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The comparison of these two approaches suggest the idea of postprocessing residual-type
error estimators yielding upper bound, enforcing continuity and obtaining a lower bound of
the error with a small supplementary e�ort.
The idea of obtaining a couple of upper and lower bound estimates at the same time

is also suggested by the goal oriented adaptive strategies [7, 8]. Indeed, in the context of
symmetric (self-adjoint) problems, these strategies require both a lower and an upper bound
of the error in the standard energy norm to assess the error in an output of interest. However,
the approach introduced in Reference [8] allows also to obtain upper and lower bounds for
functional outputs of non-symmetric problems.
The approach presented here is based on the postprocessing of the upper bound estimate

eest, which is discontinuous. The postprocessing introduces a correction ecor such that the
corrected error distribution, econt := eest + ecor, is continuous. Thus, the correction ecor must
compensate the discontinuities of eest. Then, a lower bound is computed straightforward using
eest and ecor.
The remainder of the paper is structured as follows. The model problem is stated in Sec-

tion 2. Section 3 is devoted to introduce the local and global versions of error equation, and
the reference error. In Section 4, the residual-type error estimators approximating the local
�ux are described. The upper bound property of this kind of estimators is easily proved.
Attention is paid to the solvability problems of the pure di�usion case. Then, in Section 5,
the estimate eest yielding an upper bound is corrected to enforce its continuity and a lower
bound is recovered. Also at this point, some additional e�ort must be done to deal with the
pure di�usion case, where the original estimate is locally determined up to a constant. These
local constants do not a�ect the norm of eest but do condition ecor and, consequently, in
order to have an optimal correction, it is worthy to select them properly. Numerical examples
demonstrating the good behaviour of the proposed strategy are shown in Section 6.

2. STATEMENT OF THE PROBLEM

2.1. Model problem

Let us consider the following linear Neumann boundary value problem in an open, bounded
domain �⊂R2

−∇ · (a∇u) + bu= s in �

a∇u · n= gN on @�

}
(1)

In order to simplify the presentation, the boundary conditions are assumed to be only of
Neumann type. Accounting for Dirichlet or mixed boundary conditions does not introduce
any additional conceptual di�culty. Moreover, in order to ensure ellipticity, it is assumed that

0¡a6 a(x)6 	a

06 b6b(x)6 	b

for some a; 	a; b and 	b.



The weak form of this problem reads: �nd u∈H 1(�) such that

a(u; v)=
∫
�
sv d� +

∫
@�
gNv d
 ∀v∈H 1(�) (2)

where

a(u; v) :=
∫
�
(a∇u · ∇v+ buv) d�

and H 1(�) stands for the standard Sobolev space.
The Galerkin �nite element method provides an approximation uh to u, lying in a �nite-

dimensional space Vh⊂H 1(�) and verifying

a(uh; v)=
∫
�
sv d� +

∫
@�
gNv d
 ∀v∈Vh (3)

The �nite-dimensional space Vh is associated with a �nite element mesh of characteristic
size h. The degree of the complete polynomials used in the interpolation of Vh is denoted
by p. The geometric support of the elements of this mesh are open subdomains denoted by
�k ; k=1; : : : ; nelem. It is assumed that 	�=

⋃
k
	�k (the mesh covers the whole domain) and

�k ∩ �l= ∅ for k �= l (di�erent elements have in common, at most, part of their boundary).
The derivation of a priori estimates requires further regularity conditions for the mesh. The
precise assumptions on the meshes may be found in Reference [9, Section 1.3.3].
The goal of a posteriori error estimation is to assess the accuracy of the approximate

solution uh, that is, to evaluate and measure the error, e := u− uh, or an approximation to it.
The error is measured using some functional norm. One of the most popular options is the
energy norm induced by a(· ; ·):

‖e‖ := [a(e; e)]1=2 (4)

Local restrictions of the norm are needed to describe the spatial distribution of the error. In
the following, the restriction of a(·; ·) to the element �k (k=1; : : : ; nelem) is denoted by ak(·; ·).
Thus, the restriction of ‖ · ‖ to �k ; ‖ · ‖k , is induced by ak(·; ·). In order to describe the spatial
distribution of the error, the value of ‖e‖k in each element is estimated.

