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Abstract: Electric vehicles have undergone a recent faddy trend in the United States and Europe, and
several recent publications trumpet the continued rise of electric vehicles citing steadily-climbing
monthly vehicle sales. The broad purpose of this study is to examine this optimism with some
degree of mathematical rigor. Specifically, the methodology will use catastrophe theory to explore
the possibility of a sudden, seemingly-unexplainable crash in vehicle sales. The study begins by
defining optimal system equations that well-model the available sales data. Next, these optimal
models are used to investigate the potential response to a slow dynamic acting on the relatively faster
dynamic of the optimal system equations. Catastrophe theory indicates a potential sudden crash in
sales when a slow dynamic is at-work. It is noteworthy that the prediction can be made even while
sales are increasing.

Keywords: electric vehicles; gas prices; catastrophe theory; least squares; extrapolation; equilibrium
point; jump theory

1. Introduction

Worldwide electric car sales taken from U.S. Department of Energy data is to be investigated
using Catastrophe Theory. Electric vehicle adoption is claimed to be gaining gradual momentum [1],
but could this merely be hyped? An evaluation of electric vehicles’ market penetration scenarios [2]
would seem to indicate the inevitability of ubiquitous use of electric vehicles. Nominal sales analysis
methods [3] include period comparisons, break-even analysis, competitor sales analysis, year-over-year
comparisons, and these methods normally use simple linear models. Since history has demonstrated
that vehicle sales do not simply climb and fall linearly in accordance with low-order models, higher
order assumptions must be evaluated. For a second-order or higher mathematical model, it is not
guaranteed that the sales data will continue to climb. Instead, sales could suffer from catastrophe
and plummet and go to a low or zero steady-state equilibrium value. Normally, Catastrophe Theory
presumes the presence of fast and slow dynamics which can cause an otherwise stable system to
experience discontinuous catastrophic “jumps”. The fast dynamic is modeled linearly with sufficient
accuracy (often accuracy is increased with increasing model-order, as the higher order factors can
account for the slow moving dynamic). The first step taken here is to use linear least squares to fit the
data to an optimum linear mathematical model. The model is then extrapolated to visually see the
steady-state behavior before formal stability analysis.

2. Catastrophe Theory

Catastrophe theory models the system using fast (dominant) linear dynamics plus slow dynamics
whose combination result in real-world nonlinear affects that can often confound predication. The main
point is that otherwise stable linear system models can be slowly changing such that they can rapidly
become unstable (aka. “catastrophe”). The principle method of analysis is to differentiate the system
equations and equate to zero to solve for equilibrium points. Next, each equilibrium point is evaluated
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as stable or unstable. Lastly, the system equation is slowly modified to see if any catastrophic “jump”
occurs. If a jump occurs, the system can come to rest at a stable equilibrium point where sales have
gone to zero (naturally, that is highly undesirable). Readers should be careful not to strongly claim that
catastrophe will occur; however the results of such analysis should warn investors of the mathematical
indications that catastrophe can occur, or perhaps more correctly catastrophe analysis indicates that sales
crash will occur.

3. Results

We start by using least squares to find optimal system equations for increasingly higher order
models (Figure 1). Sales data are compiled by Argonne’s Center for Transportation Research and
reported to the U.S. Department of Energy’s Vehicle Technologies Office each month [4].
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Figure 1. Least squares curves fitting cumulative sales data.

3.1. System Identification: Optimally Fitting Data to Assumed Models

Least squares

Figure 1 shows the least squares analysis based on cumulative vehicle sales.

3.2. Sales Rates from Differentiation of Assumed Models

Figure 2 displays the monthly sales raw data as points, and each subsequently higher-order model
is displayed using a different type of line with each case displayed separately in Figure 3 for clarity.
At initial glance, all the curves oscillate in a generally upward direction, so lacking further analysis,
anticipating increasing sales (without a catastrophic jump) is a tempting conclusion.
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sales would never recover. Thus, we see that all of the system equations of higher order (than the 

Figure 3. Least squares curves (lines) fitting total monthly sales data (points): (a) first-order;
(b) second-order; (c) third-order; (d) fourth-order; (e) fifth-order; (f) sixth-order model assumption.

3.3. Extrapolation by Forward Time Propagation

It is noteworthy to propagate the least squares system equations’ curves forward in time to see
what nominal sales could be expected (Figure 4). The accuracy of optimal math models increased as
the model order increased (i.e., the curves better fit the actual data). Data was available for 51 months
(just over 4 years coinciding with the recent dramatic increase in gasoline prices), and models as high
as sixth-order were investigated. It is noteworthy that recent data clearly reveals decreasing sales
recently, coinciding with the dramatic reduction in gasoline prices accompanying the shale gas boom.

