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Abstract. High-fidelity scale-resolving simulations of turbulent flows can be prohibitively expensive,
especially at high Reynolds numbers. Therefore, multifidelity models (MFM) can be highly relevant for
constructing predictive models for flow quantities of interest (QoIs), uncertainty quantification, and op-
timization. For numerical simulation of turbulence, there is a hierarchy of methodologies. On the other
hand, there are calibration parameters in each of these methods which control the predictive accuracy of
the resulting outputs. Compatible with these, the hierarchical MFM strategy which allows for simultane-
ous calibration of the model parameters as developed by Goh et al. [7] within a Bayesian framework is
considered in the present study. The multifidelity model is applied to two cases related to wall-bounded
turbulent flows. The examples are the prediction of friction at different Reynolds numbers in turbulent
channel flow, and the prediction of aerodynamic coefficients for a range of angles of attack of a standard
airfoil. In both cases, based on a few high-fidelity datasets, the MFM leads to accurate predictions of the
QoIs as well as an estimation of uncertainty in the predictions.

1 INTRODUCTION

In science and engineering, different computational models can be derived to make realizations of the
quantities of interest (QoIs) of a process or an event happening in reality. The high-fidelity (HF) models
can result in highly accurate realizations, but their computational cost can also be very high. In contrast,
different low-fidelity (LF) models with lower computational cost can be developed for the same process
which, however, lead to lower accuracy QoIs and partial physics. On the other hand, in different applica-
tions arising in uncertainty quantification (UQ) and optimization, numerous realizations of the QoIs are
required associated to the samples taken from the space of inputs/parameters in order to make reliable
estimations. In this regard, multifidelity models (MFM) can be constructed by combining realizations
of the HF and LF models such that a balance between the overall computational cost and predictive ac-
curacy is achieved. In the recent years, different types of MFMs have been applied to a wide range of
problems, see e.g. the review [20]. The use of the MFMs in studies of turbulent flows can be greatly
advantageous, considering the wide range of engineering applications relying on these flows and also the
high cost generally involved in the HF computations and experiments of the turbulent flows. There is
a distinguishable hierarchy in the fidelity of the computational models utilized for simulation of turbu-
lence, see e.g. Ref. [24]. Let us consider the wall-bounded turbulent flows where a turbulent boundary
layer forms at the wall boundaries. Direct numerical simulation (DNS) can provide the highest-fidelity
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results for a given turbulent flow, however it can become prohibitively expensive at high Reynolds num-
bers which are relevant to practical applications. The computational cost can be reduced by applying
large eddy simulation (LES) which aims at directly resolving the scales larger than a defined size and
modeling the unresolved effects. At the lowest cost and fidelity, Reynolds-averaged numerical simula-
tions (RANS) of the Navier-Stokes equations can be performed which skip directly resolving any flow
fluctuations. Between RANS and wall-resolving LES, other approaches such as hybrid RANS-LES and
wall-modelled LES can be considered, see [24, 15]. Despite the hierarchy, there is a challenge involved
in different approaches for numerical modeling of turbulence: the realizations of all fidelities are, in
general, sensitive to various modeling and numerical parameters. However, the numerical effects grad-
ually dominate the modeling parameters when shifting from RANS towards scale-resolving methods.
Hereafter, such controlling parameters are referred to as tuning or calibration parameters.

Combining training data from different turbulence-simulation approaches, MFMs are constructed over
the space of uncertain and design parameters/inputs. An appropriate approach to construct MFM for
problems involving the simulations of turbulent flows should systematically allow for simultaneous cal-
ibration of the tuning parameters on which the realizations of different fidelities depend. An appropriate
methodology which is employed in the present study is the hierarchical multifidelity predictive model
proposed by Goh et al. [7] in which the calibration parameters of each fidelity are estimated using the
data of the higher fidelity models. This model which is hereafter referred to as HC-MFM, takes into
account the observation uncertainties and can be seen as an extension of the model by Higdon et al. [9]
which was employed to fuse experimental (field) and simulation data. A fundamental component of
these MFMs is the Bayesian calibration of the computer models as described in the landmark paper by
Kennedy and O’Hagan [14]. At each level of the MFM, the Gaussian process regression (GPR) [21] is
employed to construct surrogates or approximate expressions for the computer simulators. The applica-
tion of the HC-MFM in the field of computational fluid dynamics (CFD) and turbulent flows is novel, and
in this regard, the present paper aims at representing the application of the HC-MFM to two examples
relevant to wall-bounded turbulent flows. The promising results and flexibility of the model make the
HC-MFM a suitable choice for turbulent flows.

