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SUMMARY

Classical residual type error estimators approximate the error flux around the elements and yield upper
bounds of the exact (or reference) error. Lower bounds of the error are also needed in goal oriented
adaptivity and for bounds on functional outputs. This work introduces a simple and cheap strategy to
recover a lower bound estimate from standard upper bound estimates. This lower bound may also be
used to assess the effectivity of the former estimate and to improve it.
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1. INTRODUCTION

Implicit residual-type error estimators require to set proper boundary conditions for the local
(usually element by element) error equations. If these boundary conditions are of Neumann
type [1,2] the obtained estimates are upper bounds of the error. The error estimators based on
the error in the constitutive relation introduced by Ladeveze [3, 4] may also be classified in this
group and also overestimate the error. The selection of the flux on the interelement edges may
use either a trivial flux averaging [1] or a more sophisticated recovering technique yielding
equilibrated residuals [2, 3]. The equilibrated residual strategies are expected to furnish more
realistic boundary conditions for the local problems and, consequently, to yield better error
estimates.

On the other hand, residual-type error estimators using Dirichlet boundary conditions in
the local error equations [5,6] yield lower bounds of the error. Basically, the lower bound
property is induced by the continuity of the obtained estimate.
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The comparison of these two approaches suggest the idea of postprocessing residual-type
error estimators yielding upper bound, enforcing continuity and obtaining a lower bound of
the error with a small supplementary effort.

The idea of obtaining a couple of upper and lower bound estimates at the same time
is also suggested by the goal oriented adaptive strategies [7,8]. Indeed, in the context of
symmetric (self-adjoint) problems, these strategies require both a lower and an upper bound
of the error in the standard energy norm to assess the error in an output of interest. However,
the approach introduced in Reference [8] allows also to obtain upper and lower bounds for
functional outputs of non-symmetric problems.

The approach presented here is based on the postprocessing of the upper bound estimate
eest, Which is discontinuous. The postprocessing introduces a correction e, such that the
corrected error distribution, econ := €est + €cor, 18 continuous. Thus, the correction e.,, must
compensate the discontinuities of e.y. Then, a lower bound is computed straightforward using
Cest and €cor-

The remainder of the paper is structured as follows. The model problem is stated in Sec-
tion 2. Section 3 is devoted to introduce the local and global versions of error equation, and
the reference error. In Section 4, the residual-type error estimators approximating the local
flux are described. The upper bound property of this kind of estimators is easily proved.
Attention is paid to the solvability problems of the pure diffusion case. Then, in Section 5,
the estimate e, yielding an upper bound is corrected to enforce its continuity and a lower
bound is recovered. Also at this point, some additional effort must be done to deal with the
pure diffusion case, where the original estimate is locally determined up to a constant. These
local constants do not affect the norm of e, but do condition e, and, consequently, in
order to have an optimal correction, it is worthy to select them properly. Numerical examples
demonstrating the good behaviour of the proposed strategy are shown in Section 6.

2. STATEMENT OF THE PROBLEM

2.1. Model problem

Let us consider the following linear Neumann boundary value problem in an open, bounded
domain Q C R?

(1)

-V-(@Vu)+bu=s in
aVu-n=gy on 0f)

In order to simplify the presentation, the boundary conditions are assumed to be only of
Neumann type. Accounting for Dirichlet or mixed boundary conditions does not introduce
any additional conceptual difficulty. Moreover, in order to ensure ellipticity, it is assumed that

for some a, a, b and b.



The weak form of this problem reads: find u € H'(€2) such that

a(u,v):/svd9+/ gyvdl Yoe HY(Q) (2)
Q Elo)
where
a(u,v):= /(aVu-Vv+buv)dQ
Q

and H'(2) stands for the standard Sobolev space.
The Galerkin finite element method provides an approximation u;, to u, lying in a finite-
dimensional space V;, C H'(2) and verifying

a(uh,v):/svdﬂ+/ gyvdl Yvel, 3)
Q a0

The finite-dimensional space V) is associated with a finite element mesh of characteristic
size h. The degree of the complete polynomials used in the interpolation of V) is denoted
by p. The geometric support of the elements of this mesh are open subdomains denoted by
O, k=1,...,n¢lem. It is assumed that Q= J, €2 (the mesh covers the whole domain) and
QN Q=0 for k#1 (different elements have in common, at most, part of their boundary).
The derivation of a priori estimates requires further regularity conditions for the mesh. The
precise assumptions on the meshes may be found in Reference [9, Section 1.3.3].

The goal of a posteriori error estimation is to assess the accuracy of the approximate
solution uy, that is, to evaluate and measure the error, e:=u — u;,, or an approximation to it.
The error is measured using some functional norm. One of the most popular options is the
energy norm induced by a(-,-):

lel| := [a(e, €)]"? 4)

Local restrictions of the norm are needed to describe the spatial distribution of the error. In
the following, the restriction of a(-,-) to the element €, (k=1,..., 0y ) is denoted by a;(-, ).
Thus, the restriction of || - || to %, |- ||, is induced by a(-,-). In order to describe the spatial
distribution of the error, the value of |le||; in each element is estimated.

2.2. Error equations and reference error

The global equation for the error is recovered from Equation (2), replacing u by u; + e:
a(e,v)= / svd§) + / gyvdl — a(uy,v)=:R(v) YveH'(Q) %)
Q o9

The r.h.s. term of Equation (5), R(v), is the weak residual associated with the approximate
solution u,.