Extrapolation far beyond those 51 months (see Figure 4) revealed that all models except for the
first order (linear) model experience catastrophic loss of sales (depicted) very quickly and did not
recover for 20 years. The extrapolation was extended beyond 20 years (not depicted) revealing that
sales would never recover. Thus, we see that all of the system equations of higher order (than the linear
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case) experience a dramatic steady fall in sales, while at least the 5th order case eventually rebounds
dramatically after 221 months (in August 2029).
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3.4. Equilibrium Point Analysis: Modeling Electric Car Sales with Catastrophe Theory: Fast and
Slow Dynamics

Continuing with our analysis, we investigate whether these system equations are susceptible
to “jumps” associate with catastrophe theory. Differentiating the optimal system equations reveals
potential equilibrium points in the system equation where the rate crosses zero (Figure 5). Furthermore
we see that it is an unstable equilibrium point indicating potential catastrophe just shy of nine years in
instances of slow dynamics.
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3.5. Impulse Iteration: Analysis of System with Slow Moving Dynamic

Taking the third order case as an example (Equation (1)), we will differentiate, seeking equilibrium
points for the general class of equations: y = −ax3 + bx2 − cx + 345 where the final constant is chosen
to fit the actual data at the initial time (i.e., x = 0). First, notice in the extrapolation of the system
equations for both monthly and cumulative data seem to reveal sale will “crash” (Figure 6).

y = −0.2803x3 + 18.9x2 − 73.886x + 845.28, (1)
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Figure 6. Extrapolation of system equations (sales and rate).

Iteration of coefficients reveals that modification between stable and unstable is best achieved by
modifying the b coefficient on the squared-term. Before differentiating, the coefficients were chosen to
match the least squares optimal system model, thus a = 0.2803, c = 73.886, and the final constant was
set to 845.28 and b was iterated seeking improved performance. Control variables a, b, and c where
investigated, and control variable b was found to have the most significant impact. Figure 7 depicts
the least squares optimal system equation (b = 18.9) compared to higher and lower values of b. It is
apparent that reducing b degrades sales and could be associated with higher gas prices. Lowering gas
prices could be associated with increasing b which improves sales performance.

Mathematics 2017, 5, 46 5 of 7 

 

 

Figure 6. Extrapolation of system equations (sales and rate). 

Iteration of coefficients reveals that modification between stable and unstable is best achieved 

by modifying the b coefficient on the squared-term. Before differentiating, the coefficients were 

chosen to match the least squares optimal system model, thus a = 0.2803, c = 73.886, and the final 

constant was set to 845.28 and b was iterated seeking improved performance. Control variables a, b, 

and c where investigated, and control variable b was found to have the most significant impact. 

Figure 7 depicts the least squares optimal system equation (b = 18.9) compared to higher and lower 

values of b. It is apparent that reducing b degrades sales and could be associated with higher gas 

prices. Lowering gas prices could be associated with increasing b which improves sales performance. 

 

Figure 7. Increasing b coefficient to increase sales. 

Next, y = −0.2803x3 + bx2 − 73.886x + 845.28 the least squares optimal system equation was 

differentiated seeking equilibrium points. 

𝑦 = −0.2803𝑥3 + b𝑥2 − 73.886𝑥 + 845.28, (2) 

𝑑𝑦

𝑑𝑥
= −(3)0.2803𝑥2 + (2)b𝑥 − 73.886, (3) 

𝑑𝑦

𝑑𝑥
= −0.8409𝑥2 + 2b𝑥 − 73.886 = 0, (4) 

Equation (4) was plotted in Figure 8 for various choices of the b-coefficient revealing the impact 

of our choice on the potential for catastrophe in sales. 

Figure 7. Increasing b coefficient to increase sales.

Next, y = −0.2803x3 + bx2 − 73.886x + 845.28 the least squares optimal system equation was
differentiated seeking equilibrium points.

y = −0.2803x3 + bx2 − 73.886x + 845.28, (2)

dy
dx

= −(3)0.2803x2 + (2)bx − 73.886, (3)
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dy
dx

= −0.8409x2 + 2bx − 73.886 = 0, (4)

Equation (4) was plotted in Figure 8 for various choices of the b-coefficient revealing the impact
of our choice on the potential for catastrophe in sales.
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Using the iterated b values used earlier, the equilibrium points for each case occur when the
derivative dy/dx = 0 (Figure 9). We see in all cases dy/dx > 0 at the start, but eventually go to zero
and continue until dy/dx < 0. Next, consider what would happen if b decreases. Say, for instance
you began on the nominal curve derived with least squares, but subsequently, the gas prices slowly,
but steadily drop generating a decreasing b coefficient. When b was halved, you find yourself on the
lower curve in Figure 9, and thus you would experience a catastrophic jump onto the lower curve
which may have already passed through into the negative rate territory.
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4. Discussion

The results show how catastrophe theory could provide prediction of a crash in electrical vehicle
sales after experiencing the very beginning of a potential decline. In this study, seemingly good
data that reflects a steady, oscillating climb in vehicle sales is used to predict a crash in monthly
sales. Sometimes, slow moving dynamics applied to linear models is insufficient to indicate potential
catastrophe, and in those cases subsequent analysis can include nonparametric regression methods
such as kernel regression or smoothing splines in low-dimensional scenarios or for high-dimension
data, additive models, multivariate adaptive regression splines, random forests, neural networks, and
others might be used [5]. One particularly useful stochastic method for complex linear and nonlinear
relationships simultaneously is called a “cusp catastrophe model”, where a high-order probability
density function is used [6]. The cusp model has proven particularly effective for prediction in health
behaviors [7]. These methods were not necessary to reveal the potential catastrophe in electric vehicle
sales, but constitute interesting follow-on research for comparison with the results in this paper.
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