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Abstract

We present a Lagrangian nodal integration method for the simulation of Newtonian and non-Newtonian free-surface fluid
flows. The proposed nodal Lagrangian method uses a finite element mesh to discretize the computational domain and to define
the (linear) shape functions for the unknown nodal variables, as in the standard Particle Finite Element Method (PFEM). In
this approach, however, the integrals are performed over nodal patches and not over elements, and strains/stresses are defined
at nodes and not at Gauss points. This allows to limit the drawbacks associated with the remeshing and leads to a more
accurate stress computation than in the classical elemental PFEM. Several numerical tests, in 2D and in 3D, are presented to
validate the proposed nodal PFEM. In all cases, the method has shown a very good agreement with analytical solutions and
with experimental and numerical results from the literature. A thorough comparison between nodal and elemental PFEMs is
also presented, focusing on crucial issues, such as solution accuracy, convergence, mass conservation and sensitivity to mesh
distortion.
c⃝ 2019 Elsevier B.V. All rights reserved.
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1. Introduction

In this work, we present, analyze and validate a nodal integration scheme in the framework of the Particle Finite
Element Method (PFEM) for the numerical simulation of free-surface fluids.

The PFEM has shown to be an efficient method for the simulation of large displacement problems, such as free-
surface fluid dynamics flows [1–3], geotechnical applications [4,5], fluid–structure interaction [6,7] and melting [8,9]
problems, among others.

In the standard PFEM [10], the governing equations are integrated over the mesh elements in the classical Finite
Element Method (FEM) fashion, and the mesh nodes are moved according to the solution of the governing equations,
in a purely Lagrangian way. This allows tracking accurately the evolving shape of the computational domains, also
in the case of large deformation processes. However, to maintain a good quality of the FEM mesh, it is required to
rebuild the discretization whenever it becomes excessively distorted.
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At each PFEM remeshing step, the elements of the mesh are desegregated and a new triangulation is built over
the cloud points formed by the nodes of the previous mesh. The loss of the elemental information makes the PFEM
more suitable for problems that do not require the storage of historical variables at the element level. A proof of
this is the reduced literature of PFEM formulations for solid mechanics, versus the extended one on fluid-type
applications (e.g. see [11] for a recent review of the PFEM literature).

In this scenario, nodal integration methods, computing and storing stress and material history variables directly at
the mesh nodes, are expected to be less affected by remeshing operations than an elemental approach and, globally,
to adapt more naturally to the PFEM solution scheme.

However, only very recently the use of nodal integration in a PFEM framework has been investigated and
successfully applied to geotechnical problems [12,13]. In these works, the authors proposed the so-called Smoothed
Particle Finite Element Method (SPFEM), inspired by the well-established Smoothed Finite Element Method
(SFEM) [14–17].

Besides the already referred works on nodal integration applied to PFEM, one of the first attempts to use nodal
integration combined with the FEM was in [18], where a node-based formulation was applied to the volumetric
component of the strain energy while treating the deviatoric component as in the standard elements. In [19], the same
idea has been extended by applying the nodal averaging process to the whole strain tensor, but only for small strain
elasticity, while [20] applied the nodal averaging approach also to the large strain regime. These works constitute the
first attempts to apply nodal integration within a FEM framework in solid dynamics. More recently, [21] proposed a
stabilized nodal integration scheme for linear tetrahedral elements to avoid spurious low-energy modes showing good
performances for plasticity, nearly incompressible materials and acute bending. [22] generalized the aforementioned
technique and showed its application to linear elastic small-deformation models. The same formulation has been
extended to plates in [23] and also to elastoplastic problems [24]. As shown in [22] there is a clear connection
between the stabilized conforming nodal integration and the integration technique used in various meshfree methods
(e.g. see [25,26]).

The use of nodal integration methods in large displacement processes is attractive not only because remapping of
the state variables (and its associated interpolation error) is avoided [27], but also because, node-based FEM models
are expected to be less sensitive to the (bad) quality of the discretization [28]. This feature is crucial in a PFEM
framework, as it allows reducing the number of remeshing events and their associated drawbacks: computational
cost, arbitrary volume variation, and equilibrium perturbation.

Furthermore, as stated in [29], the stresses of mixed FEM with node-based finite element spaces for strains/
stresses can be, at least in principle, second-order accurate. On the other hand, due to the larger number of supporting
elements for node-based smoothing domains, nodal integration methods lead inevitably to stiffness matrices with a
larger bandwidth versus the elemental counterparts, and thus to a higher computational cost for the linear system
solution [30].

All these features explain the interest in exploring and analyzing a nodal integration solution scheme in the
PFEM framework. Our aim in this work is to analyze the possibility of a nodal PFEM formulation in the context
of free-surface fluid dynamics problems. The results of this study, besides representing a novelty in the literature,
will also provide necessary information for the possible extension of this formulation to a unified nodal PFEM for
fluid and solid problems with phase change.

The proposed formulation is obtained by redefining the stabilized mixed velocity–pressure formulation used
in [31] with the nodal integration scheme proposed in the aforementioned references for solid mechanics (e.g. [19]).
Indeed, the integration is here performed over the nodal areas (or nodal volumes in 3D), and not over the contours
of the nodal patch. Note that the resulting integration method is the same as SFEM [30] and SPFEM [13], when
linear triangular or tetrahedral elements are employed. Following [31], the Finite Increment Calculus (FIC) is used
to stabilize the formulation, allowing us to make more accurate and focused comparisons between the nodal and
the elemental schemes.

The proposed nodal method will be tested with both Newtonian and non-Newtonian fluids, in 2D and 3D.
The numerical formulation will be validated against laboratory tests, analytical solutions, and other numerical
formulations.

The structure of the paper is the following. In Section 2, the governing equations of the problem are presented.
In Section 3, the weak form and the FEM approximation are introduced. In Section 4, the fully discretized form of
the problem is derived according to the proposed nodal integration scheme. A brief mention of the used stabilization
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is presented in Section 5. In Section 6, the linearized form of the stabilized problem is presented, while the solution
scheme is described for a general time step in Section 7. Section 8 presents the validation tests for the proposed
nodal PFEM formulation. Finally, in Section 9 the main outputs of this work are recalled.