The HC-MFM is distinguished from the multifidelity models previously applied to the studies involving
turbulent flows, which can be classified into the following three main categories: 1. The model introduced
by Kennedy and O’Hagan [13] where the QoI at each fidelity is expressed as a first-order autoregressive
model of the QoI at an immediately lower fidelity. Co-Kriging can be considered in this category, see
e.g. Ref. [3] for an application in turbulence simulations. Another method which also relies on GPR
is the hierarchical Kriging where the predictions of LF model assist the predictions of the high-fidelity
model, see Han and Görtz [8]. 2. A class of MFM is developed based on non-intrusive polynomial chaos
expansion (PCE) and stochastic collocation methods, see [17, 18]. Recently, Voet et al. [27] compared
PCE- and Kriging-based MFMs using the data of RANS and DNS and concluded that the co-Kriging
models are more accurate. 3. Multi-level multifidelity Monte Carlo (MLMF-MC) models [2] which are
appropriate for the UQ forward problems. These models are developed by combining multilevel MC [5]
and control-variate MC [19] methods which are developed to improve the rate of convergence of the
stochastic moments of the QoIs estimated by the MC methods. Jofre et al. [12] applied MLMF-MC
models to an irradiated particle-laden turbulent flow. The HF was considered to be DNS and the two LF
models were based on a surrogate particle approach and lower resolutions for flow and particles.

The rest of the paper is organized as follow. In Section 2, a review is given to the basics of the HC-MFM

2



Saleh Rezaeiravesh, Ricardo Vinuesa and Philipp Schlatter

approach adopted in the present study. Section 3 is devoted to application of the MFM to an illustrative
example, turbulent channel flow, and polars for an airfoil. The summary of the paper along with the
conclusions and plans for future extensions is provided in Section 4.

2 HIERARCHICAL MULTIFIDELITY MODEL WITH CALIBRATION (HC-MFM)

In this section, the foundations of the hierarchical MFM with calibration (HC-MFM) developed by Goh et
al. [7], which is used in the present study, are reviewed.

2.1 Gaussian process regression

Let x ∈ X⊂ Rdx represent the controllable inputs and parameters, adopting the notation from Ref. [14].
The design and uncertain parameters appearing in optimization and UQ analyses, respectively, can also
be classified as x. A Gaussian process (GP) f̂ (·), see e.g. Ref. [21], can be employed to map the inputs x
to the outputs or QoIs of the computer codes (simulators) or field data y ⊂ R, see Ref. [21]. For a
finite set of samples {x1,x2, . . . ,xn} with corresponding observations {y1,y2, . . . ,yn}, the collection of
{ f̂ (x1), f̂ (x2), . . . , f̂ (xn)} will have a joint Gaussian (multivariate normal) distribution, [21]. The GP
f̂ (x) is written as:

f̂ (x)∼ GP
(
m(x),k(x,x′;βββ)

)
, (1)

which is fully described by its mean m(x) and covariance function k(x,x′) defined as:

m(x) = E[ f̂ (x)] , (2)

k(x,x′) = E[( f̂ (x)−m(x))( f̂ (x′)−m(x′))] . (3)

In general, the GPs can be used in case of having observation noise εεε in the observed data for y. Using
an additive error model, we have:

y(x) = f̂ (x)+ εεε , (4)

where the noises are assumed to be independent and have Gaussian distributions εεε ∼ N (0,σ2). In
the Gaussian process regression (GPR), given a set of training data D = {xi,yi}n

i=1 the posterior and
posterior predictive distributions of f̂ (·) and y, respectively, at test inputs x∗ ∈ X can be inferred in a
Bayesian framework, see e.g. Ref. [21]. To this end, first a prior distribution for f̂ (x), see Eq. (1), is
assumed through specifying the mean and covariance functions in Eqs. (2) and (3) which depend on a set
of unknown hyperparameters βββ. Then, the distribution of βββ is learned using the training data. As a main
advantage of the GPR, the predictions at test inputs will be accompanied by an estimate of uncertainty.

