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Abstract

Purpose - To present a finite element approximation of the low Mach number equations coupled
with radiative equations to account for radiative heat transfer. For high temperature flows this
coupling can have strong effects on the temperature and velocity fields.

Design/methodology/approach - The basic numerical formulation has been proposed in
previous works. It is based on the variational multiscale concept in which the unknowns of the
problem are divided into resolved and subgrid parts which are modeled to consider their effect into
the former. The aim of the present article is to extend this modeling to the case in which the low
Mach number equations are coupled with radiation, also introducing the concept of subgrid scales
for the radiation equations.

Findings - As in the non-radiative case, an important improvement in the accuracy of the
numerical scheme is observed when the nonlinear effects of the subgrid scales are taken into account.
Besides it is possible to show global conservation of thermal energy.

Originality/value - The original contribution of the work is the proposal of keeping the vari-
ational multiscale splitting into the nonlinear coupling between the low Mach number and the
radiative transport equations, its numerical evaluation and the description of its properties.

Keywords Radiative heat transfer, Thermal flows, Stabilization, Variational multiscale, Finite
element analysis

Paper type Research paper

1 Introduction

Thermal radiation in gas flows has direct effects on many industrial applications, such as fires, furnaces,
gas turbines, boilers, etc, where radiative transfer dominates heat transfer. Growing concern with high
temperature flows has emphasized the need for an evaluation of the effect of radiative heat transfer. Ra-
diation can strongly interact with convection in many situations of engineering interest and neglecting
its effects may have significant consequences in the overall predictions. An accurate calculation of radia-
tive transfer is then of crucial importance for the prediction of the thermal performance. Nevertheless,
it is common for studies on convective flows to neglect thermal radiation, mainly because the modeling
of radiative transfer increases the computational work and involves tedious analytical developments. A
notable exception is [8].

Approximate models for radiative heat transfer have been derived and widely used in the literature.
Examples of such approximation are the PN method [7, 13] and the discrete ordinates method (DOM)
[15, 13]. Our interest in this work is the development of a nonlinear stabilization technique capable of
solving low Mach number flows in radiating media without being focused in a specific radiative model.

Turbulence is the most common state of a fluid in a wide range of technologies and natural condi-
tions. The interaction between turbulence and radiation (TRI) has been demonstrated experimentally,
theoretically and numerically, and results from the highly nonlinear coupling between fluctuations of
radiation intensity and fluctuations of temperature of the medium [6]. Experimental data and numerical
calculations demonstrate that turbulent fluctuations may significantly increase the radiation intensity
in both non-luminous and luminous flames. The net radiative power and the fraction of radiative heat
loss increase due to TRI. Usually, in combustion applications using large eddy simulation (LES), these
interactions are either discarded altogether, or included in the computation without considering any
subgrid scale model for radiation.

The focus of the present paper is on how to compute the coupling of the radiative terms in the
energy equation and the thermal terms in the radiative equations. In this work we extend the stabilized
finite element approximation presented in [3], valid for low Mach number flows, for the presence of
radiative heat transfer. The stabilization method is based on the variational multiscale (VMS) method
[9], in which a decomposition of the approximating space into a coarse scale resolvable part and a fine
scale subgrid part is performed. The distinctive features of our particular approach, discussed in [3],
are to consider the subscales as transient and to keep the scale splitting in all the nonlinear terms. The
first ingredient permits to obtain better stability and no restrictions on the time step size. The second
ingredient permits to prove global conservation properties, gives higher accuracy to the method, and
allows us to approach the problem of dealing with thermal turbulence from a strictly numerical point
of view, as it was shown in [2]. The aim of the present work is to show that the nonlinear stabilization
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terms coming from the highly nonlinear coupling between temperature and radiation (κσBT
4) are able

to model TRI subgrid effects.
The article is organized as follows. In Section 2, the low Mach number equations with radiative cou-

pling and their variational formulation are given. Some different coupling mechanisms between radiative
and conductive heat transfer are presented. Afterwards the VMS formulation with dynamic scale split-
ting is derived in Section 3. Section 4 is devoted to show that this formulation provides global energy
conservation when using equal interpolation spaces for pressure and temperature, if the radiation model
is globally conservative. The treatment of the coupling of the nonlinear terms is described in detail in
Section 5. The formulation is tested in Section 6 and conclusions are drawn in Section 7.