2. Governing equations

In this work, we model the dynamics of incompressible Newtonian and non-Newtonian fluids with free-surface.
The governing equations are the balance of linear momentum and the mass conservation (Navier–Stokes equations).
As in the standard PFEM [10], an Updated Lagrangian formulation is here considered. In this framework, the linear
momentum equations read

ρv̇ −∇ · σ − b = 0 in Ω × (0, T ) (1)

where ρ is the fluid density, v̇ is the time variation of the velocity component, σ is the Cauchy stress tensor, b are
the body forces per unit of volume, Ω is the updated/deformed fluid domain, and (0, T ) the time interval.

To deal with the fluid incompressibility, the Cauchy stress tensor is decomposed into its deviatoric and volumetric
components as

σ = σ ′ + pI (2)

where σ ′ is the deviatoric part of the Cauchy stress tensor, p is the pressure (positive in a tensile state) and I is
the second order identity tensor. Furthermore, the deviatoric stress can be related to the deviatoric strain rate d ′
through:

σ ′ = 2µ̃d ′ (3)

where d ′ is defined as:

d ′ = d −
dv

3
I (4)

with

d(v) =
1
2

(
∇v + [∇v]T )

dv(v) = ∇ · v = trace (d) (5)

µ̃ is the real viscosity for Newtonian fluid, while for non-Newtonian fluids represents an apparent viscosity [32].
Considering a weakly compressible framework [33,34], the mass conservation equation can be written as:

1
κ

ṗ −∇ · v = 0 in Ω × (0, T ) (6)

where κ is the bulk modulus of the fluid. Note that the standard divergence-free form of the continuity equation
(∇ · v = 0) is recovered for the bulk modulus going to infinity.

The system of Eqs. (1)–(6) must be supplemented with appropriate boundary conditions on the Dirichlet (Γv)
and Neumann (Γt ) boundaries, which respectively read:

v − v̂ = 0 on Γv (7)

σ · n− t̂ = 0 on Γt (8)

where v̂ and t̂ are the prescribed velocities and tractions, respectively, and n is the outgoing normal vector to fluid
boundaries.

3. Weak form and FEM approximation

The weighted residual form of the momentum equations is obtained by integrating Eq. (1) over the computational
domain Ω , and by multiplying its terms by a vector test functions (w). After integrating by parts the term involving
the stress σ and introducing the Neumann boundary conditions (Eq. (8)), the weak form of momentum equations
reads:∫

Ω

ρw · v̇ dΩ +
∫
Ω

d(w) : σ dΩ −
∫
Ω

w · b dΩ −
∫
Γt

w · t̂ dΓ = 0 (9)
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Analogously, the weak form of the continuity equation is obtained by multiplying Eq. (6) by a scalar test function
(q) for the pressure:∫

Ω

1
κ

q ṗ dΩ −
∫
Ω

q ∇ · v dΩ = 0 (10)

As in the standard FEM, the domain Ω is discretized over a standard finite elements mesh. Three-noded triangles
and four-noded tetrahedra are employed for 2D and 3D problems, respectively. For simplicity, in the following, we
focus on the 2D case only. The extension to 3D is straightforward.

Following a standard Galerkin approach, the velocities, the pressure and the test functions are interpolated with
linear shape functions N:

v(x, t) = N(x)v̄(t) w(x, t) = N(x)w̄(t)
p(x, t) = N(x) p̄(t) q(x, t) = N(x)q̄(t)

(11)

where the upper symbol ¯(·) denotes a vector containing the nodal variables. Consequently, substituting Eqs. (11)
into Eq. (9), the following weak form of the linear momentum equations is obtained:∫

Ω

ρNT N dΩ ˙̄v +
∫
Ω

BT σ dΩ −
∫
Ω

NT b dΩ −
∫
Γt

NT t̂ dΓ = 0 (12)

where the operator B is defined such that [35]:

d(x, t) = B(x)v̄(t) (13)

The discrete form of the continuity equation is obtained analogously. Eq. (11) is introduced into Eq. (10) leading
to: ∫

Ω

1
κ

NT N dΩ ˙̄p−
∫
Ω

NT dv dΩ = 0 (14)

where the volumetric deformation rate dv is computed from the discrete divergence operator B̃ [31] as:

dv(x, t) = B̃(x)v̄(t) (15)

4. Nodal integration

Contrary to an elemental approach, the numerical integration of the weak form (Eqs. (12)–(14)) is not performed
over the elemental areas Ωα , but over nodal patches of the triangular elements, whose area Ω I is defined as

Ω I
=

neI∑
α=1

Ωα

3
(16)

where neI is the number of neighbor elements of node I (i.e. elements sharing node I ), such that∫
Ω

dΩ =
N N∑
I=1

Ω I
=

N E∑
α=1

Ωα (17)

where N N and N E are the total number of nodes and elements of the mesh, respectively.1 Fig. 1 shows a graphical
representation of the nodal patch of a generic node I .

The integral of a generic function f (x) over the whole domain Ω is computed nodally as follows:∫
Ω

f (x)dΩ =
N N∑
I=1

∫
Ω I

f (x)dΩ (18)

and the integrals over the nodal patches are approximated as [27]:
N N∑
I=1

∫
Ω I

f (x)dΩ ∼=
N N∑
I=1

f (x I )Ω I (19)

1 Superscripts with small Greek letters denote an element, whereas those with capital italic letters refer to a node.



A. Franci, M. Cremonesi, U. Perego et al. / Computer Methods in Applied Mechanics and Engineering 361 (2020) 112816 5

Fig. 1. Nodal area Ω I for node I .

Remark 1. In the definition of nodal area (nodal volume in 3D), it is required neither the definition of nodal patch
boundaries nor the computation of their normals. The unique requirement that must be satisfied is that the elemental
surface has to be equally subdivided by the shared nodes. In other words, it must be ensured that each triangular
element must contribute with a third of its area to the nodal patch of each one of its shared nodes. In this sense,
the definition of the nodal area at the boundaries of the computational domain does not imply any further algebraic
or geometrical complexities.