2.2 Model calibration

As pointed out in Section 1, the outputs of computational models (simulators) at a given x may depend on
different tuning or calibration parameters, t ∈ T⊂Rdt . Given a set of observations, these parameters can
be calibrated through conducting a UQ inverse problem which can be expressed in a Bayesian framework,
see Kennedy and O’Hagan [14]. The calibrated model can then be employed for prediction and also for
fusion of the field and simulation data, see Higdon et al. [9]. Consider n1 data samples {(xi,yi)}n1

i=1
observed for a physical process ζ(x). To statistically model the observations, a simulator f̂ (x,θθθ) can be
employed in which the θθθ is the true value of t which is unknown and to be estimated from the data. In
general, it is possible that even the calibrated simulator f̂ (x,θθθ) produces observations which are system-
atically deviated from the reality. To remove such bias, a model-discrepancy term δ̂(x) can be added to
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the simulator, [14, 9]. In many applications, particularly in CFD and turbulent flow simulations, the flow
solver can be run only a limited number of times. In any realization, the adopted values for the tuning pa-
rameters t are not necessarily optimal and hence potentially lead to outputs systematically different from
the QoIs in reality. For the described calibration problem, the Kennedy and O’Hagan model [14] reads as:{

yi = f̂ (xi,θθθ)+ δ̂(xi)+ εi , i = 1,2, · · · ,n1

yi+n1 = f̂ (xi, ti) , i = 1,2, · · · ,n2
, (5)

where, ·̂ specifies a GP and n2 is the number of simulated data. Note that the samples {xi}n2
i=1 are not

necessarily the same as {xi}n1
i=1 at which the observations are made. Given the n1 +n2 data, the posterior

distributions for the calibration parameters θθθ along with those of the hyperparameters in the GPs are
estimated. Further details are provided in the section below.

2.3 Hierarchical multifidelity model with calibration (HC-MFM)

Goh et al. [7] extended model (5) to any arbitrary number of fidelity levels which form a modeling
hierarchy for the same physical process. As a main feature of the resulting MFM, each fidelity can,
in general, have its own calibration parameters and also share some calibration parameters with other
models. The basics of the MFM comprising three fidelity levels are explained below to the extent needed
in the examples in Section 3. We assume that the fidelity of the models decreases from M1 to M3, and
in practice the number of training data decreases with the model fidelity. The HC-MFM reads as [7]:

yM1(xi) = f̂ (xi,θθθ3,θθθs)+ ĝ(xi,θθθ2,θθθs)+ δ̂(xi)+ ε1i , i = 1,2, · · · ,n1

yM2(xi+n1) = f̂ (xi,θθθ3, tsi)+ ĝ(xi, t2i , tsi)+ ε2i , i = 1,2, · · · ,n2

yM3(xi+n1+n2) = f̂ (xi, t3i , tsi)+ ε3i , i = 1,2, · · · ,n3

, (6)

where, subscript s denotes parameters shared between the models, and noises are assumed to have Gaus-
sian distributions with zero mean. At each fidelity level, the associated simulator is created by adding
a model discrepancy term to the simulator describing the immediately lower fidelity. Concatenating all
training data, a vector Y of size n1 +n2 +n3 is obtained, for which the covariance matrix can be written
in terms of the covariances of f̂ (·), ĝ(·), δ̂(·) and observational noise:

ΣΣΣ = ΣΣΣ f +

[
ΣΣΣg 0(n1+n2)×n3

0n3×(n1+n2) 0n3×n3

]
+

[
ΣΣΣδ 0n1×(n2+n3)

0(n2+n3)×n1 0(n2+n3)×(n2+n3)

]
+

 ΣΣΣε1 0n1×n2 0n1×n3

0n2×n1 ΣΣΣε2 0n2×n3

0n3×n1 0n3×n2 ΣΣΣε3

 . (7)

Appropriate kernel functions should be chosen to express the structure of the covariances. Using sam-
ples i and j of the inputs and parameters, associated element in the covariance matrix ΣΣΣ f will be:

ΣΣΣ fi j = K f (xi, t3i , tsi,x j, t3 j , ts j) =
dx

∏
l=1

k fx(xli ,xl j)

dt3

∏
l=1

k ft3 (t3li
, t3l j

)
dts

∏
l=1

k fts (tsli
, tsl j

) . (8)