2 The low Mach number problem coupled with radiative heat
transfer

2.1 Initial and Boundary Value Problem

The low Mach number flow equations and the finite element approximation we propose for them were
introduced in [3]. When radiative heat transfer is considered the energy equation is modified by adding
the divergence of the total radiative heat flux term, ∇·qr. The initial and boundary value problem reads
as follows. Let Ω ⊂ Rd, with d = 2, 3, be the computational domain in which the flow takes place during
the time interval [0, tend], and let ∂Ω be its boundary. Let S2 be the unit sphere in R3. The initial and
boundary value problem to be considered consists in finding a velocity field u, a hydrodynamic pressure
field p, a temperature field T , the thermodynamic pressure pth, and the radiation intensity field Iλ such
that

∂ρ

∂t
+∇ · (ρu) = 0 in Ω, t ∈ (0, tend) (1)

ρ
∂u

∂t
+ ρu·∇u−∇ · (2µε′ (u)) +∇p = ρg in Ω, t ∈ (0, tend) (2)

ρcp
∂T

∂t
+ ρcpu·∇T −∇ · (k∇T ) +∇ · qr −

dpth

dt
= Q in Ω, t ∈ (0, tend) (3)

s·∇Iλ + (κλ + σsλ) Iλ −
σsλ
4π

∫
S2

ds′φλ (s′, s) Iλ (s′) = κλIbλ in Ω× S2, t ∈ (0, tend) (4)

where ρ denotes the density, µ the viscosity, ε′ (u) = ε (u) − 1
3 (∇ · u) I the deviatoric part of the

rate of deformation tensor ε (u) = ∇su = 1
2

(
∇u +∇uT

)
, I the identity tensor, g the gravity force

vector, cp the specific heat coefficient at constant pressure, k the thermal conductivity and Q the
heat source. Equations (1)-(3) represent the mass, momentum and energy conservation, respectively.
Equation (4) is the monochromatic radiative transfer equation, and Iλ (s) is the spectral radiative
intensity at wavelength λ propagating in direction s. The function Ibλ is the spectral blackbody radiation
at wavelength λ, depending only on the temperature T . The coefficients κλ and σsλ are respectively
the spectral absorption and scattering coefficients, φλ (s′, s) is the scattering phase function and ds′ the
differential of solid angle. The inverse of the light-speed has been considered negligible when writing
Eq. (4). Additionally, the state equation for ideal gases is used to give a closure to the system:

ρ = pth/RT (5)

The radiative heat transfer term in the energy equation, which is the one coupling both problems
(also through the boundary conditions, see below), can be expressed in terms of radiative intensity and
temperature as

∇ · qr =

∫ ∞
0

dλκλ (4πIbλ −Gλ) = 4κeσBT
4 − κaG(Iλ) (6)
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where Gλ and G are the spectral and total incident radiation, defined as

Gλ =

∫
S2

dsIλ (7)

G(Iλ) =

∫ ∞
0

dλGλ. (8)

The absorption and emission coefficients κa and κe in Eq. (6) are spectral averages of the absorption
coefficient κλ, weighted respectively with the radiation field Gλ and the blackbody radiation field Ibλ

κa =

∫∞
0

dλκλGλ

G
(9)

κe =
π
∫∞

0
dλκλIbλ

σBT 4
(10)

where σB is the Stephan Boltzmann constant. For a given composition and pressure, the emissivity
coefficient only depends on temperature.

The mass, momentum and energy equations must be supplied with initial and boundary conditions.
Initial conditions are

u = u0 in Ω, t = 0

T = T0 in Ω, t = 0

pth = pth
0 in Ω, t = 0

Dirichlet and Neumann boundary conditions for Eqs. (1) and (3) are

u = 0 in ΓuD (11)

T = 0 in ΓTD (12)

(−pI + 2µε′(u)) ·n = tn in ΓuN (13)

−kn·∇T = qn in ΓTN (14)

where n is the outer unit normal on the boundary. It is assumed that ΓxD ∪ΓxN = ∂Ω, and ΓxD ∩ΓxN = ∅
for x = T,u.

Due to the hyperbolic nature of the radiation equation (4), the intensity entering into the domain
Ω needs to be imposed. The boundary Γ = ∂Ω×S2 of Ω×S2 is divided into the inflow Γ− and outflow
Γ+ boundaries, defined as

Γ− = {(x, s) ∈ Γ | s · n < 0}, Γ+ = {(x, s) ∈ Γ | s · n ≥ 0},

where n is the unit normal vector pointing outwards ∂Ω at x. We shall also make use of the inflow and
outflow hemispheres

S−x := {s ∈ S2 | s · n < 0}, S+
x := {s ∈ S2 | s · n ≥ 0},

which are defined for each x ∈ ∂Ω.
The radiative transfer equation (4) is subject to emissive and reflective boundary conditions of the

form

Iλ (x, s) |S−
x

= ελIbλ +
rλ
π

∫
S+
x

Iλ (x, s)n · sds (15)

where ελ and rλ are respectively the emission and reflective wall coefficients at wavelength λ. In the
present work we consider opaque surfaces, where rλ = 1− ελ.