The local counterpart of Equation (5) is derived integrating the weighted residual of the
strong form, Equation (1), in €. It reads,

ak(e,v):Rk(v)+/ aVu-nvdl Yve H' () (6)
%NQ



where Ry (v) is the restriction of R(v) to €:
Ri(v):= / sde+/ gyvdl' — ap(uy, v) (7)
Qe QNN

Note that the last term of the r.h.s. of Equation (6) accounts for the unknown flux on the
interelement edges. In other words, the boundary conditions of the local problem are not
known.

The error is estimated approximating the solution of the local error equation (6). The
characterization of any residual-type error estimator requires to select both:

e the finite-dimensional space where the local error equation is solved (local %- or
p-refinement) and
e the unknown boundary conditions for the local problems.

The first point is related with the concept of reference error. Residual a posteriori error
estimation techniques are based on assessing and bounding the reference error and not the
error itself. For all practical purposes, the exact value of the error, e, is replaced by a reference
(or ‘truth’) error, eer, lying in a finite-dimensional space much refined with respect to the
computational space V. Let us denote by V! this refined space. Vet is generated either as
a h or p-refinement of V). That is, denoting by 4 and p the characteristic element size and
the degree of interpolation of the elements generating V'™, either A <h or p> p holds.
Thus, the reference error, e.r € V™, verifies the discrete form of Equation (5), that is

a(erer,v) =R(v) Yo Pl (8)

The direct computation of e.s is computationally unaffordable because it requires to solve a
system of equations with the number of degrees of freedom equal to the dimension of V™,

The fact of using a reference error (that is, replacing the continuous space H'(€2) by the
refined space V™, and the exact error e by the reference error e.;) does not introduce a
significant loss of accuracy in the error estimation procedure. Consequently, the quality of a
residual-type error estimation procedure depends essentially on the approximation of the local
boundary conditions.

3. STANDARD RESIDUAL-TYPE ERROR ESTIMATES

Standard residual-type error estimators [1-3] solve the local error equation (6) using approx-
imated Neumann boundary conditions. The values of the flux aVu - n|s,~q, see Equation (6),
are determined or approximated along the boundary of each element 2. This section is de-
voted to briefly describe this kind of estimators and to recall the proof of their upper bound

property.

3.1. Approximation of fluxes

The approximation of the flux is based on smoothing the approximate flux aVuy - n, which is
discontinuous. The basic idea due to Bank and Weiser [1] is to average the approximate flux
on every interelement edge. Let T, for m=1,...,ny, be the interelement edges of the mesh.



That is, for every m € {1,...,nin} they exist k,/ € {1,...,nelem}, k& 7/, such that L,=QnNQ,.
Then

aVulr, ~ [aVu,ls = %(aVuhLm, +aVuplaq,) for m=1,...,niy 9)

m

where [-]4 stands for the average on I),. The approximation given in Equation (9) is used in
Equation (6).

More sophisticated flux averaging procedures are used by other authors [2,3] in order to
obtain equilibrated local problems. They improve the efficiency of the estimator. Here, the
simplest averaging is used for illustration purposes. In fact, the following developments are
also valid for these approaches: it suffices to use a more complicated definition for the average
[aVupa.

3.2. Discrete local residual equation

Thus, the error estimate e.; is computed locally by solving the following problem: find
€est € VT such that

ap(eest; V) =Ry (v) + / [aVuy]y-nodD Yve Vkref (10)

082N

where V;*f is the restriction of V™ to €, that is
vret = {ve HY(Q)/30 € V™, v=1|g,} (11)

Equation (10) is the discrete version of Equation (6) using the approximation given by Equa-
tion (9).

Note that the sum of the spaces ;" is not equal to V™. In fact, V[ := @, V; is a space
of ‘broken’ functions. In order to recover V'™ it is necessary to restrict the space forcing the
continuity: V™ =yl 0@

A global equation for the error estimate e.y is found summing up Equation (10) for all
k (k=1,...,ngem),

aees ) =R@) + > [ [aVuply-[only dT Vo e Vi, (12)

m=1 JI,
where [vn]; stands for the jump of vn across I}, =N, that is,

[on]; = (vl I + (vl ) (13)

being n; =— n; the corresponding outward normal unit vectors. The recovered flux, see Section
3.1, is said to be consistent if the approximation of the flux is continuous, i.e. if the approxi-
mation of aVu|, is the same viewed from €); and from ;. In order to derive Equation (12)
it is necessary that the recovered fluxes are consistent.

Furthermore, if the test functions are continuous, i.e. if v is in V™ C Vef, then [vn], =0
and from Equation (12) one gets

a(ecs;, V) =R(v) Yve V™, where still e, € V| (14)



In other words, if the consistency condition is satisfied, the interelement edges are not a source
of flux in the global error equation (for v continuous). In the following, some properties of
the estimate e are derived replacing v in Equation (14) by particular functions in V™,

Remark 1
In Equation (12), the definition of a(-,-) must be generalized to accept ‘broken’ functions in
the arguments. Thus, for v,w e Ve,

Delem

a(w,v):= " ar(w,v) (15)

k=1

Of course, this generalized definition coincides with the standard one when the arguments are
in H'(Q).

3.3. Upper bound property

The consistency condition implies that the error estimates computed using Equation (10) are
upper bounds of the reference error. Although this is a well-known property of this kind of
estimators, the corresponding theorem is revisited and proved here because it is important in
the following.

Theorem 1
The error estimate ey computed solving Equation (10) yields an upper bound of the error,
that is

Eupp - = Hecst||2>”ercf||2 (16)

Proof
Taking v=e,r in Equations (14) and (8) it follows that

a(€est, €ref ) = A eref, Eref ) (17)
Then, the proof is completed by the following algebraic manipulation.
=a(eref, erer )
—
0 < a(eref — €ests Cref — eest) - a(eref: eref) + a(eest» eest) -2 a(eest» eref)

= a(eest: eest) - a(erefa eref) U

Remark 2

It is worth noting that the upper bound ¢, is defined in Equation (16) as the squared norm
of the error estimate. This is because the use of squared norms simplifies the presentation.
Thus, in the following, the estimates of the squared error norms, approximations of ||er||?,
are denoted by é&y.