4.1. Fully discretized form

The integration procedure described in the previous section is here applied to Eqs. (12)–(14) to derive the fully
discretized form of the original problem. For the sake of clarity, the linear momentum and the continuity equations
are treated separately.

4.1.1. Linear momentum equations
Exploiting the partition of the domain in patches (see Eq. (18)), the linear momentum equations (Eq. (12)) are

rewritten as
N N∑
I=1

∫
Ω I

ρN I N I dΩ ˙̄v I
+

N N∑
I=1

∫
Ω I

[
B̄ I ]T

σ dΩ −
N N∑
I=1

∫
Ω I

N I b dΩ −
N N∑
I=1

∫
Γ I

t

N I t̂ dΓ = 0 (20)

where the sum should be interpreted as a standard FEM assembly operator. The nodal operator B̄ and the nodal
stresses σ̄ will be defined in Section 4.2.

Finally, using Eq. (19) and being the linear shape function equal to one at the nodes, the following nodal
integrated form of the linear momentum is obtained

N N∑
I=1

ρΩ I ˙̄v I

  
Fd

+

N N∑
I=1

[
B̄ I ]T

σ̄ IΩ I

  
Fσ

−

N N∑
I=1

bIΩ I
−

N N∑
I=1

α I
Γ

t̂ IΓ I

  
Fe

= 0 (21)

where α I
Γ

is equal to one if the node I belongs to a Neumann boundary and equal to zero otherwise, Γ I is the
nodal contour length (area, in 3D), and Fd , Fσ , and Fe are the dynamic, internal and external equivalent nodal
forces vector, respectively.

Remark 2. Note that the mass matrix in Eq. (21), multiplying nodal accelerations, is diagonal by construction.

To obtain the fully discretized form of the linear momentum equations, the nodal accelerations ˙̄v must be defined.
Following [31], a second order Newmark scheme is used. Hence, for a time step interval

[
nt; n+1t

]
of length ∆t ,
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acceleration is computed as:

n+1 ˙̄v =
2
∆t

(n+1v̄ − n v̄
)
−

n ˙̄v (22)

For convenience, Eq. (21) is rewritten in residual form as:

Rm := Fd
+ Fσ

− Fe
= 0 (23)

4.1.2. Continuity equation
Following the steps used to derive the fully discretized momentum balance, the fully discretized residual form

of the continuity equations (Eq. (14)) is also obtained. Using Eqs. (5), (18), Eq. (14) is rewritten as
N N∑
I=1

∫
Ω I

1
κ

N I N I dΩ ˙̄p I
−

N N∑
I=1

∫
Ω I

N I d̄ I
v dΩ = 0 (24)

where the nodal volumetric deformation rate d̄ I
v will be defined in Section 4.2 together with the other nodal

stress/strain measures.
Integrating numerically over the mesh nodes using Eq. (19) and being the shape functions equal to one at the

nodes, Eq. (24) simplifies to
N N∑
I=1

1
κ
Ω I ˙̄p I

  
F p

−

N N∑
I=1

d̄ I
vΩ

I

  
Fv

= 0 (25)

Following [31], the pressure time variation is computed for a time step interval
[

nt; n+1t
]

of duration ∆t as

n+1 ˙̄p =
1
∆t

(n+1 p̄ − n p̄
)

(26)

For convenience, Eq. (25) is rewritten in residual form as:

Rc := F p
− Fv

= 0 (27)

where F p and Fv have been defined in Eq. (25).

4.2. Nodal strains and stresses

In this nodal approach, the nodal stresses σ̄ are computed using Eqs. (2)–(5) as

σ̄ = 2µ

(
d̄ −

1
3

d̄v I
)
+ p̄ I (28)

where the nodal deformation rate tensor d̄ is computed for the node I as

d̄ I
= B̄ I v̄nn I

(29)

where vector v̄nnI
contains the velocity components of node I and those of its neighbor nodes (in 2D, its size is

2nn I , where nn I is the number of neighbors of node I plus one). The nodal deformation matrix B̄ is computed as

B̄ I
=

⎡⎢⎣N I
1,x 0 ... N I

I,x 0 ... N I
nn I ,x

0
0 N I

1,y ... 0 N I
I,y ... 0 N I

nn I ,y
N I

1,y N I
1,x ... N I

I,y N I
I,x ... N I

nn I ,y
N I

nn I ,x

⎤⎥⎦ (30)

Following what proposed in [19], the derivatives of the shape functions are computed as:

N I
J, j =

1
Ω I

neI∑
α=1

Nα
J, j

Ωα

3
(31)

Finally, the nodal volumetric deformation rate d̄v is computed for node I as

d̄ I
v = trace

(
d̄ I ) (32)
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Remark 3. Depending on the definition of the derivative of shape functions, different nodal integration schemes
can be obtained (see e.g. [27]). The definition in Eq. (31) is usually referred to as nodal averaging integration. It
is important to note that in the Smoothed Finite Element Method, for high order elements, the volume (or area in
2D) integration is replaced by node based integration over the patch boundaries. However, for three-node triangular
elements, since the gradient of displacement is constant in each element, the integration over the patch boundaries
can be simplified as node averaging (see e.g. [12,30]). Actually, the node averaging employed in this work can be
seen as a particular case of strain smoothing concept.

Remark 4. Eq. (28) shows that, in a nodal approach, the two terms contributing to the computation of the stresses
(pressure and strain rate) are defined at the node level. Consequently, the stress can be computed directly at the
nodes without any interpolation. On the contrary, in the standard elemental FEM the two terms of Eq. (28) are
defined at different positions: the pressure at nodes and the strain rate at Gauss points. To compute the stress at
nodes (or at the Gauss point) one interpolation is necessary. Avoiding the interpolation step, the accuracy of the
computed stress is higher and consequently, a faster convergence is expected.

