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Abstract. In industrial numerical simulation of the complex and/or large-scale fluid flow, the 
computation cost must be reduced. In order to develop numerical low-cost solver for 

incompressible fluid flow problems based on BEM an effective scheme of DRM is proposed. 
 

 

1 INTRODUCTION 

The contemporary problem of the large-scale computational fluid dynamics along with the 

proportion of complexity and scale up of the object size will be the cost for computation as 
time and energy. This comes from the finite resources for the computation, so we need to 
manage accuracy and cost of CFD. The ideas to solve this problem are for example, the 
increase of the power of CPU, acceleration of calculation by the software and algorithm, and 

the decrease of the computational points or grids by use of something like the Boundary 
Element Method (BEM) as the low-cost solver.  

In this work, to manage between accuracy and cost of computational incompressible 
viscous fluid flow, we selected BEM which decreases computational points. For this aim, so 
far, there was BEM for incompressible viscous fluid flow using Dual Reciprocity Method 
(DRM) [1] which convert domain integration to boundary integration by use of fundamental 

and particular solutions. To solve continuity and momentum equations, Florez and Power [2] 
used mass conservative interpolation. That method got a good agreement with the results of 
Ghia [3], but did not solve continuity and momentum equations simultaneously. To avoid 
complexity we implemented the DRM into the continuity and momentum simultaneous solver 

[4] directly. And we found the differential order consistency in DRM makes accuracy and 
pressure convergence better. 
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2 FORMULATION 

2.1 Governing equations  

The governing equations are given by Navier-Stokes (NS) equation and continuity condition 
or incompressible condition in the vector form: 

 

     (1) 
 

         (2) 
 

where u is velocity, p is pressure, μ is viscosity, ρ is density and f is the inhomogeneous function 
by the nonlinear convective term. With use of the constitutive equation (3), equation (1) 
becomes equation (4). In case of steady, we get equations (5) and its matrix form (6). 

  

       (3) 
 

      (4) 
 

     (5) 
 

   (6) 
 

2.2 Inverse formulation  

 
Equation (6) is expressed in the tensor form as equation (7) by using tensor form of 

differential operator Lij.  

 

,       (7) 
 

Integral form of equation (7) is equation (8). 
 

      (8) 
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By the integration by parts, we get equation (9). 
 

    
   (9) 

 

where  is the adjoint differential operator of Lij, ταis traction given by equation (10) 

andσαis pseud-traction given by equation (11). 
 

    (10) 

 

      (11) 
 

By use of pseud-traction tensor V*
ki given by equation (12) and pseud-traction tensor Σ*

ki 
given by equation (13),  

 

        (12) 
 

        (13) 

 
where pseud-traction tensor is given by equation (14), 
 

               (14) 

 
we get inverse formulation (15,16) or matrix formation (17).  

 

  

,    

  (15) 

 

  ,    

   (16) 
 

                          (17) 
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where v is velocity vector including pressure given by equation (18), t is traction vector 
given by equation (19) , K is matrix given by equation (20),  G is matrix given by equation 
(21) and f is matrix given by equation (22). 

 

         (18) 
 

         (19) 
 

        (20) 
 

        (21) 
 

       (22) 
 

To avoid singularity in calculating diagonal terms, we use regularized form (23), which 
can be got from the inverse formulation (15,16).  
 

  (23) 
 

2.3 Effective scheme for DRM  

 
In DRM,  inhomogeneous term expressed by equation (24), with use of the radial function f 

(25) as series of distance r between field point x and source point y.  The corresponding 
particular solutions are given by equation (26). 

 

         (24) 
 

   (25) 
 

    (26) 
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Velocities are also expressed with using radial functions as (27). In conventional DRM, 

matrix F1 was adopted in determining the unknowns. On the other hand we use matrix F1 for 

the unknowns α  but matrix F2 for the derivative of velocity as shown in equation (28). This 
effective scheme leads to consistency of order of radial function. Then we select the 
coefficients in equations (25,26) as (c0,c1,c2,c3) = (1,1,0,0) for F1 and (c01,c11,c21,c31) = 

(1,1,1,0) for F2.  
 

         (27) 
      

        (28) 
 

RMD formation becomes equation (29), where unknowns α  is given by equation (30), the 

matrix S for the inhomogeneous term in DRM is given by equation (31). By this way, we get 
solvable equation (32).  

 
 

      (29) 
 

     (30) 

 

    (31) 
 

                       (32) 
 

To avoid complexity, we calculate velocity and pressure simultaneously, so velocity vector v 
includes pressure but to avoid the singularity in integral expression of pressure, we calculate 
pressure only for on inner point pI as shown in equation (33). 

 

      (33) 
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3 NUMERICAL TESTS 

The numerical tests are demonstrated for the steady cavity flow with the length of 1m and 
driven wall speed 1m/s. The viscosity, density of the fluid and numbers of boundary Γ and inner 
Ω points are shown in Table 1.  The results are shown in Figure 1 to 4 along with Reynolds 
numbers, with comparing the case of F1=F2 and present case. Figure 5 is the distribution of 

velocity comparing with the results of Ghia [3] in Re=103 and Kakuda [5] in Re=0 and above 
2. Figure 6 is the minimum pressure in iteration as the index of convergence. These show that 
present DRM scheme with the consistency of order of radial function in differentiating velocity 
in DRM bring good accuracy and better convergence of pressure. 

 

Table 1: Computational condition for the numerical tests 

 
 

 
Figure 1: Velocity and pressure field for steady cavity flow (Re=1), left: F1=f2, right: present 
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Figure 2: Velocity and pressure field for steady cavity flow (Re=10), left: F1=f2, right: present 

 

 
Figure 3: Velocity and pressure field for steady cavity flow (Re=100), left: F1=f2, right: present 

 

 
Figure 4: Velocity and pressure field for steady cavity flow (Re=1000), left: F1=f2, right: present 
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Figure 5: Horizontal velocities at the vertical cross section, left: F1=f2, right: present 

 
Figure 6: max Pressure along iteration, left: F1=f2, right: present 

 

4 CONCLUSIONS 

- To manage between accuracy and cost of computational incompressible viscous fluid 
flow, we selected BEM which decreases computational points. 

- An effective scheme in DRM to treat nonlinear convective term was proposed and 
brought about accuracy and convergence of numerical solutions. 
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