Remark 3

In the general case, €. is not continuous (it is in ¥ but not in ™). Thus, in general,
it is not possible to take v=e.y in Equation (14). However, if a particular choice of the
boundary conditions of the local problems leads to a continuous estimate ey, then it can be



easily shown that a(ees, €est) <aleres, €rer) and, consequently, a(ees, €est) = a€res, €rer ). That is,
the choice of the Neumann boundary conditions giving a continuous estimate is optimal.

3.4. Solvability problems when b=0

If the reaction term vanishes in Equation (1) (b=0), the solvability of the local Neumann
problem, Equation (10), requires proper data ensuring equilibrium. It is well known that if the
source term s (body load) is not equilibrated by the prescribed boundary flux, the Neumann
problem does not have any solution. Locally (in element €2 ), the equilibrium condition reads

/sdQ+/ gNdI‘+/ [aVuyly-ndl =0 (18)
Qe QNN 0NN

The simple averaging described in Equation (9) does not enforce the equilibrium condition.

Two different strategies may be used in order to ensure the solvability of the local problems.
A first option is to use approximation of fluxes yielding equilibrated local problems.

The second strategy is to restrict the set of admissible functions in the local problem
eliminating from the local interpolation space the kernel of the Lh.s. of Equation (10). In
fact, the second and third estimators introduced by Bank and Weiser in Reference [1] use
this strategy. These estimators are used in the numerical examples and are they denoted by
e, and e;, respectively.

Remark 4
The description of these estimators requires to introduce the hierarchical decomposition of
yret, yret =y, @ Veom, where V™ is the hierarchical complement of ¥, in V™. The space
yeom contains the functions v of V™! such that the degrees of freedom (nodal values) of v
corresponding to V;, are null. Typically, for p-refinement, the functions of V™ are of the
bubble type. Then, for all ve V'™, 3y, € V), and 3veom € VO™ such that v= v, + veom. Thus,
the nodal projection from V™ to V,, . : V™ — V), is defined such that .#(v)=uvj,.

The second estimator, e, is then computed as the solution of the following local problem:

ar(ex,v) =Ry(v — F(v)) + / [aVuyls-n(v — #(v))dl Yoe Vet (19)
a%NQ
where the restriction of e, to € is in ¥}l and, therefore, the global e, is in V.
The third estimator, e;, is locally computed as the solution of

ar(es,v) =Ry (v) + / [aVuyly-nodl Yoe peom (20)
2%NQ
where the local restriction of V™, V™, must be understood in the same sense as in
Equation (11).

It is worth noting that e, is an upper bound for the reference error but e; is not. Indeed,
summing up the local Equation (19) on k£ one gets a global equation for e, where v ranges
on ng(fk and the same rational given for e.y, see Theorem 1, can be followed to deduce
that ||ez|| > ||lert]]. On the contrary, in the global equation corresponding to Equation (20), v
ranges on V0. The upper bound property cannot be deduced in this case because V™ ¢ Vgom.
However, in the asymptotic range, that is for # small enough, numerical evidence shows that
e; behaves also as an upper bound.



4. CORRECTION AND LOWER BOUND RECOVERING

In the previous section, see Remark 3, it has been noted that the overestimation of the error
is associated with the continuity defaults of the estimate e.y. In fact, it has been observed
that if the flux splitting is such that e.y is continuous, then the estimate ey is optimal. Thus,
the idea developed in this section is to introduce a correction of the error estimate in order to
enforce its continuity. This correction allows to deduce a lower bound of the reference (and
exact) error and, hence, to assess the effectivity of the original error estimate.

4.1. Correction and lower bound

Babuska and co-workers originally proposed to obtain a lower bound ¢, from a continuous
corrected estimate [10, 11]. Here, the evaluation of the lower bound is improved by defining
a scalar parametric family ¢,y (4). Moreover, it is proved in this section that an optimal value
of 4, Ao exists and that it can be easily evaluated. Note that the optimal estimate, &jqw(Aopt)
corresponds to the expression proposed in Reference [12], where the optimality of this choice
is not mentioned.

Recall that e.q € Vi<, that is ey is, in general, not continuous. Let e, € VI be a cor-
rection of e.y such that

€cont := €est T €cor € me (21)

that is, such that the corrected error e.,,; 1S continuous.
Given a corrected estimate ey, a parametric family of lower bound estimates is found.

Theorem 2

Let e.st be an error estimate verifying the hypothesis of Theorem 1 and, therefore, being an
upper bound of the reference error. Let e.,n¢ be a corrected estimate as described in Equation
(21). Then, for any scalar 1€ R, the expression

8low(i) = Zﬂba(eesta econt) - j~2||eccvnt||2 (22)
is a lower bound of the reference error norm, that is,
Slow()~)< ”eref”2 (23)

Proof
Since eqont 1S continuous, it is possible to replace v by ecn in Equations (14) and (8).
That is,

a(eest: econt) = a(eref: econt) (24)

Then, using Equation (24), inequality (23) is proved considering the following algebraic
manipulation:

0 <a(eref - j~ecconta Cref — /lecont) = a(ereb eref) + ;Lza(econta econt) - 2;va(€refa econt)
= ||erefH2 + lZHecont”z - 2/1a(eest: ecom)

= ||erefH2 - 8low(i) [l



Thus, once the corrected estimate e, is obtained, a lower bound of the error is re-
covered computing ¢ (4), for any value of A. The natural choice, =1, see References
[10,11,13,15], results in

glow(l)zza(eesta econt) - ||ec:0nt||2 == ||ef:>stH2 - Hecor”2 (25)

which in practice only requires the extra computation of ||ecor||-
However, the optimal choice for 4 is the value that maximizes the lower bound &y (4). It
is obvious from Equation (22) that this optimal value is
\ a(eest, e
/Lopt — ( est coznt) (26)
[ €cont |
Consequently, given an upper bound estimate ey, the optimal lower bound associated with a
corrected estimate egon; 1S

a(eest, €cont )2
l|econt ||

Bﬁ?‘:, = 8low(/lopt) =

(27)

This is, in fact, the expression adopted in Reference [12].