2.2. Error equations and reference error

The global equation for the error is recovered from Equation (2), replacing u by uh + e:

a(e; v)=
∫
�
sv d� +

∫
@�
gNv d
− a(uh; v)=:R(v) ∀v∈H 1(�) (5)

The r.h.s. term of Equation (5), R(v), is the weak residual associated with the approximate
solution uh.
The local counterpart of Equation (5) is derived integrating the weighted residual of the

strong form, Equation (1), in �k . It reads,

ak(e; v)=Rk(v) +
∫
@�k∩�

a∇u · nv d
 ∀v∈H 1(�k) (6)



where Rk(v) is the restriction of R(v) to �k :

Rk(v) :=
∫
�k

sv d� +
∫
@�k∩@�

gNv d
− ak(uh; v) (7)

Note that the last term of the r.h.s. of Equation (6) accounts for the unknown �ux on the
interelement edges. In other words, the boundary conditions of the local problem are not
known.
The error is estimated approximating the solution of the local error equation (6). The

characterization of any residual-type error estimator requires to select both:

• the �nite-dimensional space where the local error equation is solved (local h- or
p-re�nement) and

• the unknown boundary conditions for the local problems.

The �rst point is related with the concept of reference error. Residual a posteriori error
estimation techniques are based on assessing and bounding the reference error and not the
error itself. For all practical purposes, the exact value of the error, e, is replaced by a reference
(or ‘truth’) error, eref , lying in a �nite-dimensional space much re�ned with respect to the
computational space Vh. Let us denote by V ref this re�ned space. V ref is generated either as
a h or p-re�nement of Vh. That is, denoting by h̃ and p̃ the characteristic element size and
the degree of interpolation of the elements generating V ref , either h̃�h or p̃�p holds.
Thus, the reference error, eref ∈V ref , veri�es the discrete form of Equation (5), that is

a(eref ; v)=R(v) ∀v∈V ref (8)

The direct computation of eref is computationally una�ordable because it requires to solve a
system of equations with the number of degrees of freedom equal to the dimension of V ref .
The fact of using a reference error (that is, replacing the continuous space H 1(�) by the

re�ned space V ref , and the exact error e by the reference error eref ) does not introduce a
signi�cant loss of accuracy in the error estimation procedure. Consequently, the quality of a
residual-type error estimation procedure depends essentially on the approximation of the local
boundary conditions.

3. STANDARD RESIDUAL-TYPE ERROR ESTIMATES

Standard residual-type error estimators [1–3] solve the local error equation (6) using approx-
imated Neumann boundary conditions. The values of the �ux a∇u · n|@�k∩�, see Equation (6),
are determined or approximated along the boundary of each element �k . This section is de-
voted to brie�y describe this kind of estimators and to recall the proof of their upper bound
property.

3.1. Approximation of �uxes

The approximation of the �ux is based on smoothing the approximate �ux a∇uh · n, which is
discontinuous. The basic idea due to Bank and Weiser [1] is to average the approximate �ux
on every interelement edge. Let 
m, for m=1; : : : ; nint, be the interelement edges of the mesh.



That is, for every m∈{1; : : : ; nint} they exist k; l∈{1; : : : ; nelem}; k �= l, such that 
m=�k ∩�l.
Then

a∇u|
m 	 [a∇uh]A := 1
2 (a∇uh|@�l + a∇uh|@�k ) for m=1; : : : ; nint (9)

where [·]A stands for the average on 
m. The approximation given in Equation (9) is used in
Equation (6).
More sophisticated �ux averaging procedures are used by other authors [2, 3] in order to

obtain equilibrated local problems. They improve the e�ciency of the estimator. Here, the
simplest averaging is used for illustration purposes. In fact, the following developments are
also valid for these approaches: it su�ces to use a more complicated de�nition for the average
[a∇uh]A.

3.2. Discrete local residual equation

Thus, the error estimate eest is computed locally by solving the following problem: �nd
eest ∈V refk such that

ak(eest ; v)=Rk(v) +
∫
@�k∩�

[a∇uh]A · nv d
 ∀v∈V refk (10)

where V refk is the restriction of V ref to �k , that is

V refk := {v∈H 1(�k)=∃ṽ∈V ref ; v= ṽ|�k} (11)

Equation (10) is the discrete version of Equation (6) using the approximation given by Equa-
tion (9).
Note that the sum of the spaces V refk is not equal to V ref . In fact, V refbrok :=

⊕
k V

ref
k is a space

of ‘broken’ functions. In order to recover V ref it is necessary to restrict the space forcing the
continuity: V ref =V refbrok ∩ C0.
A global equation for the error estimate eest is found summing up Equation (10) for all

k (k=1; : : : ; nelem),

a(eest ; v)=R(v) +
nint∑
m=1

∫

m
[a∇uh]A · [vn]J d
 ∀v∈V refbrok (12)

where [vn]J stands for the jump of vn across 
m=�k ∩�l, that is,

[vn]J := (v|�k )nk + (v|�l)nl (13)

being nk =− nl the corresponding outward normal unit vectors. The recovered �ux, see Section
3.1, is said to be consistent if the approximation of the �ux is continuous, i.e. if the approxi-
mation of a∇u|
m is the same viewed from �k and from �l. In order to derive Equation (12)
it is necessary that the recovered �uxes are consistent.
Furthermore, if the test functions are continuous, i.e. if v is in V ref ⊂V refbrok, then [vn]J =0

and from Equation (12) one gets

a(eest ; v)=R(v) ∀v∈V ref ; where still eest ∈V refbrok (14)



In other words, if the consistency condition is satis�ed, the interelement edges are not a source
of �ux in the global error equation (for v continuous). In the following, some properties of
the estimate eest are derived replacing v in Equation (14) by particular functions in V ref .