5. Stabilization

As described in the previous sections, linear shape functions are used for the approximation of both pressure
and velocity fields. It is well known that this combination does not fulfill the so-called inf–sup condition [36], and,
although nodal integration can be beneficial for alleviating volumetric locking [30], this is not enough to guarantee
the solution stability of fully-incompressible problems.

In this work, we overcome this issue by stabilizing the formulation with the so-called Finite Increment
Calculus (FIC) [31] method, an assessed stabilization procedure in the framework of the PFEM formulation for
incompressible fluid dynamics. The stabilizing technique was originally derived and validated in [31], and later used
in several other PFEM formulations, e.g. in [9] for coupled-thermal problems, in [7] for fluid–structure interaction
applications, and in [37] for non-Newtonian fluid analysis. The FIC stabilization method has shown to possess
very good mass preservation properties in all its applications. Another good feature of the method is its reduced
intrusivity. Indeed, the FIC stabilization terms are only included in the continuity equation, while the momentum
equation remains unchanged. For these reasons, the FIC method has been employed also in this PFEM formulation
with nodal integration. As in the original work [31], the stabilization terms are here assembled elementally.

To avoid repetitions of previous publications, the FIC stabilization terms are not derived in this work but are
directly added to the continuity equation. The readers are invited to see the mentioned works for further details on
the FIC method.

The continuity equation (Eq. (27)) is modified by adding the stabilization term Fτ as follows

Rc = F p
− Fv

+ Fτ
= 0 (33)

being

Fτ
= τ

(
L p̄+ MΓ p̄+ fp

)
(34)

where matrices L and MΓ , vector fp, and the stabilization parameter τ are defined below following [31].
The stabilization parameter τ is computed element by element and at each non-linear iteration as

τ =

(
8µ

h2 +
2ρ

δ

)−1

(35)

where h and δ are characteristic distances in space and time that depend on the element size and the time step
increment, respectively [31].

Remark 5. For simplicity and due to their minor effect, the stabilization terms of pressure acceleration used in [31]
are not considered in this work.

Matrix L of Eq. (34) comes from the discretization of a Laplacian and is computed for each element e as

Le
=

∫
Ωe

[∇Ne]T
∇NedΩ (36)
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with

∇Ne
=

[
N e

1,x N e
2,x N e

3,x
N e

1,y N e
2,y N e

3,y

]
(37)

Furthermore, the components of MΓ in (34) are defined as[
M I J

Γ

]e
=

∫
Γ e

t

2
hn

N I N J dΓ (38)

where hn is the height of the boundary triangle (tetrahedron in 3D) with respect to its free-surface edge (surface in
3D).

Finally,[
f I

p

]e
=

∫
Γ e

t

N I
[
ρv̇n −

2
h n

(2µdn − t̂n)
]

dΓ −
∫
Ωe

[∇Ne]T bdΩ (39)

where v̇n , dn and t̂n are the outer normal projections of the nodal acceleration, deformation rate and the imposed
traction, respectively.

Remark 6. Each entry of Fτ in (34) is computed at each time step and at each non-linear iteration. The stabilization
terms, although computed elementally, do not require to be re-mapped in case of remeshing, as each of them is
computed directly from the updated results and over the new elemental configuration.

6. Linearized form

The linearized form of the momentum equations reads

(M + K )∆v̄ = −Rm (40)

where ∆v̄ are the increments of the nodal velocities, Rm is the fully discretized form of linear momentum balance
(Eq. (23)), each diagonal component of the mass matrix M is computed as

M I
i i =

ρ

2∆t
Ω I (41)

and the nodal stiffness matrix K is computed for each node as [19]

K I
= [B̄ I ]T C B̄ IΩ I (42)

where matrix B̄ I has been defined in Eq. (30), and the constitutive matrix C , in 2D, is

C =

⎡⎢⎣κ∆t + 4µ

3 κ∆t − 2µ

3 0

κ∆t − 2µ

3 κ∆t + 4µ

3 0
0 0 µ

⎤⎥⎦ (43)

Note that, due to the problem non-linearity, matrices M and K are assembled at the beginning of each of
non-linear iteration considering the updated configuration.

Remark 7. For weakly compressible materials, the use of the actual bulk modulus in matrix C may worsen the
conditioning of the algebraic linear system (40), which is crucial when an iterative linear solver is used. This issue
was solved in [34] by scaling the fluid bulk modulus of the matrix C with a reduction factor ad hoc designed to
reduce the condition number of the solving matrix. As detailed in [34], the reduction of the bulk modulus in C
has the unique effect of improving the conditioning of matrix K and it does not affect the accuracy of the scheme.
In particular, the mass conservation properties of the scheme are still preserved (note that the bulk modulus in the
continuity equation is not modified).

Remark 8. In a nodal formulation, the matrix bandwidth is larger than in an elemental approach. Consider for
example the patch of Fig. 1. In a nodal approach, due to the structure of the deformation matrix of node I (B I ,
Eq. (30)), the non-diagonal terms of the global stiffness K referring to nodes M and P are in general different
from zero, in contrast to an elemental approach. Being larger the matrix bandwidth of K , the computational time
required for the linear system solution also increases.
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On the other hand, the stabilized continuity equation (Eq. (33)) is computed as(
Mκ + L + MΓ

)
∆ p̄ = −Rc (44)

where L, MΓ and Rc have been defined previously, ∆ p̄ are the increments of the nodal pressures, and each nodal
component of matrix Mκ is computed as

M I
κ =

1
κ∆t

Ω I (45)

Note that in M I
κ the actual bulk modulus is used.

7. Nodal PFEM solution scheme

The problem is solved at each time step with a two-step algorithm. Specifically, the linear momentum equations
(Eq. (40)) and the stabilized continuity equation (Eq. (44)) are solved in the updated configuration to find the
increments of nodal velocities and nodal pressures, respectively. The linear momentum and continuity equations
are solved iteratively until the fulfillment of the respective convergence criteria of the non-linear iterative loop.
Note that, before the solution of the momentum equation, the nodal derivative of the shape functions (Eq. (31)) and
its nodal area (or the nodal volume in 3D) must be computed for each node of the mesh in the current configuration.