Similarly, expressions for ΣΣΣgi j = kg(xi, t2i , tsi ,x j, t2 j , ts j) and ΣΣΣδi j = Kδ(xi,x j) appearing in Eq. (7) are
obtained. Note that different combinations of training data for the inputs and parameters are used in each
of the kernels. In all examples represented in Section 3, the exponentiated quadratic kernel function is
used for f̂ (·), ĝ(·), δ̂(·) over the space of ξ which represents any component of x and t:

k f (ξ,ξ
′) = λ

−2 exp(−(ξ−ξ
′)2/(2`2)) . (9)
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Therefore, hyperparameters λ and ` (length-scale) depend on f̂ (·), ĝ(·), δ̂(·) and also vary between
different components of x and t. The unknown parameters to estimate include calibration parameters in
different models, θθθ, and hyperparameters βββ appearing in the kernel functions. Following the Bayes rule,
the posterior distribution of these parameters reads as [7, 14, 9]:

π(θθθ,βββ|Y) ∝ π(Y|θθθ,βββ)π0(θθθ)π0(β) , (10)

where, π(Y|θθθ,βββ) specifies the likelihood function and π0(·) represents a prior distribution. In all GPs,
the prior distributions for λ and ` in Eq. (9) are half-Cauchy and Gamma, respectively. For the noise
standard-deviations, half-Cauchy priors and for the calibration parameters θθθ, Gaussian or uniform priors
are considered. Moreover, the prior of the mean function in all GPs are considered to be constant. As
a result, the predictions of the trained MFM when it is used to extrapolate in x (outside of the range
of training samples) should be used with caution. However, according to Goh et al. [7] more general
mean functions could, in general, be used in the MFM (6). Given the training data Y, a Markov Chain
Monte Carlo (MCMC) technique can be used to draw samples from the posterior distributions. In the
present study, the described HC-MFM (6) has been implemented in Python using PyMC3 [25] package
with NUTS MCMC sampling [10]. The trained MFM can be used for predicting the QoI y for any new
sample taken from the space of inputs x. The predicted QoIs are ideally close to yM1 . As detailed in
Ref. [7], the joint distribution of the training Y and new y∗ (associated to test sample x∗) conditioned
on θθθ,βββ will have a multivariate normal distribution with a covariance matrix of the same structure as ΣΣΣ

in Eq. (7). For any joint sample drawn from the posterior distribution of π(θθθ,βββ|Y), a sample prediction
for y∗ is made. Repeating this procedure sufficiently enough, estimations for the posterior of the predic-
tions y∗ can be achieved.

3 RESULTS AND DISCUSSION

Three examples are considered to which the HC-MFM described in the previous section is applied.
The first example in Section 3.1 is used to validate the implementation of the MFM, and the next two
examples are relevant to the wall-bounded turbulent flows.

3.1 An Illustrative Example

Consider the following analytical model taken from Forrester et al. [4] to generate high- and low-fidelity
samples of the QoI y for input x ∈ [0,1]:{

yH(x) = (θx−2)2 sin(2θx−4)
yL(x) = AyH(x)+B(x−0.5)−C

. (11)

In Ref. [4], θ is taken to be fixed and equal to 6, but here it is treated as an uncertain calibration parameter
that is to be estimated during the construction of the MFM. The HF training samples are taken at x =
{0,0.4,0.6,1}, so nH = 4 is fixed. To investigate the effect of nL, three sets of LF samples of size 10,
15, and 20 are considered which are generated by Latin hypercube sampling from the admissible space
[0,1]× [5.8,6.2] corresponding to x and t, respectively. Using the data, the HC-MFM (6) is constructed
for problem (11). The first row in Figure 1 shows the predicted y with the associated 95% confidence
interval (CI) along with the training data and reference true data generated with θ = 6. For all nL, the
predicted y is closer to HF data than the LF data, however, for nL = 15 and 20, the agreement between
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Figure 1: (Top) Predicted QoI y by HC-MFM (6) along with the training and true data, (Middle) predicted y
versus true observations at 50 test samples of x ∈ [0,1] with error bars representing 95% CI, (Bottom) posterior
probability density function (PDF) of θ based on 104 MCMC samples. The yH and yL training data are generated
from Eq. (11) using A = 1 and B =C = 10. The training data includes 4 HF samples combined with (left column)
10, (middle column) 15, and (right column) 20 LF samples. The true data is generated by Eq. (11) using θ = 6.