In some applications the Neumann boundary condition defined by Eq. (14) is changed to impose the
complete heat transfer (conductive and radiative) H through the boundary as

−kn · ∇T + qr · n = H (16)
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An example is an isolated boundary where the net flux through the boundary must be null (H = 0). This
isolated wall is an emmisive and reflective wall, i.e. the radiation boundary condition (15) is satisfied,
which integrated over S−x and λ permits to obtain

−kn · ∇T − εσBT 4 = H− (1− r)H (17)

where H(x) is the surface irradiation

H(x) =

∫
λ

dλ

∫
S+
x

dsIλ (x, s) s · n (18)

and r is the spectral average of rλ weighted with the irradiation and ε is the spectral average of ελ
weighted with the blackbody radiation Ibλ. This boundary condition is of nonlinear Robin type for the
temperature, coupling radiation and temperature in the boundary.

The coupling between the radiation and the hydrodynamic problems is stronger on the boundaries
than inside the media when the medium is optically thin. This occurs when the characteristic length
of the problem (L0) is much smaller than the optical length scale (κ−1

0 ), and it is characterized by a
small optical length number τ = κ0L0 � 1. On the other hand, when the medium is optically thick it is
usual to take L0 = 1/κe (i.e. τ = 1) and in this case the coupling between both problems occurs locally
inside the domain. In this case the relative importance of radiative heat and conductive heat transfer is
estimated by the Planck number, Pl = kκe

σBT 3
0

, also known as the radiation to conduction parameter [14].

2.2 Directional discretization

Whereas the hydrodynamic equations problem defined Eqs. (1)-(3) is three dimensional, the radiative
transfer equation (4) is higher dimensional: the radiation intensity depends on six independent variables
(three space coordinates, two direction coordinates and the wavelength). Therefore its discretization,
which is usually very expensive, requires the introduction of basis functions in S2 and in the (one
dimensional) wavenumber space. There exist several models to obtain an approximate solution to the
radiation transfer equation. An usual option is to apply a directional discretization, transforming the
integro-differential equation (4) into a set of coupled differential equations, with an arbitrary number
of equations depending on the discretization level. Examples of this kind of models are the discrete
ordinates method (DOM), the method of spherical harmonics (PN -approximation), and the ray tracing
method. The resulting equations can then be discretized in space using the finite element method, as
for example in [11].

The aim of the present paper is to develop a stabilization method for the mass, momentum and energy
equations, independent of the radiative model used. We therefore assume that a general directional
discretization model is applied to the radiative transfer equation, obtaining directional components of
radiation intensity Idλ. The radiation equation of the adopted model will be denoted as RM

(
Idλ, T

)
= 0,

where RM is a partial differential operator and Idλ the semidiscrete radiation intensity. In the energy
equation, the emission coefficient κe and the product of the absorption coefficient and the incident
radiation κaG will depend on the obtained radiation intensity distribution Idλ, and must be given by the
radiative model.

2.3 Variational formulation

To obtain a variational formulation for the system (1)-(3) together with the radiation model equation,
let us denote by V , Q,W,Z the functional spaces where the solution is sought. The corresponding space
of test functions will be denoted by V 0, Q0,W0, Z0

The weak form of the problem consists in finding
(
u, p, T, Idλ

)
∈ (V , Q,W,Z) such that
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(
∂ρ

∂t
+∇ · (ρu) , q

)
= 0 ∀q ∈ Q0 (19)(

ρ
∂u

∂t
+ ρu · ∇u,v

)
+ (2µε′ (u) , ε′ (v))

− (p,∇ · v) = (ρg,v) + (tn,v)Γu
N

∀v ∈ V 0 (20)(
ρcp

∂T

∂t
+ ρcpu · ∇T + κeσBT

4, w

)
+ (k∇T,∇w)

=

(
Q+

dpth

dt
+ κaG(Iλ), w

)
+ (qn, w)ΓT

N
∀w ∈W0 (21)(

RM (Idλ, T ), z
)

= 0 ∀z ∈ Z0 (22)

3 Spatial approximation of the radiation hydrodynamic equa-
tions

Let us consider a finite element partition {K} with ne elements of the computational domain Ω, from
which we can construct finite element spaces for the velocity, pressure, temperature and radiation
intensity in the usual manner. We will denote them by V h ⊂ V , Qh ⊂ Q, Wh ⊂ W and Zh ⊂ Z,
respectively.