Remark 5
Both &7 and &ew(1) are exact if the recovering technique to obtain the corrected estimate
econt 1S optimal. Indeed, if the corrected estimate coincides with the reference error, that is

€cont = Cref» then
glcg)\fv = glow(l ) = HerefH2

Thus, both the lower bounds given by Equations (25) and (27) are sharp provided that the
determination of the corrected estimate e., is accurate. In fact, the strategy used to obtain
e.ont 18 oriented to enforce egon ~ €per.

Obviously, given e, the estimate 8105; is sharper than ¢, (1). Consequently, once econt 1S
determined, &P is used to evaluate the lower bound. Nevertheless, in order to set a criterion

for the determination of econ, the expression of ggy (1), Equation (25), is preferred to the
expression of sffvtv, Equation (27). This is detailed in the next section.

4.2. Determination of the corrected estimate eoy

This section describes the smoothing process that builds up the corrected estimate econ. The
degrees of freedom of the original estimate, e.y, affecting the continuity (associated with edges
and corners) are simply averaged. This part of the smoothing process is standard [10, 11].
Here, the remaining degrees of freedom affecting the interior of the elements (bubble functions
inside the elements) are set using an objective optimality criterion. The presentation is based
in the formulation of the parametric family of scalar lower bounds, &,y(4) introduced in
Section 4.1.

The correction e.,, and, consequently, the corrected estimate e, and the corresponding
lower bound &, are not unique. Any function econ € V™ produces a lower bound &, . How-
ever, as noted in Remark 5, in order to obtain a sharp lower bound e, must be selected
in order to fairly approximate e.r. Assuming that ey is a proper approximation of e.r but
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Figure 1. Classification and denomination of the interpolation functions in ¥\ . The functions

affecting the boundaries, both associated with comers (left) and edges (centre) are responsible of

the continuity. The interior bubble functions (right) do not affect the continuity and they are set
in order to obtain the sharper lower bound gp,,.

in a broken space, a natural choice is to take the average of the estimated error along the
interelement edges.

In order to formalize this averaging, the following decomposition of the local reference
interpolation space V™' is considered:

Vkref = chomer D Vkedge ® kaubble (28)

where VP"le s the subspace containing the bubble functions (vanishing on %), V**° con-
tains the functions having non-zero values in the boundary and vanishing in the corner nodes
of element € and V*™ accounts for the degrees of freedom associated with the corner
nodes, see Figure 1 for an illustration. This local decomposition induces the definition of the
following global spaces:

comer .__ corner comer .__ y7comer ref
Vbrok = ? Vk & A Vbrok nv

dge . __ edge edge .__ predge ref
Vlfrok T ? Vk v T Vbrok nv

bubble .__ bubble
i

Note that V®le does not have a ‘broken’ version because the bubble functions do not intro-
duce discontinuities along the edges. Thus, V[, and V™ are decomposed as
Vt:f(t;k e bcgl?er @ Vlfriie fary Vbubb]e and Vref — Jycomer ® Vedge @ Vbubble (29)
Consequently, the estimate e is uniquely represented by the following decomposition:
G = e o (30)

where eomer ¢ pgomer g% ¢ pedie  apg  ghubble ¢ pbubble  ang g € V™ is  uniquely
decomposed as

edge | bubbl
€cont = eﬁg;'t'e' s ecogt ~+ €cont o (31)
where egomer ¢ peomer  gedte o redge g gbubble ¢ prbubble The determination of eqon requires to

set the proper values for ecomer, 3% apq gbubble



Figure 2. Averaging of the degrees of freedom associated with the edges.

Following Remark 5, e is determined starting from e.; and such that e, is likely a
good approximation to e.s. The application transforming e.s in €. is denoted by .#:

M V;fgk —5 P
€est +— €cont

Thus, to characterize the smoothing operator .# it is sufficient to describe e, as a function
of e, that is eomer, %% and ebubble a5 functions of emer, ¢4 and ebubble  Indeed, .# is
described by the way it maps e.y into e.on. Thus, in order to characterize .# it suffices to
define the decomposition of the €con = .#(ecs), that is €<omer, %3 and gbibble i terms of the
original estimate e.y or its decomposition.

In order to enforce continuity, the ‘corner’ and ‘edge’ components are smoothed indepen-
dently, that is emer = g/(ec™r) and eS3E = #(e22¥°). As already mentioned, the simplest
option is to average the discontinuous values. In a 2-D framework, every interelement edge

T, (m=1,...,ny) is shared by two elements, say T, =N, and, therefore

eoontIr, = 3(ees o, + €xlan) (32)
see Figure 2 for illustration. The same strategy is adopted for the corner points. The con-
tribution of the interpolation functions associated with the corner points, eSn" is computed
averaging the values of the discontinuous function €™ in each corner point. That results in
an expression similar to Equation (32) where, for every comer point, the number of values
to average is equal to the number of elements to which the corner point belongs. This is
illustrated in Figure 3.