the mean of the predicted y and the true data is significantly improved. A better validation can be made
via the plots in the second row of Figure 1, where the predicted y and true values of yH at 50 uniformly-
spaced test samples for x ∈ [0,1] are plotted. Clearly, increasing the number of the LF samples while
keeping nH = 4 fixed, improves the predictions and reduces the uncertainty. In the third row of Figure 1,
the posterior densities of θ are presented. In all cases, a uniform (non-informative) prior distribution over
[5.8,6.2] was considered for θ. Only for nL = 20, the resulting posterior density of θ is high near the
true value 6. Therefore, it is confirmed that, as explained by Goh et al. [7] the main capability of the
HC-MFM (6) is in making accurate predictions for y and only if a sufficient number of training data is
available, accurate distributions for the calibration parameters are also obtained. This is shown here by
fixing nH and increasing nL, which is favourable in practice. It is also noteworthy that if θ was known
and hence treated as a fixed parameter, then even with nL = 10 very accurate predictions for y could be
already achieved (not shown here).

3.2 Turbulent Channel Flow

Turbulent channel flow is one of the most canonical wall-bounded turbulent flows. The flow is developed
between two parallel flat walls which are apart by a distance 2δ, and the flow is periodic in the streamwise
and spanwise directions. The channel flow is fully defined by the bulk Reynolds number Reb =Ubδ/ν,
where Ub and ν specify the streamwise bulk velocity and kinematic viscosity, respectively. Among dif-
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ferent QoIs, here we only focus on the time-averaged friction velocity 〈uτ〉, which is defined as
√
〈τw〉/ρ,

where τw and ρ are the magnitude of the wall-shear stress and fluid density, respectively. Three fidelity
levels are considered: DNS (M1), WRLES (M2), and a reduced-order algebraic model (M3), where the
fidelity reduces from the former to the latter. We use the DNS data of Refs. [11, 16, 29]. The WRLES
of channel flow have been performed at different Reynolds numbers without any explicit subgrid-scale
model using OpenFOAM [28] which is an open-source finite-volume flow solver. For the details of simu-
lations see Ref. [23], where it was shown that for a fixed resolution in the wall-normal direction, variation
of the grid resolutions in the wall-parallel direction could significantly impact the accuracy of the flow
QoIs. Therefore, in the context of the HC-MFM, the calibration parameters for WRLES are taken to
be ∆x+ and ∆z+, which are the cell spacings in the streamwise and spanwise directions, respectively,
expressed in wall-units (∆x+ = ∆xu◦τ/ν where u◦τ is the reference uτ from DNS). At the lowest fidelity,
the following reduced-order algebraic model is considered which is derived by averaging the streamwise
momentum equation for the channel flow in the periodic directions and time:

〈uτ〉2/U2
b =

1
Reb

d
dη

(
(1+ζ(η))

d〈u〉/Ub

dη

)
, (12)

where η is the distance from the wall normalized by the channel half-height δ, and ζ(η) is the normalized
eddy viscosity νt . Reynolds and Tiederman [22] suggested:

ζ(η) =
νt(η)

ν
=

1
2

[
1+

κ2Re2
τ

9
(
1− (η−1)2)2 (

1+2(η−1)2)2
(

1− exp(
−ηReτ

A+
)

)2
]1/2

− 1
2
, (13)

where Reτ = 〈uτ〉δ/ν is the friction-based Reynolds number, and κ and A+ are two standard modeling
parameters. At any Reb (and given values of κ and A+), Eq. (12) is integrated over η ∈ [0,1] and is
iteratively solved using Eq. (13) to estimate 〈uτ〉. Expressing the channel flow example in the terminology
of MFM (6), 〈uτ〉/Ub is the QoI y, x = Reb, t3 = (κ,A+), and t2 = (∆x+,∆z+). The training dataset
consists of the following databases. For DNS, 〈uτ〉 is taken from Refs. [11, 16, 29] at Reb = 5020,
6962, 10000, 20000, 125000 and 200400. In total, 16 WRLES 〈uτ〉 samples are obtained from a design
of experiment for ∆x+ ∼ U[13,50] and ∆z+ ∼ U[7,25] at Reb = 5020,6962,10000, and 20000. Here,
we do not consider the observational uncertainty in 〈uτ〉 which could, for instance, be due to finite
time-averaging in DNS and WRLES, but in general the HC-MFM could take such information into
account. The reduced-order model (12) which is computationally cheap is run at 10 values of Reb in
range [2000,200200]. At each Reb, 9 joint samples of (κ,A+) are generated assuming κ∼U[0.36,0.43]
and A+ ∼U[26.5,29].