Remark 1
In Equation (12), the de�nition of a(· ; ·) must be generalized to accept ‘broken’ functions in
the arguments. Thus, for v; w∈V refbrok,

a(w; v) :=
nelem∑
k=1
ak(w; v) (15)

Of course, this generalized de�nition coincides with the standard one when the arguments are
in H 1(�).

3.3. Upper bound property

The consistency condition implies that the error estimates computed using Equation (10) are
upper bounds of the reference error. Although this is a well-known property of this kind of
estimators, the corresponding theorem is revisited and proved here because it is important in
the following.

Theorem 1
The error estimate eest computed solving Equation (10) yields an upper bound of the error,
that is

�upp := ‖eest‖2¿‖eref‖2 (16)

Proof
Taking v= eref in Equations (14) and (8) it follows that

a(eest ; eref )= a(eref ; eref ) (17)

Then, the proof is completed by the following algebraic manipulation.

06a(eref − eest ; eref − eest) = a(eref ; eref ) + a(eest ; eest)− 2
=a(eref ; eref )︷ ︸︸ ︷
a(eest ; eref )

= a(eest ; eest)− a(eref ; eref )

Remark 2
It is worth noting that the upper bound �upp is de�ned in Equation (16) as the squared norm
of the error estimate. This is because the use of squared norms simpli�es the presentation.
Thus, in the following, the estimates of the squared error norms, approximations of ‖eref‖2,
are denoted by �?.

Remark 3
In the general case, eest is not continuous (it is in V refbrok but not in V

ref ). Thus, in general,
it is not possible to take v= eest in Equation (14). However, if a particular choice of the
boundary conditions of the local problems leads to a continuous estimate eest, then it can be



easily shown that a(eest ; eest)6a(eref ; eref ) and, consequently, a(eest ; eest)= a(eref ; eref ). That is,
the choice of the Neumann boundary conditions giving a continuous estimate is optimal.

3.4. Solvability problems when b=0

If the reaction term vanishes in Equation (1) (b=0), the solvability of the local Neumann
problem, Equation (10), requires proper data ensuring equilibrium. It is well known that if the
source term s (body load) is not equilibrated by the prescribed boundary �ux, the Neumann
problem does not have any solution. Locally (in element �k), the equilibrium condition reads∫

�k

s d� +
∫
@�k∩@�

gN d
 +
∫
@�k∩�

[a∇uh]A · n d
=0 (18)

The simple averaging described in Equation (9) does not enforce the equilibrium condition.
Two di�erent strategies may be used in order to ensure the solvability of the local problems.

A �rst option is to use approximation of �uxes yielding equilibrated local problems.
The second strategy is to restrict the set of admissible functions in the local problem

eliminating from the local interpolation space the kernel of the l.h.s. of Equation (10). In
fact, the second and third estimators introduced by Bank and Weiser in Reference [1] use
this strategy. These estimators are used in the numerical examples and are they denoted by
e2 and e3, respectively.

Remark 4
The description of these estimators requires to introduce the hierarchical decomposition of
V ref ; V ref =Vh ⊕ V com, where V com is the hierarchical complement of Vh in V ref . The space
V com contains the functions v of V ref such that the degrees of freedom (nodal values) of v
corresponding to Vh are null. Typically, for p-re�nement, the functions of V com are of the
bubble type. Then, for all v∈V ref ; ∃!vh ∈Vh and ∃!vcom ∈V com such that v= vh + vcom. Thus,
the nodal projection from V ref to Vh; I : V ref → Vh is de�ned such that I(v)= vh.
The second estimator, e2 is then computed as the solution of the following local problem:

ak(e2; v)=Rk(v−I(v)) +
∫
@�k∩�

[a∇uh]A · n(v−I(v)) d
 ∀v∈V refk (19)

where the restriction of e2 to �k is in V refk and, therefore, the global e2 is in V refbrok.
The third estimator, e3, is locally computed as the solution of

ak(e3; v)=Rk(v) +
∫
@�k∩�

[a∇uh]A · nv d
 ∀v∈V comk (20)