Let us split the continuous space Y = V × Q ×W × Z where velocity, pressure, temperature and
radiation intensity belong, as Y = Y h ⊕ Ỹ , where Ỹ = Ṽ × Q̃× W̃ × Z̃ is the subgrid space, that can
be in principle any space to complete Y h = V h × Qh ×Wh × Zh in Y . These continuous unknowns
split as

u = uh + ũ (23)

p = ph + p̃ (24)

T = Th + T̃ (25)

Idλh = Idλh + Ĩdλ (26)

where the components with subscripts h belong to the corresponding finite element spaces, and the
components with the ˜ correspond to the subgrid space. These additional components are what we will
call subscales.

The spatial approximation will be obtained following the same procedures and approximations done
in [3] for the low Mach number equations. The particular approximation consists in keeping time de-
pendency of the subscales and to keep the previous decompositions (23)-(25) in all the terms of the
variational problem (19)-(22) even if the differential operator is approximated. It is assumed that the
subscales vanish on the interelement boundaries, ∂K.

Substituting decompositions (23)-(25) in the variational problem (19) -(21), taking the tests functions
in the corresponding finite element spaces and integrating some terms by parts, it is found that the
solution

(
uh, Th, ph, I

d
λh

)
∈ V h ×Qh ×Wh × Zh must satisfy
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(
∂ρh

∂t
, qh

)
−
(
ρhuh,∇qh

)
+
(
ρhn · uh, qh

)
∂Ω
−
(
ρhũ,∇qh

)
= 0 (27)

(
ρh
∂uh
∂t

+ ρh (uh + ũ) ·∇uh,vh
)

+ (2µε′ (uh) ,∇svh)− (ph,∇ · vh)

−
(
ũ,−∂ρ

h

∂t
vh + ρh (uh + ũ) · ∇vh +∇h· (2µε (vh))

)
+

(
∂
(
ρhũ

)
∂t

,vh

)
− (p̃,∇ · vh) =

(
ρhg,vh

)
+ (tn,vh)Γu

N
(28)

(
ρhcp

∂Th
∂t

+ ρhcp (uh + ũ) ·∇Th + 4κeσB

(
Th + T̃

)4

, wh

)

−
(
T̃ , ρhcp (uh + ũ) · ∇wh −∇h · (k∇wh)

)
+

cp ∂
(
ρhT̃

)
∂t

, wh


+ (k∇Th,∇wh) =

(
Q+

dpth

dt
+ κaG(Idλh), wh

)
+ (qn, wh)ΓT

N

(29)

(
RM

(
Idλh + Ĩdλ, Th + T̃

)
, zh

)
= 0 (30)

for any test functions (vh, qh, wh, zh) ∈ (V 0,h, Q0,h,W0,h, Z0,h), where

ρh =
pth

R
(
Th + T̃

) (31)

is obtained applying the scale splitting to the state equation (5). The symbol ∇h in equation (28) and
(29) indicates that the integral is carried over the finite element interiors, and not over the edges, for
example (

T̃ ,∇h · (k∇wh)
)

=
∑
K

(
T̃ ,∇ · (k∇wh)

)
K

where (·, ·)K is the L2(K) inner product.

Remark 1 The radiation intensity subscale in (30) depends on the particular directional discretization
used. As described in Section 2.2, our goal is to present a stabilization method independent of the
directional discretization in the radiation transport equation. A complete discussion on the approximation
of the radiation intensity subscale when the DOM method is used can be found in [1]. In turn, when,

e.g., the P1 method is used, the resulting problem is elliptic and one can simply consider Ĩdλ = 0. As this
choice only affects the approximation of the radiation transport equation and not the coupling with the

hydrodynamic problem we will consider Ĩdλ = 0 in what follows. It is worth noting that the numerical
results obtained using the DOM method presented in Section 6 were obtained using the approximation
discussed in [1].

Remark 2 The temperature has been split into Th+T̃ inside the radiative operator RM . If the tempera-
ture subscale is neglected in (30) it is convenient to neglect it also in the energy equation (29). Otherwise
energy will not be globally conserved, as it will be shown in Section 4.