Using these training data in HC-MFM (6) and running the MCMC samples for 5000 samples, after
an extra 2000 samples discarded due to burn-in, the model is constructed. According to Figure 2(a),
the predicted mean of 〈uτ〉/Ub follows the trend of the DNS data. This approximately holds even at
high Reynolds numbers, where there is a large systematic error in the algebraic model and no WRLES
data is available. As expected, in this range due to scarcity of the DNS data over a wide range of Reb
the uncertainty in the predictions is high. The plot in Figure 2(b) shows the joint MCMC samples of
the calibration parameters κ, A+, ∆x+, and ∆z+ along with the histogram of each parameter. The prior
distribution for κ and A+ were assumed to be uniform over ranges [0.36,0.43] and [26.5,29], respectively.
The priors for ∆x+ and ∆z+ were taken to be Gaussian with the mean set at the associated lowest training
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Figure 2: (a) Mean prediction of 〈uτ〉/Ub and associated 95% CI along with the training data and validation data
from DNS of Refs. [11, 16, 29], (b) posterior distribution and MCMC samples of parameters κ, A+, ∆x+, and ∆z+.

sample value. The resulting posterior densities of κ and A+ are not uniform and the samples of these two
parameters are correlated. In contrast, for ∆x+ and ∆z+ the posterior densities are still close to Gaussian
and no correlation between the samples is observed.

3.3 Polars For the NACA0015 Airfoil

In this section, the HC-MFM model (6) is applied to a set of data for lift and drag coefficients, CL and CD,
of a wing with a NACA0015 airfoil profile at Reynolds number 1.6× 106. The flow angle of attack
(AoA) is the design parameter x. The data comprises of the followings: wind-tunnel experiments by
Bertagnolio [1] (M1), detached-eddy simulations (DES) (M2) and two-dimensional RANS (M3) both by
Gilling et al. [6]. In their numerical study, Gilling et al. [6] investigated the sensitivity of the DES results
with respect to the resolved turbulence intensity (TI) of the fluctuations imposed at the inlet boundary.
The sensitivity was found to be particularly significant near the stall. Therefore, when constructing an
MFM, the calibration parameter t2 in fidelity M2 is taken to be the TI. The admissible range of x = AoA
is [0◦,20◦], over which the experimental and RANS data are available, see Refs. [1, 6]. The training HF
data are taken to be a subset of size 7 from the experimental data of Ref. [1]. The rest of the experimental
data are used to validate the predictions of the MFM model. For the purpose of examining the capability
of the MFM in a more challenging situation, the training HF samples are intuitively selected to exclude
the AoAs near the stall. The DES data of Gilling et al. [6] are available at 6 AoA ∈ [8◦,19◦] and 5
different values of TI. Employing these training data in the HC-MFM (6) and drawing 104 MCMC
samples after excluding extra 5000 initial samples for burn-in, the predictions for CL and CD shown
in Figure 3(a,c) are obtained. The expected value of the predictions has a trend similar to that of the
experimental validation data of Ref. [1] and is not diverted towards the physically-invalid RANS data
at AoA & 10◦. A more elaborate comparison is made through plotting the MFM predictions against the
validation data in Figure 3(b,d). For both CL and CD, the agreement between the predicted mean values
with validation data at lower AoAs (before stall) is excellent and for most of the higher AoAs, even near
and after the stall, is fairly good. Due to the scarcity of the HF training data, the error bars at the predicted
values can be relatively large, as more evident in the case of CD in Figure 3(d).