where the local restriction of V com; V comk , must be understood in the same sense as in
Equation (11).
It is worth noting that e2 is an upper bound for the reference error but e3 is not. Indeed,

summing up the local Equation (19) on k one gets a global equation for e2 where v ranges
on V refbrok and the same rational given for eest, see Theorem 1, can be followed to deduce
that ‖e2‖¿‖eref‖. On the contrary, in the global equation corresponding to Equation (20), v
ranges on V combrok . The upper bound property cannot be deduced in this case because V

ref �⊂V combrok .
However, in the asymptotic range, that is for h small enough, numerical evidence shows that
e3 behaves also as an upper bound.



4. CORRECTION AND LOWER BOUND RECOVERING

In the previous section, see Remark 3, it has been noted that the overestimation of the error
is associated with the continuity defaults of the estimate eest. In fact, it has been observed
that if the �ux splitting is such that eest is continuous, then the estimate eest is optimal. Thus,
the idea developed in this section is to introduce a correction of the error estimate in order to
enforce its continuity. This correction allows to deduce a lower bound of the reference (and
exact) error and, hence, to assess the e�ectivity of the original error estimate.

4.1. Correction and lower bound

Babu�ska and co-workers originally proposed to obtain a lower bound �low from a continuous
corrected estimate [10, 11]. Here, the evaluation of the lower bound is improved by de�ning
a scalar parametric family �low(�). Moreover, it is proved in this section that an optimal value
of �; �opt exists and that it can be easily evaluated. Note that the optimal estimate, �low(�opt)
corresponds to the expression proposed in Reference [12], where the optimality of this choice
is not mentioned.
Recall that eest ∈V refbrok, that is eest is, in general, not continuous. Let ecor ∈V refbrok be a cor-

rection of eest such that

econt := eest + ecor ∈V ref (21)

that is, such that the corrected error econt is continuous.
Given a corrected estimate econt, a parametric family of lower bound estimates is found.

Theorem 2
Let eest be an error estimate verifying the hypothesis of Theorem 1 and, therefore, being an
upper bound of the reference error. Let econt be a corrected estimate as described in Equation
(21). Then, for any scalar �∈R, the expression

�low(�) :=2�a(eest ; econt)− �2‖econt‖2 (22)

is a lower bound of the reference error norm, that is,

�low(�)6‖eref‖2 (23)

Proof
Since econt is continuous, it is possible to replace v by econt in Equations (14) and (8).
That is,

a(eest ; econt)= a(eref ; econt) (24)

Then, using Equation (24), inequality (23) is proved considering the following algebraic
manipulation:

06a(eref − �econt ; eref − �econt) = a(eref ; eref ) + �2a(econt ; econt)− 2�a(eref ; econt)
= ‖eref‖2 + �2‖econt‖2 − 2�a(eest ; econt)
= ‖eref‖2 − �low(�)



Thus, once the corrected estimate econt is obtained, a lower bound of the error is re-
covered computing �low(�), for any value of �. The natural choice, �=1, see References
[10, 11, 13, 15], results in

�low(1)=2a(eest ; econt)− ‖econt‖2 = ‖eest‖2 − ‖ecor‖2 (25)

which in practice only requires the extra computation of ‖ecor‖.
However, the optimal choice for � is the value that maximizes the lower bound �low(�). It

is obvious from Equation (22) that this optimal value is

�opt =
a(eest ; econt)
‖econt‖2 (26)

Consequently, given an upper bound estimate eest, the optimal lower bound associated with a
corrected estimate econt is

�optlow := �low(�opt)=
a(eest ; econt)2

‖econt‖2 (27)

This is, in fact, the expression adopted in Reference [12].

Remark 5
Both �optlow and �low(1) are exact if the recovering technique to obtain the corrected estimate
econt is optimal. Indeed, if the corrected estimate coincides with the reference error, that is
econt = eref , then

�optlow = �low(1)= ‖eref‖2

Thus, both the lower bounds given by Equations (25) and (27) are sharp provided that the
determination of the corrected estimate econt is accurate. In fact, the strategy used to obtain
econt is oriented to enforce econt ≈ eref .
Obviously, given econt, the estimate �

opt
low is sharper than �low(1). Consequently, once econt is

determined, �optlow is used to evaluate the lower bound. Nevertheless, in order to set a criterion
for the determination of econt, the expression of �low(1), Equation (25), is preferred to the
expression of �optlow, Equation (27). This is detailed in the next section.