Remark 3 It is known that the absorption coefficient κa depends strongly on temperature, being cor-
related with the thermal radiation emission Ib and the radiation field I. It is very important to model
these correlations, especially in combustion problems because temperature is highly fluctuating in space

7



and time. When the temperature scale splitting is taken into account inside the radiative model, the
absorption and emission coefficients κa and κe should be evaluated in terms of Th + T̃ through Eqs. (9)
and (10). The correlations between temperature and blackbody radiation Ib, and temperature and the

radiative field I are modeled when computing κ, G and Ib in terms of Th + T̃ . This is only done when
introducing Th + T̃ in the radiative model.

The nonlinear scale splitting of the convective terms (in the momentum and energy equations)
permits to model turbulence without the use of any physical model. The behavior of this numerical
method in the large eddy simulation of thermally coupled turbulent flows at low Mach number is
analyzed in [2]. The extension of the method to radiative flows leads to the (temperature) scale splitting
of the nonlinear radiative terms. These terms are thought to model the physical subgrid behavior that
cannot be captured by the mesh, and therefore to improve the obtained solutions of the equations. We
have observed in numerical examples that the consideration of the temperature scale splitting Th + T̃
in the energy and radiation equations increases the radiative heat flux from hot zones, being this effect
peculiar of turbulence–radiation interaction models, as explained in [6].

In order to give a closure to system (27)-(31) we need to define how the subscales ũ, p̃ and T̃
are computed. In the same way the finite element equations can be understood as the projection of
the original equations onto the finite element spaces Y h, the equations for the subscales are obtained
by projecting the original equations onto their corresponding spaces Ỹ . The hydrodynamic subscale
equations are written as

ρh∇ · ũ− ρh (uh + ũ)

Th + T̃
· ∇T̃ = Rc + port (32)

∂
(
ρhũ

)
∂t

+∇·
(
ρh(uh + ũ) ũ

)
−∇ · (2µε′ (ũ)) +∇p̃ = Rm + uort (33)

cp
∂
(
ρhT̃

)
∂t

+ cp∇ ·
(
ρh (uh + ũ) T̃

)
−∇ ·

(
k∇T̃

)
= Re + Tort (34)

where port, uort and Tort are functions L2−orthogonal to the subscale space, responsible to guarantee
that the subscale equations belong to the subscale spaces. The residuals of mass, momentum and energy
equations are respectively

Rc = −∂ρ
h

∂t
− ρh∇ · uh +

ρh (uh + ũ)

Th + T̃
· ∇Th (35)

Rm = ρhg − ρh ∂uh
∂t
− ρh (uh + ũ) · ∇uh +∇ · (2µε′ (uh))−∇ph (36)

Re = Q+
dpth

dt
− ρhcp

∂Th
∂t
− ρhcp (uh + ũ) ·∇Th +∇ · (k∇Th)

+κG− 4κeσB

(
Th + T̃

)4

(37)

Approximation of the subscales We will approximate the subscale problem replacing the (spatial)
differential operators of mass, momentum and energy equations by the algebraic operators τ−1

c , τ−1
m

and τ−1
e , respectively. The approximation to the subscale equations (32)-(34) within each element of the

finite element partition reads

1

τc
p̃ = Rc + port = R′c (38)

∂(ρhũ)

∂t
+

1

τm
ũ = Rm + uort = R′m (39)

cp
∂(ρhT̃ )

∂t
+

1

τe
T̃ = Re + Tort = R′e (40)
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The stabilization parameters τc, τm and τe are defined as

τc =
h2

c1ρhτm
=

µ

ρh
+
c2
c1
|uh + ũ|h (41)

τm =

(
c1
µ

h2
+ c2

ρh|uh + ũ|
h

)−1

(42)

τe =

(
c1
k

h2
+ c2

ρhcp|uh + ũ|
h

)−1

(43)

where h is the element size and c1 and c2 are algorithmic constants whose values for linear elements
are c1 = 4 and c2 = 2 in the numerical examples. It is important to remark that (39) and (40) are
nonlinear equations. A deeper insight about the present subscale model can be found in [3], where also
some linearization schemes are presented.

Remark 4 The spatial-differential operator in the subscale equation (34) has been approximated to

obtain Eq. (40). Note however, that T̃ still appears in the right hand side of Eq. (40) in the nonlinear

reactive term κeσB(Th + T̃ )4. In the case of a linear convection-diffusion-reaction equation the reactive
term is kept on the left hand side and a stabilization parameter of the form

τe =

(
c1
k

h2
+ c2

ρhcp|uh + ũ|
h

+ c3κe

)−1

is considered. Following the same approach we propose here in the limit case of linear equation we obtain
the same result with c3 = 1, which turns out to be the value recommended in [4].

