid to the condition that "the 
product of the slope of the horizontal pipeline exceeds its length by the height of the 
hydraulic shutter of a specific sanitary and technical device "[5]. 

"As the number of fixtures increases, venting needs to do as well, evolving into a 
venting system, with branch, circuit, and loop at the appropriate locations" [6]. In the Russian 
construction practice, a two-pipe system is rarely used, in contrast to the foreign experience. 
This is due to the increase in the cost of such a system. The diameters and design of the 
system are calculated in such a way that they allow the maximum possible trouble-free 
operation. Theoretical studies also show that the ejected air is sufficient, with one sewer riser 
with an exhaust port. 

Thus, the article justifies the use of various design features of sewage systems in high-
rise buildings, taking into account trouble-free operation in terms of plumbing traps. 
However, one of the significant hazards in the sewage system is the possibility of 
obstructions. As a result, the first floors can be flooded, since the design flow rate of effluents 
can reach 4-6 l/s. To prevent the flow of wastewater out of sanitary facilities, the water 
supply of a certain zone is turned off. 

The presence of audit and cleaning device is a prerequisite for trouble-free operation of 
sewer risers. However, the authors assume that one of the main aspects is a smooth 
connection of a vertical riser to a horizontal section and the reduction in a number of offsets. 

5 Conclusion 
The reliability of the sewage system of high-rise buildings depends on the stability against 
the failure of plumbing traps and on prevention of obstructions in the gravity drainage 
sections of the pipeline. 
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can reach 4-6 l/s. To prevent the flow of wastewater out of sanitary facilities, the water 
supply of a certain zone is turned off. 

The presence of audit and cleaning device is a prerequisite for trouble-free operation of 
sewer risers. However, the authors assume that one of the main aspects is a smooth 
connection of a vertical riser to a horizontal section and the reduction in a number of offsets. 

5 Conclusion 
The reliability of the sewage system of high-rise buildings depends on the stability against 
the failure of plumbing traps and on prevention of obstructions in the gravity drainage 
sections of the pipeline. 

The plumbing trap failure occurs when the amount of exhaustions arising during the 
movement of the wastewater in the riser is greater than the height of the plumbing trap. 
Verification calculations are performed using formula (14).  

The amount of exhaustions in the riser is made up of the exhaustions that occur below 
the compressed cross-section of the riser and the loss of the pressure of the airflow coming 
from the atmosphere into the riser when the fluid flows downward. 

For trouble-free operation of sewerage in high-rise buildings, the risers should be 
vertical without offsets. 

In some cases, the two-pipe system of sewerage is not as effective as the one-pipe 
system, but it is considerably inferior in simplicity and cost. In each particular case, the two-
pipe system of sewerage of a high-rise building should be justified by calculation.  
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