4.2. Determination of the corrected estimate econt

This section describes the smoothing process that builds up the corrected estimate econt. The
degrees of freedom of the original estimate, eest, a�ecting the continuity (associated with edges
and corners) are simply averaged. This part of the smoothing process is standard [10, 11].
Here, the remaining degrees of freedom a�ecting the interior of the elements (bubble functions
inside the elements) are set using an objective optimality criterion. The presentation is based
in the formulation of the parametric family of scalar lower bounds, �low(�) introduced in
Section 4.1.
The correction ecor and, consequently, the corrected estimate econt and the corresponding

lower bound �optlow are not unique. Any function econt ∈V ref produces a lower bound �optlow. How-
ever, as noted in Remark 5, in order to obtain a sharp lower bound econt must be selected
in order to fairly approximate eref . Assuming that eest is a proper approximation of eref but
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4.3. Computational aspects

The selection of the optimal value of ebubblecont is performed solving Equation (33). These com-
putations can be done locally, element by element, because the bubble spaces are orthogonal
(the supports of the bubbles are disjoint). Thus, once ecornercont and eedgecont are computed by simple
averaging, the restriction of ebubblecont to �k ; ebubblecont |�k is computed solving the local version of
Equation (33):

ak(ebubblecont |�k ; v)= ak(eest − ecornercont − eedgecont ; v) ∀v∈V bubblek (34)

Equation (34) results in a small system of linear equations that must be solved to compute
ebubblecont |�k . The number of equations for each local problem is equal to the number of ‘bubble’
degrees of freedom in the reference discretization. For example, for lagrangian quadrilateral
elements, this number is equal to (1 − p̃)2, being p̃ the degree of the polynomials used to
generate V ref .

4.4. Assessment of the e�ectivity index and average estimate

Once the lower bound of the error is computed, the e�ectivity index of the original estimate
‖eest‖ may be easily assessed. Let �est be the e�ectivity index associated with eest,

�est :=
‖eest‖
‖eref‖ (35)

The upper bound property ensures �est¿1. Nevertheless �est may be very large and it is not
possible, in the general case, to assess the quality of the estimate. Using the lower bound �low
of the error, an upper bound of the e�ectivity index �+ is easily computed:

�+ :=
‖eest‖√
�low

=¿�est (36)

This pessimistic value of the e�ectivity index is sharp when the lower bound error estimate
�low is sharp.
Once the upper and the lower bounds of the error, �upp = ‖eest‖2 and �low, are available the

average estimate is introduced

�ave := 1
2 (�upp + �low) (37)

Remark 7
As noted in Remark 2, the estimates �? represent approximations to the squared norms of the
error. The average of the squared norms is larger than the simple averaging of the norms,
that is,

1
2 (�upp + �low)¿[

1
2 (
√
�upp +

√
�low)]2

The behaviour of this average estimate is analysed in the examples presented in Section 6.

5. FITTING LOCAL ARBITRARY CONSTANTS FOR b=0

In problems without a reaction term, the lower bounds of the error obtained with the previously 
discussed techniques have a poor (very low) eectivity index. In this section, a strategy to



preclude this de�ciency is introduced. If b=0 in Equation (1) (pure di�usion, no reaction)
eest is locally determined up to a constant because

‖eest‖k = ‖eest + ck‖k ; k =1; : : : ; nelem (38)

Then, the estimate eest may be replaced by eest +
∑nelem

k=1 ck�k without changing the upper bound
�upp, being {�1; �2; : : : ; �nelem} the basis of the space of piecewise constant functions. That is,
for k=1; : : : ; nelem,

�k(x)=

{
1 if x∈�k
0 if x =∈�k

(39)

The upper bound estimate �upp is independent of the constants ck . Nevertheless, the choice
of the constants ck a�ects drastically the value of the corrected error, econt. Moreover, the
correction strategy is expected to work properly only if the average values of eest are close
to eref , see Remark 5. If the constants are set arbitrarily, the value of the correction cannot
be expected to be optimal.
Consequently, the constants ck ; k=1; : : : ; nelem, are taken as unknowns and they are deter-

mined such that the resulting lower bound is somehow optimal. Let c=[c1 : : : cnelem ] be the
vector of unknown constants. The corrected estimate econt may be seen as a function of c:

econt(c) :=M

(
eest +

nelem∑
k=1
ck�k

)
=M(eest) +

nelem∑
k=1
ckM(�k) (40)

It is clear from Equation (40) that, due to the linearity of M; econt(c) is linear. Both the lower
bounds �low(1) and �

opt
low depend on c through econt. The criterion used to select c is obviously

to maximize the lower bound. The maximization of �optlow is the more natural option because
�optlow is the sharper error bound. Nevertheless, similarly to the previous section, �nding c that
optimizes �optlow requires to solve a non-linear problem. On the contrary, to �nd c such that
�low(1) is maximum leads to a simple linear problem. Thus, the criterion for determining c is
based on maximizing �low(1) rather than �

opt
low.