4 Global energy conservation

The aim of this section is to obtain a global conservation of energy statement similar to those holding
for the continuous problem, but for the problem semi-discretized in space. It has been shown in [3] that
global conservation statements for mass, momentum and energy without radiative terms hold when
equal interpolation is used for all variables. We shall see that the total energy will be globally conserved
only if the radiative model RM conserves radiation energy.

When the radiation transfer equation (4) is integrated over all solid angle directions, and over all
the spectral domain λ ∈ R+, the zeroth moment radiative equation is obtained:

∇ · qr − κaG = 4κeσBT
4

This equation is satisfied by most radiative models that can be understood as angular discretization, as
DOM and P1. After integration of this equation over all the spatial domain Ω, the following radiation
conservation statement for the continuous problem is obtained∫

Ω

(
4κeσBT

4 − κaG
)
dΩ =

∫
∂Ω

qr · ndΓ (44)

When the discrete counterpart of this conservation statement is satisfied by the discrete approximation
of radiative models RM (30), it is said that the radiation model conserves radiation energy. This is the
case of the finite element approximation of the DOM and the P1 method, which read∫

Ω

(
4κeσB

(
Th + T̃

)4

− κaG
)
dΩ =

∫
∂Ω

qr · ndΓ (45)

Let us consider the finite element space for the temperature equation without Dirichlet boundary
conditions, and an augmented problem that also contains the fluxes at the Dirichlet boundaries as
unknowns [10]. When using equal interpolation spaces for the temperature and pressure equations (Wh =
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Qh), it can be shown that taking the test function wh = 1 in (the augmented problem corresponding
to) the finite element energy Eq. (29), and replacing (45) we get the relation∫

Ω

cp
∂

∂t

(
ρh
(
Th + T̃

))
dΩ =

∫
Ω

(
Q+

dpth

dt

)
dΩ−

∫
∂Ω

(
qn + n ·

(
qr + uhρ

hcpTh
))

dΓ (46)

which is the discrete counterpart of energy conservation equation (3) integrated over domain Ω. There-
fore, Eq. (46) implies energy conservation. For ideal gases the internal energy per unit mass is e = cvT ,
where cv ≡ cp/γ. According to that, we define at the discrete level the discrete internal energy per unit

volume as ρheh = ρhcv(Th + T̃ ). Replacing this definition in Eq. (46), after some operations (see [3]),
we arrive to the first law of thermodynamics for open systems in terms of the internal energy:∫

Ω

∂
(
ρheh

)
∂t

dΩ =

∫
Ω

QdΩ +

∫
∂Ω

(
qn + qrn − n · uh

(
ρheh + pth

))
dΓ (47)

where qrn = qr ·n is the radiative heat flux leaving the domain. This equation indicates that the change
in internal energy of the system is equal to the heat power added to the system plus the work done
over the system (−

∫
∂Ω

n ·uhpth dΓ = −pth
∫

Ω
∇ ·uh dΩ) plus the boundary fluxes of heat and internal

energy, qn + qrn and n · uhρheh.
To satisfy the energy conservation statement (46), and therefore (47), the discrete radiative model

(30) must conserve the discrete radiation energy (statement (45)). The discrete radiation equation must

depend on the temperature scale splitting Th + T̃ to be consistent with the temperature scale splitting
in the energy equation, to achieve the energy conservation statement (45). If this splitting is ignored in
the radiative model (30) ((RM (Idλh, Th), zh) = 0), then the radiative term in the energy equation (29)
should be introduced in the form 4κeσBT

4
h to have a global energy conservative scheme.

5 Linearization strategy of coupling terms between radiation
and temperature equations

The coupling between radiation and energy equations is extremely nonlinear, and careful linearization
schemes should be used to achieve a converged solution of the problem. In this section we discuss the
linearization of the terms involved in radiation. Linearization schemes of mass, momentum and energy
equations without considering radiative coupling are explained in detail in [3].