After the solution of the time step, if the mesh is too distorted, a new discretization is built in the standard
PFEM fashion [1,10,38]. Initially, the elements of the previous mesh are erased, and all the information is stored
at the node level. Based on the cloud of nodes, a new mesh is generated performing a Delaunay triangulation [39].
After that, the physical contours of the computational domain are identified using the Alpha Shape method [40].
In particular, all those elements that do not fulfill the following criterion are erased from the mesh (excessively
distorted or large).

R < αh (46)

where R is the circumradius of the element, α is a positive parameter (typically α ≃ 1.25) [11,38,41], and h is the
mean element size in the mesh.

Remark 9. A crucial advantage of the nodal integration in the PFEM framework is the possibility of a nodal
definition of history variables. Typically, these variables are defined at the integration points, which, in an elemental
approach, differ from the nodes. Consequently, in the classical elemental PFEM, every time the mesh is regenerated,
re-mapping operations from the Gauss points of the old mesh to the ones of the new mesh are necessary in order to
recover the historical information. This is not the case of nodal integration where all the quantities (and also history
variables) can be defined at mesh nodes avoiding expensive interpolations and also the typical error associated with
these operations [12,13].

For a generic time step
[

nt; n+1t
]

of duration ∆t , the solution scheme is summarized in the pseudo-code given
in Algorithm 1.

8. Numerical examples

In this section, several numerical tests are presented to validate the proposed nodal PFEM approach and to
analyze some crucial numerical issues of the method. The first two problems have a closed analytical solution and
are used to analyze the convergence behavior of the numerical formulation. The third and fourth tests are benchmark
problems for free-surface fluid dynamics solvers. First, a water sloshing problem is used to analyze the convergence
of the non-linear iterations (in the following, referred to as non-linear convergence) and the mass conservation
properties of the nodal PFEM versus the classical elemental PFEM. For this problem, also the 3D case is analyzed.
Then, a dam break test is solved for both a Newtonian and a non-Newtonian model. The accuracy of the solution
is assessed by comparison to laboratory tests and to other numerical results of the literature.
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Algorithm 1 Fluid solution scheme for a time step.

1: k ← 0, v̄0
←

n+1v̄

2: while
∥∆v̄k+1

∥

∥v̄0∥
and
∥ p̄k+1

− p̄k
∥

∥ p̄0∥
≤ tolerance2 do

3: ∀ node COMPUTENODALAREA() ▷ Eq. (16)
4: ∀ node COMPUTENODALSHAPEFUNCTIONDERIVATIVE() ▷ Eq. (31)
5: σ̄ k+1

← UPDATECAUCHYTENSOR(v̄k+1, p̄k+1) ▷ Eq. (28)
6: Rk+1

m ← UPDATEMOMENTUMRESIDUAL( ¯̇v
k+1

, σ̄ k+1) ▷ Eq. (23)
7: ∆∆∆v̄k+1

← SOLVELINEARMOMENTUM(Rk+1
m ) ▷ Eq. (40)

8: x̄k+1, v̄k+1, ¯̇v
k+1
← UPDATEKINEMATICS(∆∆∆v̄k+1)

9: Rk+1
c ← UPDATECONTINUITYRESIDUAL(v̄k+1) ▷ Eq. (33)

10: ∆∆∆ p̄k+1
← SOLVEMASSBALANCE(Rk+1

c ) ▷ Eq. (44)
11: p̄k+1

← UPDATEPRESSURES(∆ p̄k+1)
12: if Mesh distortion > tolerance then
13: DELAUNAYTRIANGULATION()
14: APPLYALPHASHAPE() ▷ Eq. (46)

8.1. Test with analytical solution

In this first test, we consider the two-dimensional Stokes problem with the analytical solution presented in [42].
The problem consists of determining velocity, pressure and stress fields for a Newtonian fluid (µ = 1, ρ = 1,
κ = 109 adimensional variables) occupying a square domain Ω = [0, 1] × [0, 1] and submitted to the following
body force per unit of volume b:

bx =(12− 24y)x4
+ (−24+ 48y)x3

+ (12− 48y + 72y2
− 48y3)x2

+ (−2+ 24y − 72y2
+ 48y3)x + 1− 4y + 12y2

− 8y3,

by =(8− 48y + 48y2)x3
+ (−12+ 72y − 72y2)x2

+ (4− 24y + 48y2
− 48y3

+ 24y4)x − 12y2
+ 24y3

− 12y4

(47)

Under this prescribed body force, considering no-slip conditions at each boundary of the computational domain,
the problem has the following exact stationary solution for the horizontal and vertical velocities, pressure and shear
stresses, respectively

vx = 4y3
− 6y2

+ x2(1− x)22y,

vy = 4x3
− 6x2

− y2(1− y)22x,

p = −(1− x)x,

τxy = 2(1− 6y + 6y2)(1− x)2x2
− 2(1− 6x + 6x2)(1− y)2 y2

(48)

The convergence analysis has been performed for five different meshes with mean size h of 0.2, 0.1, 0.05, 0.025
and 0.0125, leading to 48, 204, 880, 3596 and 14 586 3-noded triangular elements, and 37, 125 482, 1881, and
7465 nodes, respectively.

The following L-2 norm has been used as error measures

∥a − ah∥ =

(∫
Ω

(a − ah)
2 dΩ

)1/2

(49)

where a and ah are the analytical and numerical solution of the considered variable. For comparison purposes, the
same problem has been solved also with the PFEM with the elemental integration presented and validated in [31].

The stationary numerical solution (reached after a normalized time of around 0.1) is shown in Fig. 2. In the left
column, the numerical contours (horizontal and vertical velocities, pressure and shear stress) are plotted over the

2 Tolerance has been set equal to 10−4 in all the numerical tests in this work.
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Fig. 2. Test with analytical solution. Left column: numerical results over the whole domain. Right column: numerical and analytical results
(Eq. (48)) at a transversal line of the domain.
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Fig. 3. Test with analytical solution. Convergence graphs for nodal and elemental [31] formulations.

whole computational domain. In the graphs of the right column, the numerical solution is compared to the analytical
one (Eq. (48)) at a transversal line of the domain.