The dependence of �low(1) on c is written by introducing Equation (40) in Equation (25)
and replacing eest by eest +

∑nelem
k=1 ck�k :

�low(1) =
∣∣∣∣
∣∣∣∣eest + nelem∑

k=1
ck�k

∣∣∣∣
∣∣∣∣2 −

∣∣∣∣
∣∣∣∣eest + nelem∑

k=1
ck�k −M(eest)−

nelem∑
k=1

M(�k)ck

∣∣∣∣
∣∣∣∣2

= ‖eest‖2 −
∣∣∣∣
∣∣∣∣eest −M(eest)−

nelem∑
k=1

M(�k)ck

∣∣∣∣
∣∣∣∣2 (41)

Then, to maximize �low(1) is equivalent to minimize the function F(c) de�ned by

F(c) :=
∣∣∣∣
∣∣∣∣eest −M(eest)−

nelem∑
k=1

M(�k)ck

∣∣∣∣
∣∣∣∣

The coe�cients ck that minimize F(c) are obtained imposing that
∑nelem

k=1 M(�k)ck is the
projection of eest −M(eest) on the space generated by the functions M(�k), for k=1 : : : nelem





Figure 5. Illustration of the constant �tting process: the raw estimate eest with arbitrary
constants is smoothed into M(eest) (top), the smoothed version of the estimate corrected
with the optimal constants is much more similar to the reference error (bottom): in the
example the underestimation is improved from 76% (without constant �tting) to 83%.

that is, the e�ectivity index minus one. The use of � is preferred because the sign of �
indicates if the estimate is an upper or a lower bound (positive if upper, negative if lower)
and the absolute value indicates the quality of the estimate (good quality if |�| small). In the
following, the value of � corresponding to every estimate is denoted with the same subscript,
that is,

�?=
√
�?

‖e‖ − 1

where the subscript ? takes the values ‘upp’, ‘low’ and ‘ave’. The superscript C for �low; �Clow,
is used to denote the correction obtained with the determination of elementwise constants
introduced in Section 5. Moreover, we also use the version �+ corresponding to the assessed
e�ectivity index �+ (�+ := �+ − 1), see Equation (36).
As noted in Section 3.4, the second and third estimators introduced in Reference [1], denoted

by e2 and e3, respectively, are used as the original upper bound estimates eest. In the examples,
the performance of these estimates is analysed throughout the values of �upp.

6.1. Example 1

In the �rst example the reaction–di�usion equation is solved, a=1 and b=1 in Equation (1).
The problem is de�ned in the squared domain �= (0; 1)×(0; 1). The boundary conditions
are set to be Dirichlet homogeneous (that is u=0) on 
D := {(x; 0); 06x61} and Neumann
homogeneous (that is @u=@n=0) elsewhere on @�. The source term s is taken such that the
exact solution has the following analytical expression:

u(x; y)=
1

2000
x2(1− x)2e10x2y2(1− y)2e10y (43)

see Figure 6 for a representation. The second example described in this section is stated such
that the solution u is exactly the same.
The approximate solution uh is computed using a bilinear interpolation (p=1) whereas the

error estimates e2 and e3 are computed using a bicubic interpolation (p̃=3).
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Figure 7. Example 1: performance of the estimates following a uniform h-re�nement process
for the estimates e2 (left) and e3 (right).

Table II. Example 1: results in a series of adaptively h-re�ned meshes.

Estimate e2 Estimate e3

Dof ‖e‖=‖u‖ ‖eref‖=‖u‖ �+ �upp �low �ave �+ �upp �low �ave

36 0.8469 0.7726 0.3453 0.1589 −0:1386 0.0210 0.2713 0.0544 −0:1706 −0:0514
2550 0.0798 0.0798 0.0822 0.0645 −0:0164 0.0248 0.0517 0.0354 −0:0155 0.0103
2905 0.0478 0.0478 0.1263 0.1136 −0:0113 0.0530 0.1129 0.0622 −0:0456 0.0098
3574 0.0433 0.0433 0.1279 0.1152 −0:0113 0.0539 0.1108 0.0614 −0:0445 0.0098
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Figure 8. Example 1: performance of the estimates following an adaptive h-re�nement
process for the estimates e2 (left) and e3 (right)

Remark 8
As expected, the adaptive procedure optimizes the computational resources and yields lower
error with less degrees of freedom. However, the adapted meshes have distorted elements, see
Figure 9, and the quality of the estimates e2 and e3 is slightly degraded in adapted meshes,
see Figure 8. This phenomenon produces a peculiar end e�ect in the plots describing the
evolution of the e�ectivity along the adaptive process. This e�ect does not appear in the