Once e«™r and %% are set it is necessary to find the value of P It is worth noting
that the choice for e2“®" does not affect the continuity of econ. The value of €222 is therefore
selected such that the obtained estimate is as sharp as possible.

Recall that, once e, is determined, the sharper lower bound is s,‘zp‘:,, see Equation (27).
Then, the first idea is to select e such that, given €S and efor, it maximizes &!.
However, this criterion leads to a non-linear global (referred to the whole domain) equation
which is difficult to solve. On the contrary, finding €?%"'° such that g,y(1), see Equation (25),
is maximum leads to a simple linear local (element by element) equation. This is stated in

the following theorem:
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Figure 3. Averaging of the degrees of freedom associated with the corners.
Theorem 3

Let ey be an error estimate verifying the hypothesis of Theorem 1 and, therefore, being an
upper bound of the reference error. Let econ =
Assume that e%omer

comer 4 o¢dge 4 ghubble he 3 corrected estimate.
- comer and ¢S%° are obtained by averaging. Then, the value of el maximizing
£ow(1) is such that
bubble - comer edge
a(econt ’U) —a(eﬁt — €cont =
Proof

— “cont » U) Voe Vbubble

(33)

Recall that g0y (1) = ||€est||>—||€cont —€est ||*, therefore maximize &,(1) is equivalent to minimize

4
llecont — €estl] = llebont ™ — (€est — €Gonte” — €zont )l
The problem is reformulated as: find ebuePle

ble pbubble guch that " eggktble — (Eest — €0 _ edge
is minimum. Obviously, the solution of this problem is the projection of e.y — €
on VPubble which satisfies Equation (33).

cont cont ) "

corner __ eedge
cont cont

O
Thus, taking el as the solution of Equation (33) completes the determination of .#.
Note that, in this case, e, depends on the ‘corner’ and ‘edge’ components of e.y.
Remark 6

The smoothing operator .# is linear because
comer edge
eest s eest

corner edge

bubble
€cont > €cont and €

oot are linear functions of
and €2, Moreover, the quality of the lower bound &, depends on the ability
of ./ to approximate the reference error e,. Note this quality depends only on the averaging
on the boundaries. It suffices that e .o, coincides with e,s on the interelement boundaries (i.e.
for ecomer 4 godge

) to obtain an exact error assessment. That is if

econt'I‘m = eref'I‘m for every m=1,...,ny
then e.ont =€ and, consequently (see Remark 5),

sﬁf:v =gow(1)= ”eref||2
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4.3. Computational aspects

The selection of the optimal value of €2 is performed solving Equation (33). These com-

putations can be done locally, element by element, because the bubble spaces are orthogonal
(the supports of the bubbles are disjoint). Thus, once €™ and €2 are computed by simple
averaging, the restriction of €2 to (), ebuPble|o is computed solving the local version of

cont cont
Equation (33):

1 d; 1
ak(elc)gr?tb e|Qkﬂ U) = ak(eest - eggrrll:er - esogf’ U) Yve Vl'chbb ¢ (34)

Equation (34) results in a small system of linear equations that must be solved to compute
ebubble| . The number of equations for each local problem is equal to the number of ‘bubble’
degrees of freedom in the reference discretization. For example, for lagrangian quadrilateral
elements, this number is equal to (1 — p)?, being p the degree of the polynomials used to

generate V™'

4.4. Assessment of the effectivity index and average estimate

Once the lower bound of the error is computed, the effectivity index of the original estimate
leest|| may be easily assessed. Let 1.y be the effectivity index associated with e,
[ €cst |
= (35)
T e
The upper bound property ensures #.s = 1. Nevertheless 7.y may be very large and it is not
possible, in the general case, to assess the quality of the estimate. Using the lower bound ¢,y
of the error, an upper bound of the effectivity index n* is easily computed:

+._ ||eestH - > 36
no: r]ow = Nest ( )

This pessimistic value of the effectivity index is sharp when the lower bound error estimate
Elow 1S sharp.
Once the upper and the lower bounds of the error, &y, = ||€est||> and &y, are available the
average estimate is introduced
Cave - = %(gupp + 8low) (37)

Remark 7

As noted in Remark 2, the estimates &, represent approximations to the squared norms of the
error. The average of the squared norms is larger than the simple averaging of the norms,
that is,

%(8upp + 8low) 2 [%(\/ gupp + \V4 810w)]2

The behaviour of this average estimate is analysed in the examples presented in Section 6.

5. FITTING LOCAL ARBITRARY CONSTANTS FOR =0

In problems without a reaction term, the lower bounds of the error obtained with the previously
discussed techniques have a poor (very low) eectivity index. In this section, a strategy to



preclude this deficiency is introduced. If =0 in Equation (1) (pure diffusion, no reaction)
eest 18 locally determined up to a constant because

Heestl|k:Heest+ckaa kzls‘-'anelem (38)

Nelem

Then, the estimate e. may be replaced by ecq + Y, cr ¢ without changing the upper bound
Eupp> DEING {P1,o,..., Py, } the basis of the space of piecewise constant functions. That is,
for k=1,...,n¢em,

1 ifXEQk

¢k(X)={

The upper bound estimate &, is independent of the constants c;. Nevertheless, the choice
of the constants ¢; affects drastically the value of the corrected error, e.o. Moreover, the
correction strategy is expected to work properly only if the average values of e, are close
to err, see Remark 5. If the constants are set arbitrarily, the value of the correction cannot
be expected to be optimal.