Linearization of radiative terms in the finite element equation We will focus on how to
linearize the energy equation (29); the radiative equation (30) is supposed to be solved in segregated
form. The subscales are supposed to be given as we need to solve the finite element problem (29). The

linearization of the radiative term 4κeσB(Th + T̃ )4 in the energy equation using a Newton Rapshon
scheme is always convergent, because this term never changes its convexity (second derivative sign
respect to Th remains unchanged). If the temperature Th is known at iteration k, the nonlinear term is
linearized at iteration k + 1 in terms of T k+1

h , using a Newton Raphson scheme as

4κeσB

(
T k+1
h + T̃

)4

≈ 4κeσB

(
T kh + T̃

)3 (
4T k+1

h − 3T kh + T̃
)

(48)

Other linearization strategies were implemented, like the fixed point iteration

4κeσB

(
T k+1
h + T̃

)4

≈ 4κeσB

(
T kh + T̃

)3 (
T k+1
h + T̃

)
or the following

4κeσB

(
T k+1
h + T̃

)4

≈ 4κeσB

(
T kh + T̃

)3 (
2T k+1

h − T kh + T̃
)

These iterations schemes diverged in many examples. The Newton Raphson scheme (48), besides being
unconditionally convergent, converged always faster than the other linearization schemes.

We have solved the radiation equation (30) segregated from the temperature equation (29). The
coupling between radiation and temperature equations has been found to converge much faster when
applying an over-relaxation to temperature.
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Linearization of radiative terms in the subscale equation The subscale equations form a non-
linear system of equations that must be linearized. Linearization schemes for the subscale equations
without considering radiation coupling are detailed in [3], where it was shown that the Newton-Raphson
scheme applied to the monolithically coupled system of equations was the most efficient one. Radia-
tive transfer introduces the nonlinear term 4κeσB(Th + T̃ )4 in the subscale energy equation (34). The
Newton-Raphson scheme for the linearization of this radiative term inside the subscale energy equation
(34) is (again) unconditionally convergent, because the function does not change its convexity. The finite
element unknowns are assumed to be given as we need to solve the subscale problem. If the temperature
subscale is known at iteration k, the linearization of the nonlinear reactive term with respect to T̃ k+1

at iteration k + 1 is

4κeσB

(
Th + T̃ k+1

)4

≈ 4κeσB

(
Th + T̃ k

)3 (
Th + 4T̃ k+1 − 3T̃ k

)
(49)

We obtained satisfactory and fast convergent results using this scheme.

Linearization of the coupled energy boundary condition When we want to impose an amount of
conductive plus radiative heat flux through the boundaries, qn+qrn = H, we need to apply the nonlinear
boundary condition (17) to the energy equation (29). This condition couples temperature and radiation
intensity on the boundary, affecting significantly the solution for optically thin problems, in which
κaL < 1, where L is a characteristic length of the problem. We have found in the numerical experiments
that a proper linearization of this boundary condition needs to be applied to achieve convergence.
The most efficient method was to apply a Newton-Raphson scheme. Although it is always convergent,
the solution converged extremely slowly when solving optically thin problems. When applying simpler
linearization schemes the solution did not converge.

Assuming a known temperature at iteration k, boundary condition (17) is linearized to approximate
temperature at iteration k + 1 as

−n·k∇T k+1
h − εσB

(
T kh
)3 (

4T k+1
h − 3T kh

)
= H− (1− r)H (50)

The resulting linearized boundary condition is of Robin type.

6 An application example: fire in a 3D room with an open door

This test example is a fire compartment similar to that considered in [3], but now simulating the effect of
radiative heat transfer. In order to increase radiative heat transfer effects, the power of the heat source
that models the fire has been increased.

The problem domain is Ω = [0, L]×[0, L]×[0, H] where L = 2.8 m and H = 2.18 m. The compartment
has an open door on the side wall of the room (x = L) whose dimension is 0.7× 1.853 m2. A scheme of
the problem domain is shown in Fig. 1. The fire is modeled by an uniform heat source of 30 kW, located
at the center of the room just over the floor, with dimensions 0.84×0.84×0.218 m3. Adiabatic boundary
conditions are imposed on all the walls. Non slip boundary conditions for velocity are imposed on all
the boundaries except the door, where atmospheric boundary condition is imposed, that is, a traction
tn = (−ρ|g|z, 0, 0). As the flow is open ((Γu

N 6= ∅)), the thermodynamic pressure is set constant in
time to pth = 101325 Pa. The initial temperature and velocity values are T0 = 300 K and u0 = 0
over all domain Ω. Furthermore, the viscosity is µ = 0.0094 kg

m s and Pr = 0.71. The gravity is set to
g = (0, 0,−9.8) m/s2. The medium is treated as a gray body, with homogeneous absorption and emissive
coefficientes κa = κe = 10 m−1, and a zero scattering coefficient σs = 0.

The radiative field was obtained using both the spherical harmonics P1, and the discrete ordinates
method (DOM) approximation to the radiative transport equation. For the DOM discretization we used
the S10 [12] set of ordinates and weights for DOM, consisting in 120 ordinates.