Figure 9. Example 1: Sequence of adapted meshes with 36; 2550; 2950 and 3574 dof .
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Figure 10. Example 1: performance of the estimators and using di�erent degrees of
interpolation in the reference space (p̃).

uniform h-re�nement process where all the meshes are structured, see Figure 7. The proposed
lower bound corrects this behaviour in the case of the estimate e2 but not in the case of
e3. In this example, the average �ave performs very well in the sense that behaves as a new
estimate, mostly a new upper bound, much more reliable than the original one. The same
e�ect is observed in the next example, see Figure 11.

The e�ect of varying the degree of interpolation in the reference space (p̃) is investigated
for one of the meshes (the second mesh of the adaptive process, with 2550 dof) and for the
estimate e2. We are interested in assessing the in�uence of p̃ in the error estimate and the
corresponding corrections. The results are shown in Figure 10. Note that the e�ectivity of
the original estimate, eest is not improved by using a larger p̃. On the contrary, the larger
values of p̃ are associated with the poorer quality estimates. Nevertheless, the quality of the
postprocessed lower bounds is not so sensitive to the variations of p̃ and their quality does
not depend on p̃.



Table III. Example 2: results in a series of uniformly h-re�ned meshes.

Estimate e2

Dof ‖e‖=‖u‖ ‖eref‖=‖u‖ �+ �upp �low �Clow �ave

36 0.8483 0.7737 0.2729 0.1571 −0:1177 −0:0909 0.0405
121 0.4342 0.4046 0.2059 0.1217 −0:0838 −0:0698 0.0304
441 0.3091 0.3072 0.2220 0.2131 −0:0461 −0:0073 0.1084
1681 0.2099 0.2098 0.1844 0.1831 −0:0321 −0:0011 0.0949
6561 0.1148 0.1148 0.0849 0.0845 −0:0148 −0:0003 0.0430
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Figure 11. Example 2: performance of the estimates following a uniform (left) and an
adaptive (right) h-re�nement process for the estimate e2.

Figure 12. Example 2: sequence of adapted meshes with 36; 2561; 2918 and 3628 dof .

6.2. Example 2

Now, we consider the Poisson equation, a=1 and b=0 in Equation (1). The domain and the
boundary conditions are exactly the same as in the previous example. The source term s is
taken such that the exact solution is also the same, see Equation (43). In this example, we
only study the application of the developed postprocessing strategy to the e2 estimate.
Again, the proposed strategy is used in a series of uniformly and adaptively h-re�ned

meshes. The results for the uniformly re�ned meshes are summarized in Table III and
Figure 11. Figure 12 shows a sequence of adapted meshes and Table IV with Figure 11
describe the behaviour of the di�erent estimates. The notation �Clow is introduced to denote the



Table IV. Example 2: results in a series of adaptively h-re�ned meshes.

Estimate e2

Dof ‖e‖=‖u‖ ‖eref‖=‖u‖ �+ �upp �low �Clow �ave

36 0.8483 0.7737 0.2729 0.1571 −0:1177 −0:0909 0.0405
2561 0.0785 0.0785 0.0593 0.0586 −0:0112 −0:0007 0.0294
2918 0.0482 0.0482 0.1216 0.1186 −0:0077 −0:0027 0.0596
3628 0.0432 0.0432 0.1038 0.1008 −0:0070 −0:0027 0.0503
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Figure 13. Example 2: performance of the estimators and using di�erent degrees of
interpolation in the reference space (p̃).

correction introduced in Section 5. As expected, the value of �Clow is much better than the value
of �low.
The in�uence of p̃ in the di�erent estimates is shown in Figure 13. These results correspond

to the second mesh of the adaptive process, with 2561 dof. Once again, due to the phenomenon
described in the previous example, increasing p̃ does not result in a better e�ectivity index
for the upper bound estimate. Nevertheless, the lower bound estimate econt with the constant
element by element correction (measured by �Clow) is roughly independent of p̃ and much
better compared to the original estimate.

6.3. Example 3

This example was introduced in Reference [1]. We consider the Laplace equation, a=1;
b=0 and s=0 in Equation (1). As in the previous example, only the e2 estimate is used
with the proposed postprocessing strategy.
The domain � is de�ned by �= {(r; �) : 0¡r¡1; 0¡�¡k�=4} where r and � are the

polar coordinates and the analytical solution is

u(r; �)= r2=k sin
(
2�
k

)
(44)



Figure 14. Example 3: adapted meshes for k =1 (left) k =3 (centre) and k =4 (right).