Consequently, the constants ¢, k=1,...,n.en, are taken as unknowns and they are deter-
mined such that the resulting lower bound is somehow optimal. Let c=[c...cy,,,] be the
vector of unknown constants. The corrected estimate e,y may be seen as a function of c:

Delem

(€)= M (e + ¥ ckm) — o) + 5 crt () (40)

It is clear from Equation (40) that, due to the linearity of .#, e.on(c) is linear. Both the lower
bounds g,y (1) and sﬁf"; depend on ¢ through e.oy. The criterion used to select ¢ is obviously
to maximize the lower bound. The maximization of &7, is the more natural option because
& is the sharper error bound. Nevertheless, similarly to the previous section, finding ¢ that
optimizes ¥ requires to solve a non-linear problem. On the contrary, to find ¢ such that

low
elow(1) 18 maximum leads to a simple linear problem. Thus, the criterion for determining c¢ is

C. . t
based on maximizing & (1) rather than &" .

The dependence of ¢,w(1) on ¢ is written by introducing Equation (40) in Equation (25)
and replacing e by €est + Do cr i

2 2

Nelem

Nelem Nelem
Slow(l) = ||€est + Z ck¢k Cest T Z ck¢k - %(eest) - Z %(Qbk)ck
k=1 k=1 k=1

2

(41)

= ||eestH2 -

Nelem
Cest — e%(eest) - Z e%(d)k)ck
k=1

Then, to maximize &y (1) is equivalent to minimize the function F(¢) defined by

F(e):=

Delem
Cest — <ﬂ(eesl) - Z %(d)k )ck
k=1

The coefficients ¢, that minimize F(c) are obtained imposing that > ;T .#(¢i)ck is the
projection of e.ss — .#(eest) On the space generated by the functions .#(¢y), for k=1...n¢jen
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Figure 4. Construction of .#(¢;) (right) from ¢; (left). The function in the centre

accounts only for the ‘corner’ and ‘edge’ terms, before adding the ‘bubble’ term that

affects only the interior of the elements. Note that the influence of using the proper
‘bubble’ contribution is very important.

(that is, the image by .# of the space of piecewise constant functions). Figure 4 illustrates
the shape of the functions .#(¢;) and their construction from ¢y.
Thus, the equation to be satisfied by the coefficients ¢ is

:i_)a: cka(M(px), M (1)) =a(eest — M(eest), #(P1)) for I=1,...,Netem (42)

That is, ¢ is computed as the solution of a linear ngjem X neem System of equations.

Once the coefficients ¢ are computed, the corresponding corrected estimate e is intro-
duced in the expression of slow to obtain the sharper error lower bound.

Numerical experiments demonstrate that the correction obtained with this strategy yields
sharp lower bound estimates because the obtained correction ey is a much better approx-
imation to e, see Figure 5. On the contrary, the correction for the standard estimate (i.e.
with arbitrary constants) yields lower bound estimates of poor quality.

It is worth noting that the constants ¢; are determined solving the global system of equa-
tions (42). Thus, adding these constants to the original estimate e,y accounts for the influence
of the whole domain in the local errors. Consequently, the estimate €., using this informa-
tion may be used to assess the pollution errors, that is, the errors affecting each zone of the
domain coming from far from its close neighbourhood.

6. NUMERICAL EXAMPLES

We study in this section the behaviour of the postprocessing estimate presented above. The
examples selected are such that the analytical exact solution is known and they have been
used by other authors to assess the performance of similar techniques [1,2]. The quality of
the error estimates is measured using the index p

estimated error

- -1
p exact (or reference) error
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Figure 5. Illustration of the constant fitting process: the raw estimate ecst with arbitrary

constants is smoothed into .#(ecst) (top), the smoothed version of the estimate corrected

with the optimal constants is much more similar to the reference error (bottom): in the
example the underestimation is improved from 76% (without constant fitting) to 83%.

that is, the effectivity index minus one. The use of p is preferred because the sign of p
indicates if the estimate is an upper or a lower bound (positive if upper, negative if lower)
and the absolute value indicates the quality of the estimate (good quality if |p| small). In the
following, the value of p corresponding to every estimate is denoted with the same subscript,
that is,

Vex
px=— — 1
7 el

where the subscript % takes the values ‘upp’, ‘low’ and ‘ave’. The superscript C for pjow, pﬁ)w,
is used to denote the correction obtained with the determination of elementwise constants
introduced in Section 5. Moreover, we also use the version p* corresponding to the assessed
effectivity index n* (p*:=n* — 1), see Equation (36).

As noted in Section 3.4, the second and third estimators introduced in Reference [1], denoted
by e, and es, respectively, are used as the original upper bound estimates e.y. In the examples,
the performance of these estimates is analysed throughout the values of pyyp.

6.1. Example 1

In the first example the reaction—diffusion equation is solved, a=1 and b=1 in Equation (1).
The problem is defined in the squared domain Q2=(0,1)x(0,1). The boundary conditions
are set to be Dirichlet homogeneous (that is u=0) on Ir:={(x,0); 0<x<1} and Neumann
homogeneous (that is du/0n=0) elsewhere on 0f). The source term s is taken such that the
exact solution has the following analytical expression:

2 2,10¢% 2 2,10
= 1- 1- Y 4
u(x, ¥) = 3555 (1 = x)% (1 = p)e (43)
see Figure 6 for a representation. The second example described in this section is stated such
that the solution u is exactly the same.
The approximate solution u;, is computed using a bilinear interpolation ( p = 1) whereas the

error estimates e; and e; are computed using a bicubic interpolation (p =3).



Figure 6. Examples 1 and 2: exact solution.

Table I. Example 1: results in a series of uniformly %-refined meshes.