When training the HC-MFM (6), the TI in DES as the only calibration parameter in M2, as well as the
hyperparameters in all the GPs are estimated. To make the model capable of including the impact of the
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Figure 3: (a) Lift coefficient CL and (c) drag coefficient CD plotted against the angle of attack: the HC-
MFM (6) is trained by the experimental data of Ref. [1] (yellow circles), as well as the DES (squares) and RANS
(crosses) data by Gilling et al. [6]. The DES are performed in Ref. [6] with the resolved turbulence intensities
TI = 0%,0.1%,0.5%,1%, and 2% at the inlet. The validation data (red triangles) are also taken from the experi-
ments of Ref. [1]. The mean prediction by the HC-MFM (6) is represented by the solid line along with associated
95% confidence interval. (b) CL, (d) CD predictions by HC-MFM plotted against the validation data. The error
bars represent the 95% CI.

stall, we need to introduce the stall AoA as a new parameter xstall in the model discrepancy term δ̂(x) in
Eq. (6). Accordingly, the associated kernel function Σδ appearing in Eq. (3) is modified as:

Σδi j = Kδ1(xi,x j;xstall)+Kδ2(xi,x j;xstall) , (14)

where, kδ1(·, ·) and kδ2(·, ·) refer to the kernel functions before and after the stall, respectively. These ker-
nels are taken to be of the exponentiated quadratic form, see Eq. (9), with own specific hyperparameters.
Another hyperparameter is also introduced to smoothly merge the above two kernels at xstall. Figure 4
shows the posterior densities of different parameters appearing in the MFM constructed for CL and CD.
As expected, the distribution of the kernels’ hyperparameters varies between the two QoIs. But more im-
portantly, the posterior distributions of xstall and calibrated TI are also dependent on the QoI. This clearly
shows the suitability of the present class of MFMs in which calibration of the parameters of different
fidelities is performed as a part of constructing the MFM. The alternative strategy, which is common in
practice but seems to be inefficient (given the present observations), would be to calibrate the LF models
by HF data of a QoI and then run the calibrated LF model to make realizations of all QoIs.

As a general goal, MFM constructs a surrogate for the QoIs in the space of the design/controlled param-
eters in a way that the surrogate outputs are close to the HF data. In this regard, the MFMs facilitate
applying different types of sample-based UQ techniques and optimization, see e.g. [26]. In connection to

9
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Figure 4: Posterior PDFs of the calibration parameters and hyperparameters of the GPs appearing in the HC-
MFM (6) for (a) CL and (b) CD. Associated training data and predictions are shown in Figure 3. In the plots of `g,
the blue and red histograms are corresponding to AoA and TI, respectively.

the present example, consider a UQ forward problem to estimate the statistical moments of CL and CD due
to the uncertainty in the AoA. For instance, assume AoA∼U[15◦,17◦]. Then, the estimated expectation
and variance of CL and CD with associated 95% CI are: Ex[CL] = 1.0636± 0.0474, Vx[CL] = 3.1261×
10−3±3.3658×10−3, Ex[CD] = 0.09413±0.01958, and Vx[CD] = 4.3988×10−4±5.8921×10−4. Note
that without the HC-MFM model, and only based on the data of RANS or/and DES, such estimations
would be inaccurate.

4 SUMMARY AND CONCLUSIONS

The hierarchical multifidelity model with calibration (HC-MFM) developed by Goh et al. [7] is applied
to three examples including two relevant ones to turbulent flows. The HC-MFM can be constructed for
arbitrary number of fidelity levels and is well-suited to the simulation of turbulent flows since as a part
of the MFM construction the influential parameters at each fidelity can be calibrated. This is an impor-
tant feature noting that in all approaches for simulating turbulence, different numerical, modeling and
uncertain parameters can influence the QoIs. Given that Gaussian processes are used in HC-MFM, the
possibility of incorporating observational uncertainties at all fidelity levels is also provided. Based on
the examples, two main conclusions are drawn. First, for a fixed number of high-fidelity data the HC-
MFM prioritizes the prediction of QoIs so that they become as close as possible to the high-fidelity data,
while the posterior distributions of the calibrated parameters are found to be accurate only if sufficiently
many low-fidelity data are provided. A similar conclusion was drawn by Goh et al. [7] by systematically
increasing the amount of both high- and low-fidelity data. It is also concluded that for the data obtained
from the same set of realizations, the posterior distributions of the calibration parameters depend on the
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QoIs. In other words, the calibration parameters are more numerical than physical and hence, predictions
by HC-MFM can be more accurate than the case of a-priori calibrating the low-fidelity models by high-
fidelity data of one particular QoI. The present study may be extended in several directions. In addition
to scalar QoIs, spatio–temporal fields can be considered in the HC-MFM. The observation uncertainty
in the data, for instance due to numerics and sampling errors, can be taken into account, as well. The
use of the HC-MFM in a UQ forward problem or optimization based on a large-dimensional parame-
ter space will be considered in the future.
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