Table V. Example 3, k =1: results in a series of adaptively h-re�ned meshes.

Estimate e2

Dof ‖e‖=‖u‖ ‖eref‖=‖u‖ �+ �upp �low �Clow �ave

69 0.0397 0.0397 0.3788 0.3730 −0:0109 −0:0042 0.1993
1637 0.0069 0.0069 0.1250 0.1224 −0:0052 −0:0022 0.0619
3938 0.0044 0.0044 0.1925 0.1849 −0:0109 −0:0064 0.0934
4668 0.0040 0.0040 0.2051 0.1992 −0:0092 −0:0048 0.1019

Table VI. Example 3, k =3: results in a series of adaptively h-re�ned meshes.

Estimate e2

Dof ‖e‖=‖u‖ ‖eref‖=‖u‖ �+ �upp �low �Clow �ave

169 0.0298 0.0294 1.0167 0.6153 −0:2412 −0:1991 0.2749
580 0.0139 0.0138 0.7023 0.3618 −0:2468 −0:2001 0.1168
1436 0.0078 0.0077 0.4700 0.3375 −0:1211 −0:0901 0.1438
3795 0.0047 0.0047 0.3860 0.3242 −0:0626 −0:0446 0.1546
6585 0.0036 0.0035 0.3407 0.2861 −0:0615 −0:0407 0.1345

That is, � is a circular sector and k is a parameter that sets both the size of the domain and
the regularity of the solution. In the following, we consider the cases k=1; 3 and 4. Dirichlet
boundary conditions are imposed along �=0 and Neumann boundary conditions are forced
on the rest of the boundary. The boundary conditions are such that the exact solution is the
analytical expression given in Equation (44).
For each one of the values of k, the error assessment is performed for a sequence of adapted

meshes. Figure 14 shows examples of adapted meshes for each value of k.
The results are shown in Tables V, VI and VII for k=1; 3 and 4, respectively, and also in

Figure 15. It is worth noting that using the constant �tting (the di�erence between �Clow and
�low, see Figure 15) is relevant specially for k=4, that is, when the singularity pollutes the
error estimate based only on local computations.
In order to analyse the spatial distribution of the estimated error, Figure 16 shows the

histograms describing the occurrences of the values of local (element by element) e�ectivity
indices for both the estimated error and the lower estimate. The example corresponds to the
second mesh obtained for k=1 (with 1637 dof ). An almost uniform distribution is obtained



Table VII. Example 3, k =4: results in a series of adaptively h-re�ned meshes.

Estimate e2

Dof ‖e‖=‖u‖ ‖eref‖=‖u‖ �+ �upp �low �Clow �ave

220 0.1310 0.1200 0.4449 0.1384 −0:2960 −0:2121 −0:0211
372 0.0587 0.0548 0.4858 0.2090 −0:2626 −0:1863 0.0304
723 0.0312 0.0297 0.5364 0.2418 −0:2603 −0:1917 0.0477
3297 0.0126 0.0122 0.4800 0.2293 −0:2346 −0:1694 0.0491
6859 0.0077 0.0076 0.4154 0.2440 −0:1790 −0:1211 0.0770

10
2 103

80

100

120

140

160

180

200

dof

ρ
upp

ρ
low

ρ
low
c

ρ
ave

ρ+ 

10
3

80

100

120

140

160

180

200

10
3

80

100

120

140

160

180

200

dof dof

Figure 15. Example 3: performance of the estimates following an adaptive h-re�nement for
k =1 (left), k =3 (centre) and k =4 (right).
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Figure 16. Example 3: Histogram representing the occurrences of the local e�ectivity index
for e2 (left) and for the proposed strategy (right).

since the values are close to 100%. As expected, the second Bank and Weiser estimator e2
produces local estimates which overestimate almost everywhere the exact error. The local
corrected estimates, as expected, underestimate the exact error. The bound property for the
global error is then reproduced locally in most elements.



7. CONCLUDING REMARKS

A simple postprocessing strategy has been presented to recover lower bound estimates from
standard residual estimators producing upper bounds of the error. The main idea is to smooth
the discontinuous estimate eest and to obtain a continuous approximation econt to the reference
error eref . A lower bound of the error is computed using econt.
For the pure di�usion problem (when the reaction term in the PDE vanishes) the estimate

eest is determined up to a local (element by element) constant. In order to improve the
postprocessing in this situation the local arbitrary constants are found such that the sharpest
lower bound is obtained.
Numerical experiments show that the proposed strategy furnishes sharp lower estimates, of

better quality than the original upper ones.
The presented strategy may be used in the framework of error estimation for outputs of

interest, where upper and lower bounds of the energy error measure are required.
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