Estimate e> Estimate e3

+

Dof [lell/l|ull llewell/lwll £ puwp Plow Pae P Pupp Plow Pave

36 0.8469 0.7726 0.3453 0.1589 —0.1386 0.0210 0.2713 0.0544 —0.1706 —0.0514
121 0.4331 0.4036 0.2428 0.1221 —0.0971 0.0184 0.2116 0.0569 —0.1277 —0.0310
441  0.3083 0.3064 0.3258 0.2132 —0.0849 0.0745 0.2737 0.1706 —0.0809 0.0524
1681 0.2093 0.2092 0.2578 0.1831 —0.0594 0.0688 0.1843 0.1263 —0.0489 0.0424
6561 0.1144 0.1144 0.1129 0.0845 —0.0255 0.0310 0.0691 0.0498 —0.0181 0.0164

The proposed approach is used to recover new estimates in two sequences of increasingly
refined meshes. In the first series of meshes the refinement is uniform, in the second one the
refinement follows an adaptive strategy based on the error assessment [14].

The results concerning the uniformly refined meshes are summarized in Table I and
Figure 7.

In a similar manner, the results concerning the adaptively refined meshes are summarized
in Table II and Figure 8. The sequence of adapted meshes is shown in Figure 9.

It is worth noting in Tables I and II that the difference between the exact error (in this case
is known) and the reference error is negligible for accurate enough meshes. As expected, the
values of pypp are indeed positive and the values of pj,, negative. The value of p* is greater
than p,,p. Note that p* is computed without any information on the exact (or reference)
solution but it furnishes a good approximation of the exact effectivity index. Moreover, for
most of the meshes (except for the coarsest) the value of the corrected estimate g, is better
than the original estimate &y, (|Piow| <|Pupp|), that results on pay.>0.
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Figure 7. Example 1: performance of the estimates following a uniform A-refinement process
for the estimates e, (left) and e; (right).

Table II. Example 1: results in a series of adaptively /-refined meshes.

Estimate e;

Estimate e3

+

Dof  [lel/lfull  [lere l/|ull p Pupp Plow Pave p Pupp Plow Pave
36 0.8469 0.7726 0.3453 0.1589 —0.1386 0.0210 0.2713 0.0544 —0.1706 —0.0514
2550 0.0798 0.0798 0.0822 0.0645 —0.0164 0.0248 0.0517 0.0354 —0.0155 0.0103
2905 0.0478 0.0478 0.1263 0.1136 —0.0113 0.0530 0.1129 0.0622 —0.0456 0.0098
3574 0.0433 0.0433 0.1279 0.1152 —0.0113 0.0539 0.1108 0.0614 —0.0445 0.0098
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Figure 8. Example 1: performance of the estimates following an adaptive A-refinement
process for the estimates e, (left) and es (right)
Remark 8

As expected, the adaptive procedure optimizes the computational resources and yields lower
error with less degrees of freedom. However, the adapted meshes have distorted elements, see
Figure 9, and the quality of the estimates e, and e; is slightly degraded in adapted meshes,
see Figure 8. This phenomenon produces a peculiar end effect in the plots describing the
evolution of the effectivity along the adaptive process. This effect does not appear in the



Figure 9. Example 1: Sequence of adapted meshes with 36,2550,2950 and 3574 dof.
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Figure 10. Example 1: performance of the estimators and using different degrees of
interpolation in the reference space (p).

uniform A-refinement process where all the meshes are structured, see Figure 7. The proposed
lower bound corrects this behaviour in the case of the estimate e, but not in the case of
e3. In this example, the average &, performs very well in the sense that behaves as a new
estimate, mostly a new upper bound, much more reliable than the original one. The same
effect is observed in the next example, see Figure 11.

The effect of varying the degree of interpolation in the reference space (p) is investigated
for one of the meshes (the second mesh of the adaptive process, with 2550 dof) and for the
estimate e;. We are interested in assessing the influence of p in the error estimate and the
corresponding corrections. The results are shown in Figure 10. Note that the effectivity of
the original estimate, e.y is not improved by using a larger p. On the contrary, the larger
values of p are associated with the poorer quality estimates. Nevertheless, the quality of the
postprocessed lower bounds is not so sensitive to the variations of p and their quality does
not depend on p.



Table III. Example 2: results in a series of uniformly A-refined meshes.

Estimate e,

Dof  lell/llull  llewrl/Ilull Pt Pupp Plow Plow Pave

36 0.8483 0.7737 02729 01571  —0.1177  —0.0909  0.0405
121 0.4342 0.4046 02059 01217  —0.0838  —00698  0.0304
441 0.3091 03072 02220 02131  —0.0461  —00073  0.1084
1681  0.2099 0.2098 0.1844 01831  —0.0321  —00011  0.0949
6561 0.1148 0.1148 0.0849 00845  —0.0148  —0.0003  0.0430

Figure 11. Example 2: performance of the estimates following a uniform (left) and an
adaptive (right) A-refinement process for the estimate e;.

Figure 12. Example 2: sequence of adapted meshes with 36,2561,2918 and 3628 dof.

6.2. Example 2

Now, we consider the Poisson equation, a=1 and »=0 in Equation (1). The domain and the
boundary conditions are exactly the same as in the previous example. The source term s is
taken such that the exact solution is also the same, see Equation (43). In this example, we
only study the application of the developed postprocessing strategy to the e, estimate.
Again, the proposed strategy is used in a series of uniformly and adaptively A-refined
meshes. The results for the uniformly refined meshes are summarized in Table III and
Figure 11. Figure 12 shows a sequence of adapted meshes and Table IV with Figure 11
describe the behaviour of the different estimates. The notation p{  is introduced to denote the



Table IV. Example 2: results in a series of adaptively A-refined meshes.