The graphs show a perfect overlapping between the numerical and analytical solutions. The convergence analysis
is shown in Fig. 3 where also the results obtained with the elemental formulation [31] are plotted.

The graphs show that the elemental and the nodal formulations have the same convergence rate (almost quadratic)
for the velocity and the pressure fields (Figs. 3a–3c). However, for the same mesh, the elemental formulation gives a
lower error with respect to the nodal one. On the other hand, the nodal formulation shows a much better convergence
rate and lower error for the shear stress versus the elemental approach (Fig. 3d). In this case, the convergence rate
is almost linear for the elemental integration, whereas is practically quadratic for the nodal one.

It is also interesting to analyze the results plotted in Fig. 4, where the vertical velocities at (x, y) = (0.75, 0.5)
obtained for different meshes are shown. The graph shows that the nodal formulation gives an upper bound solution,
contrary to the elemental integration scheme. In other words, in a nodal approach, the coarser is the mesh, the less
stiff (or viscous) is the solution. These results confirm the ones obtained in [43,44] in the context of non-linear
solid mechanics.

8.2. Circular Couette test

In this second test, we consider the steady circular Couette flow of a Newtonian fluid [45]. The inner cylinder
is rotating at a fixed angular velocity ω, while the outer one is kept fixed. No-slip conditions are considered for all
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Fig. 4. Test with analytical solution. Vertical velocity solution at (x, y) = (0.75, 0.5) for elemental and nodal formulations for different
meshes. The dashed line is the analytical solution obtained with Eq. (48).

Fig. 5. Circular Couette test. Initial geometry and mesh with mean size h = 0.02.

the solid boundaries, and the gravitational acceleration is zero. Assuming the two cylinders to be infinitely long,
the hoop velocity vθ and the shear stress τrθ are expected to be

vθ (r ) =
β2ωR
1− β2

(
R
r
−

r
R

)
τrθ (r ) =

2µβ2ωR2

1− β2

1
r

(50)

where r is the radial position with respect to the center of the cylinder, R the radius of the outer cylinder and β is
defined such that β R is the radius of the inner cylinder. The geometry of the problem together with an example of
the 3-noded triangular mesh used are depicted in Fig. 5.

In our analysis, a Newtonian fluid with viscosity µ = 102, density ρ = 103 and bulk modulus κ = 109, and the
geometrical parameters R = 0.5 and β = 0.4 are considered. As for the previous case, also in this problem the
stationary solution (Eq. (50)) is reached after a transient phase. The stationary solution (captured at a normalized
time of t = 1) is plotted in Fig. 6. The pictures of the left column shows the numerical solutions for vθ and τrθ ,
while in the graphs of the right column, the numerical and analytical (Eq. (50)) solutions at y = 0 are plotted.
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Fig. 6. Circular Couette test. Left column: numerical results obtained with the proposed method. Right column: numerical and analytical
(Eq. (50)) results at y = 0.

The results show a perfect match between the numerical and analytical solutions, confirming the accuracy of
the proposed nodal integration scheme. As for the previous test, also the convergence is analyzed (the error is
computed according to Eq. (49)). Five different meshes have been considered with the following mean mesh sizes:
0.005, 0.01, 0.02, 0.04 and 0.08. The number of nodes of each one of these meshes is 30 721, 7762, 1957, 494,
and 130, respectively. The convergence graphs for vθ and τrθ are plotted in Fig. 7.

As for the previous analytical test, the velocity field shows a quadratic convergence. The shear stress τrθ shows
again an almost quadratic convergence rate.

It is also interesting to analyze the effect of the PFEM remeshing over the solution accuracy. For this purpose,
the error in time computed with and without remeshing is compared for both the nodal and elemental integration
schemes. Only the intermediate mesh (mean mesh size 0.02) is considered in this study. In Fig. 8, the time evolution
of the error for vθ and τrθ obtained using the nodal and the elemental PFEM, with (solid lines) and without (dashed
lines) remeshing, is shown.

The results of both nodal and elemental formulations show that the PFEM remeshing, although inducing a
certain perturbation of the numerical solution, does not jeopardize the quality of the numerical results. The graphs
show that the error keeps almost constant despite the continuous remeshing operations done with the PFEM. This
is clear evidence of the efficiency of this Lagrangian method for large deformation problems. Furthermore, the
results of Fig. 8 show that, without remeshing, the error grows faster with the elemental approach than with a
nodal formulation. It can be concluded that the nodal approach is less affected by the mesh distortions. This,
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Fig. 7. Circular Couette test. Convergence graphs.

besides confirming the literature results [28], represents an important advantage of the nodal approach in the PFEM
framework, as it allows to reduce the number of the required remeshing events in a PFEM analysis. On the other
hand, Fig. 8b shows that the oscillations suffered by the shear stress error and induced by the remeshing are slightly
larger in the nodal approach than in the elemental one.

8.3. Water sloshing

The proposed nodal approach is tested here in a water sloshing problem; a benchmark test for free-surface fluid
solvers. The initial geometry of the problem is given in Fig. 9. The water (µ = 0.001 Pa s, ρ = 1000 kg/m3,
κ = 2.1 · 109 Pa) has been discretized with 5066 3-noded triangular elements (2703 nodes), with mean mesh size
of 7.5 mm. Non-slip conditions have been considered at the rigid boundaries and a fixed time step of 0.0005 s has
been used for all the analyses. The numerical solution is validated and compared against the elemental solution
obtained with the PFEM formulation presented in [31] using the same time step and meshes of nodal integration
case. The pressure field obtained at three different time steps by the nodal and elemental PFEMs are plotted in
Fig. 10.
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Fig. 8. Circular Couette test. Time evolution of solution error for elemental [31] and nodal PFEM formulations.

Fig. 9. Water sloshing. Initial geometry (B = 0.5 m, H1 = 0.35 m and H1 = 0.15 m).



A. Franci, M. Cremonesi, U. Perego et al. / Computer Methods in Applied Mechanics and Engineering 361 (2020) 112816 17

Fig. 10. Water sloshing. Pressure fields at three time instants. First row: nodal PFEM. Second row: Elemental PFEM [31].

The pictures show a very good agreement between the two solutions. Furthermore, a smooth pressure field is
obtained in both formulations, confirming the efficiency of the FIC stabilization technique.

For this problem, also the non-linear convergence has been analyzed. Fig. 11 shows the non-linear convergence of
the momentum and continuity equations for the same time instants considered in Fig. 10. The results of both nodal
and elemental approaches are plotted. The graphs show that the nodal and the elemental methods have a similar
convergence rate in the solution of the continuity equation. This was somehow expected, considering that the two
formulations use the same stabilization technique. On the other hand, the nodal formulation shows a sensibly higher
convergence rate in the linear momentum solution. This result can be explained considering that the quality of the
stress is higher in the nodal approach.

For t = 5 s, the nodal PFEM showed a slightly better non-linear convergence than the elemental PFEM. Fixing to
10−4 the tolerance for the non-linear convergence criterion of both the continuity and linear momentum equations,
the nodal approach required a mean value of 4.8 iterations to converge, while the elemental one required 5.1
iterations.

To conclude, also the mass conservation properties of the proposed scheme have been analyzed. In Fig. 12, the
time evolution of the mass (or volume) variation induced by the numerical computation is plotted for both the nodal
and elemental formulations. Note that the volume variation induced by the remeshing step is not taken into account.
The graphs show a very similar behavior between the nodal and the elemental approaches. For t = 5 s, both methods
give around 0.2% of mass losses with respect to the initial mass, a very small value for this free-surface problem.

8.3.1. 3D solution
The same sloshing problem is analyzed here in three dimensions to show the benefit of the proposed nodal PFEM

formulation also for more computationally demanding problems. To compare 2D and 3D results, a sufficiently large
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Fig. 11. Water sloshing. Non-linear convergence for elemental [31] and nodal PFEM.

container with a width of 0.15 m has been considered. The initial mesh, plotted in Fig. 13, has around 268 000
4-noded tetrahedra (47 800 nodes).

The 3D results at the same time instants considered in Fig. 10 are plotted in Fig. 14. In the first row, the 3D
view is plotted, while in the second row the pressure field is plotted at the central section only (plane z = 0.075).

The results show that a smooth pressure field is obtained also with the 3D analysis. Furthermore, the
deformed fluid configuration and the pressure values are very similar to those obtained with the 2D plane strain
analysis (Fig. 10). These results confirm the consistency of the proposed nodal approach and its applicability to
computationally expensive 3D problems.
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Fig. 12. Water sloshing. Time evolution of the accumulated mass variation due to computation (mass variation due to remeshing is not
considered). Results for the proposed nodal PFEM and the elemental PFEM [31].

Fig. 13. 3D water sloshing. Initial geometry and tetrahedral mesh. The tank width is 0.15 m while the other dimensions are as shown in
Fig. 9 for the 2D case.

8.4. Water dam break

To verify the behavior of nodal PFEM in a highly unsteady free-surface fluids flow, a water dam break is here
studied. The test consists of modeling the sudden collapse of a water column and its consequent flow and impact
against a vertical wall. The initial geometry of the problem is depicted in Fig. 15. As for the previous tests, non-slip
conditions have been considered at the rigid boundaries. The column of water (µ = 0.001 Pa s, ρ = 1000 kg/m3,
κ = 2.1 · 109 Pa) has been discretized with 6112 3-noded triangular elements and 3600 nodes (mean element size
of 4 mm). A fixed time step of 0.00025 s has been used during the analysis.
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Fig. 14. 3D Water sloshing. Results at three time instants. First row: 3D view. Second row: Pressure field at the central section (plane
z = 0.075).

Fig. 15. Water dam break. Initial geometry.

In Fig. 16, the numerical results obtained with the nodal PFEM are compared to those of the laboratory test
presented in [46]. This qualitative comparison shows a very good agreement between the numerical and the
experimental results, proving the capability of the nodal PFEM to simulate complex fluid flow problems involving
impacts, splashes and breaking waves.
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Fig. 16. Water dam break. Left column: numerical results of the proposed nodal PFEM. Right column: experimental results from [46] at
synchronized time instants.

In Fig. 17, the advancing in time of the fluid front obtained with the proposed formulation is compared to other
numerical results of the literature, namely, [47] and [48], where a Moving Particle Semi-implicit method (MPS)
and an explicit PFEM were used, respectively. In the graph, also the experimental observations of [46] are plotted.
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Fig. 17. Water dam break. Dimensionless time evolution of the front wave position obtained with the nodal PFEM. Other results: MPS
from K oshizuka et al. [47], explicit elemental PFEM from Meduri et al. [48], and experimental results from K oshizuka et al. [46].

The following dimensionless variables are considered in the graph of Fig. 17

x∗ = x/d

t∗ = t(2g/d)0.5 (51)

where x is the horizontal coordinate (at the beginning x = 0.146 m) and g = 9.81 m/s2 is the gravity.
The plots show that the proposed nodal PFEM yields a solution similar to those obtained by the other

computational methods. However, all the numerical simulations seem to overestimate the velocity of the fluid front
obtained experimentally. As already noted in [48] and [49], this may be due to the fact that, in the numerical
simulations, the retaining wall is removed instantaneously, while, in the experiments, this action takes inevitably a
certain time. Nevertheless, also under this respect, the comparison with the experimental results can be considered
satisfactory.

8.5. Dam break of a non-Newtonian fluid

The same geometry and mesh of the previous test are here used to simulate the dam break of a non-Newtonian
fluid. This test is used to verify the applicability of the nodal PFEM to more complex constitutive laws in which
the accuracy of the strain field is of paramount importance because it affects directly the constitutive parameters
(in this case, the apparent viscosity of the non-Newtonian model).