Estimate e;

Dof  lell/llull [lerer]l/||ul] pt Pupp Plow Plow Pave
36 0.8483 0.7737 0.2729 0.1571 —0.1177 —0.0909 0.0405
2561 0.0785 0.0785 0.0593 0.0586 —0.0112 —0.0007 0.0294
2918 0.0482 0.0482 0.1216 0.1186 —0.0077 —0.0027 0.0596
3628 0.0432 0.0432 0.1038 0.1008 —0.0070 —0.0027 0.0503
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Figure 13. Example 2: performance of the estimators and using different degrees of
interpolation in the reference space (p).

correction introduced in Section 5. As expected, the value of p , is much better than the value
of Plow-

The influence of p in the different estimates is shown in Figure 13. These results correspond
to the second mesh of the adaptive process, with 2561 dof. Once again, due to the phenomenon
described in the previous example, increasing p does not result in a better effectivity index
for the upper bound estimate. Nevertheless, the lower bound estimate e, with the constant
element by element correction (measured by pf ) is roughly independent of p and much
better compared to the original estimate.

6.3. Example 3

This example was introduced in Reference [1]. We consider the Laplace equation, a=1,
b=0 and s=0 in Equation (1). As in the previous example, only the e, estimate is used
with the proposed postprocessing strategy.

The domain §2 is defined by Q={(r,0) : 0<r<1, 0<0<kn/4} where r and 0 are the
polar coordinates and the analytical solution is

u(r,0)=r?* sin(zke> (44)



Figure 14. Example 3: adapted meshes for k=1 (left) k=3 (centre) and k =4 (right).

Table V. Example 3, k= 1: results in a series of adaptively A-refined meshes.

Estimate e;

Dof lefl/llull - llewetl/[ull p* Pupp Piow Plow Pave

69 0.0397 0.0397 03788 03730  —0.0109  —0.0042  0.1993
1637 0.0069 0.0069 0.1250  0.1224  —0.0052  —0.0022  0.0619
3938 0.0044 0.0044 0.1925 01849  —0.0109  —0.0064  0.0934
4668 0.0040 0.0040 02051  0.1992  —0.0092  —0.0048  0.1019

Table VI. Example 3, & =3: results in a series of adaptively A-refined meshes.

Estimate e,

Dof  [lefl/[ulllerer l/ul P’ Pupp Plow Plow Pave

169 0.0298 0.0294 10167 06153  —02412  —0.1991 02749
580 0.0139 0.0138 07023 03618  —02468  —0.2001  0.1168
1436 0.0078 0.0077 04700 03375  —0.1211  —0.0901  0.1438
3795 0.0047 0.0047 03860 03242 —0.0626  —0.0446  0.1546
6585 0.0036 0.0035 03407 02861  —0.0615  —0.0407  0.1345

That is, €2 is a circular sector and k is a parameter that sets both the size of the domain and
the regularity of the solution. In the following, we consider the cases k=1, 3 and 4. Dirichlet
boundary conditions are imposed along 6 =0 and Neumann boundary conditions are forced
on the rest of the boundary. The boundary conditions are such that the exact solution is the
analytical expression given in Equation (44).

For each one of the values of k, the error assessment is performed for a sequence of adapted
meshes. Figure 14 shows examples of adapted meshes for each value of %.

The results are shown in Tables V, VI and VII for £ =1,3 and 4, respectively, and also in
Figure 15. It is worth noting that using the constant fitting (the difference between pf, , and
Plow> See Figure 15) is relevant specially for £ =4, that is, when the singularity pollutes the
error estimate based only on local computations.

In order to analyse the spatial distribution of the estimated error, Figure 16 shows the
histograms describing the occurrences of the values of local (element by element) effectivity
indices for both the estimated error and the lower estimate. The example corresponds to the
second mesh obtained for k=1 (with 1637 dof). An almost uniform distribution is obtained



Table VII. Example 3, £k =4: results in a series of adaptively A-refined meshes.

Estimate e;

Dof  lell/llull  llewtl/llull p* Pupp Piow Plow Pave
220 0.1310 0.1200 0.4449 0.1384 —0.2960 —0.2121 —0.0211
372 0.0587 0.0548 0.4858 0.2090 —0.2626 —0.1863 0.0304
723 0.0312 0.0297 0.5364 0.2418 —0.2603 —0.1917 0.0477
3297 0.0126 0.0122 0.4800 0.2293 —0.2346 —0.1694 0.0491
6859 0.0077 0.0076 0.4154 0.2440 —0.1790 —0.1211 0.0770
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Figure 15. Example 3: performance of the estimates following an adaptive A-refinement for
k=1 (left), k=3 (centre) and k =4 (right).
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Figure 16. Example 3: Histogram representing the occurrences of the local effectivity index
for e, (left) and for the proposed strategy (right).

since the values are close to 100%. As expected, the second Bank and Weiser estimator e;
produces local estimates which overestimate almost everywhere the exact error. The local
corrected estimates, as expected, underestimate the exact error. The bound property for the
global error is then reproduced locally in most elements.



7. CONCLUDING REMARKS

A simple postprocessing strategy has been presented to recover lower bound estimates from
standard residual estimators producing upper bounds of the error. The main idea is to smooth
the discontinuous estimate e,y and to obtain a continuous approximation e.. to the reference
error er. A lower bound of the error is computed using egon-

For the pure diffusion problem (when the reaction term in the PDE vanishes) the estimate
eest 1s determined up to a local (element by element) constant. In order to improve the
postprocessing in this situation the local arbitrary constants are found such that the sharpest
lower bound is obtained.

Numerical experiments show that the proposed strategy furnishes sharp lower estimates, of
better quality than the original upper ones.

The presented strategy may be used in the framework of error estimation for outputs of
interest, where upper and lower bounds of the energy error measure are required.
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