In this example, a regularized form of the Bingham law [32], has been considered. According to this model, the
nodal deviatoric stresses are computed as

σ̄ ′ = 2

[
µ+

τ0⏐⏐ ˙̄γ ⏐⏐ (
1− e−m| ˙̄γ |

)]
d̄ ′ (52)

where m is a regularization parameter, τ0 is the shear yield stress, and
⏐⏐ ˙̄γ ⏐⏐ = (

2d̄ ′ : d̄ ′
) 1

2 is the equivalent strain
rate.

The problem is analyzed for two non-Newtonian fluids which differ for the shear yield stress, namely, τ0 = 300
Pa and τ0 = 400 Pa. The remaining constitutive parameters are equivalent in the two cases: ρ = 1000 kg/m3, µ = 1
Pa s, κ = 2.1 · 109 Pa, and m = 1000 s.

In Fig. 18 six snapshots of the case with τ0 = 300 Pa are given. The velocity field, with fixed contours, is
plotted over the deformed fluid configuration. The pictures show the capability of the nodal PFEM to reproduce
complex phenomena, such as the formation of the shear band and the arrest of the mobilized material. Note also



A. Franci, M. Cremonesi, U. Perego et al. / Computer Methods in Applied Mechanics and Engineering 361 (2020) 112816 23

Fig. 18. Dam break of a non-Newtonian fluid. Velocity field for the case τ0 = 300 Pa.

Fig. 19. Dam break of a non-Newtonian validation. Dimensionless time evolution of the front wave position obtained with elemental [37]
and nodal PFEM.

that, due to the high value of the shear yield stress, the top outer corner of the fluid behaves as a rigid solid rotating
under the motion of the underneath material. For validation purposes, the numerical results are compared to those
obtained using the elemental non-Newtonian PFEM formulation presented and validated in [37]. In Fig. 19, the
time evolution of the dimensionless wave front position obtained by both PFEM formulations is plotted for both
analyzed fluids. In Fig. 20, the final configurations and pressure fields (at t = 1 s) obtained by the two formulations
are shown.

The graphs of Fig. 19 and the pictures of Fig. 20 show a very good agreement between the nodal and the elemental
solutions for both cases, proving the feasibility of the proposed nodal approach also in the case of non-Newtonian
problems.
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Fig. 20. Dam break of a non-Newtonian fluid results. Pressure field at t = 1.0 s obtained by the proposed nodal PFEM and the elemental
PFEM [37]. Results for τ0 = 300 Pa and τ0 = 400 Pa, in the first and second row, respectively.

9. Conclusions

In this work, a novel PFEM approach with nodal integration has been presented and analyzed for free-surface
fluid problems. In the proposed nodal PFEM, the governing equations are discretized over a FEM mesh, as in
the standard PFEM, but their integration is not performed at the Gauss points, but rather at the nodes, where also
stresses and strains are defined. This not only enables us to avoid convection of historical variables upon remeshing,
but it also improves the convergence behavior of the numerical scheme, also when historical variables are not used,
as e.g. in fluid dynamics.

The nodal PFEM has been validated against several 2D and 3D problems involving Newtonian and non-
Newtonian fluids, and its performances have been compared with analogous PFEM with elemental integration.
In all the analyzed tests, the nodal PFEM has shown to be able to reproduce accurately the available analytical
solutions and the numerical and experimental results of the literature. It has also been shown that the nodal PFEM
can be used for demanding 3D problems.

In terms of accuracy, the results of the nodal formulation have mirrored with high fidelity the elemental ones.
This has also been shown in non-Newtonian fluids problems, which are particularly critical due to the dependency
of the fluid viscosity on the strain measures.

Concerning mesh convergence, the nodal and elemental PFEMs have shown to have the same quadratic
convergence rate for velocities and pressure, although the elemental formulation gave a slightly reduced error for
the same mesh. On the other hand, the nodal PFEM has shown to guarantee a higher accuracy for the stresses
and an almost quadratic convergence rate, whereas the convergence is only linear for the elemental PFEM. The
convergence test has also shown that the elemental and nodal formulations have a different convergence path to the
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exact solution. In a nodal approach, the convergence is from the stiffness side (the coarser is the mesh, the less stiff
is the response) while in an elemental approach it is from the compliance side.

It has also been shown that the nodal approach is less affected by element distortion than the elemental method.
This is of great importance in a PFEM framework, as it allows us to reduce the remeshing events and their associated
drawbacks.

In terms of non-linear convergence and mass conservation properties, nodal and elemental PFEM have shown
similar behavior, although a slightly faster convergence has been observed in the nodal PFEM solution.

A quantitative comparison of computational time between nodal and elemental PFEMs has not been performed
in this work. This is because the proposed nodal solver has been implemented into a numerical platform optimized
for standard elemental FEM, and thus the comparison would be not fair.

However, we can extrapolate some considerations. Considering that we are using an implicit time integration
scheme with a fixed time step size, the two methods used the same number of time steps. Consequently, having
proved that the nodal approach converges faster on average than the elemental one (see Fig. 11), it follows that
globally the nodal method required a smaller number of total non-linear iterations than the elemental approach.
Furthermore, we showed that the nodal solution is less sensitive to element distortion (as shown e.g. in Fig. 8),
and consequently, it allows for a less frequent remeshing leading to a further saving of computational time. On the
other hand, the operations of assembly are expected to be more expensive in a nodal approach than in an elemental
one, due to the larger support of each node and the consequent larger bandwidth of the stiffness matrix, and, for
the same mesh, the linear system solution is more computationally expensive. In summary, from the one hand, the
nodal solver requires fewer iterations and it is less prone to mesh distortion, from the other, each iteration will be
more expensive than the elemental one. A detailed analysis of the performances in terms of CPU time would be
the subject of interesting future work.

The results obtained have demonstrated the potential of the PFEM with nodal integration for free-surface
fluid dynamics problems. After the recent application and validation of a nodal PFEM for solid mechanics
problems [12,13], this work constitutes a further step towards a unified nodal Lagrangian framework for large
deformation processes, also in the presence of liquid–solid transition, where the storage of internal variables is
unavoidable.
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