The compartment was meshed using a grid of 40 × 40 × 40 uniform trilinear elements Q1. We
solved the problem using finite-difference time integration schemes, with uniform step size of δt = 1.0 s.
We compared the obtained solutions with three different stabilization methods, namely, the classical
SUPG method, and the dynamical and nonlinear subscale method presented in this paper with and
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Figure 1: Problem domain of the room with an open door

Figure 2: Temperature and vertical velocity distributions along the x direction using the P1 method

without temperature scale splitting of the radiative term, 4κσBT
4. We call this method DSS in the

following. When temperature scale splitting is (not) considered in the energy equation, then it is also
(not) considered as radiative source in the radiation equation. The obtained results are compared against
a reference solution obtained using the SUPG method over a fine mesh of 80×80×80 uniform elements,
and a time step size of δt = 0.5 s, using the P1 method and the DOM. The computation is advanced until
tend = 180.0 s using the second order time integration scheme BDF2. The tolerance for the nonlinear
iterations was set to 5 · 10−4 in the relative norm of the difference between two iterates.

In Figs. 2, 3 and 4 the temperature and vertical velocity distributions along the x, y and z directions
using the DSS and SUPG methods at t = tend are shown for the P1 method. The same results are shown
when using the DOM in Figs. 5, 6 and 7 using the DOM. The DSS method is labeled as FullSplitDSS
when the temperature subscale is kept in all terms, and it is labeled as DSSwThˆ4 when the temperature
subscale is not taken into account in the radiative term. In all those figures the greater similarity of
the results with the reference solution when using the DSS method against SUPG method is clearly
observed, in spite of the fact that the reference solution was obtained using the SUPG method on a
finer mesh. The same observation was done in [3] for the problem without radiation. It is observed that
performing the temperature scale splitting in the radiative term has the effect of decreasing the obtained
temperature, closer to the reference solution. The effect of the temperature splitting is more noticeable
in the temperature solution; the vertical velocity is less affected, and it is difficult to conclude if there
exists an improvement.

The time evolution of temperature and vertical velocity (along the z direction) at points of coordi-
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Figure 3: Temperature and vertical velocity distributions along the y direction using the P1 method

Figure 4: Temperature and vertical velocity distributions along the z direction using the P1 method

nates (1.55, 1.4, 0.55), (1.3, 1.3, 0.2) and (1.4, 1.4, 1.0) (in meters) are compared in Figs. 8, 9, 10 for the P1

method, and in Figs. 11, 12 and 13 for the DOM. It is observed that when using the SUPG method the
solution differs much more from the reference solution than when using the DSS method. It is difficult
to observe the difference in the solutions when splitting or not the temperature in the radiative term,
and it is even more difficult to confirm if there exist any improvement. However, observing temperature
cuts at time tend it is seen that there exists such an improvement in temperature field.

In Fig. 16 the obtained temperature distribution along the x and y directions are compared when
using the DOM and the P1 methods. The small difference in the solution indicates that the P1 method
gives reasonable good solutions. This is due to the fact that the linearly anisotropic angular distribution
of radiation intensity assumed by the P1 method is a good approximation, since we are in an optically
thick case (τ ≈ 25).

In Fig. 14 the distribution of the temperature subscale over the plane y = L/2 when t = tend is shown.
It is seen that the maximum subscale values are located over the source term position, contributing to
a raise of radiation source when adding the temperature subscale. We would like to mention that a
spatial temperature subscale distribution over the source with mean value zero, and zero skewness,
would contribute to a positive raise of the radiative source. In Fig. 15 the temperature distribution over
the plane y = L/2 at time t = tend when considering and not considering the temperature subscale in
the radiative term of the energy equation are shown. The effect of considering the full scale splitting is
a temperature decrease, a similar effect of radiation-turbulence interaction models. Fig. 15 shows the
radiative heat distribution over the plane y = L/2 at time t = tend when considering and not considering
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Figure 5: Temperature and vertical velocity distributions along the x direction using the DOM

Figure 6: Temperature and vertical velocity distributions along the y direction using the DOM

the temperature subscale in the radiative term of the energy equation. It is seen that the radiative heat
flux decreases when considering the temperature splitting, which is due to the decrease of temperature
over the fire.

The effect of considering temperature scale splitting in the radiative term 4κσB(Th+T̃ )4 enhances the
obtained results, increasing the radiative heat flux from hot zones. This is the expected turbulent effect
of modeling a subgrid temperature. We believe that the difference in the results when considering the
temperature subscale in the radiative term will be more noticeable in turbulent flames, with combustion
models. We expect that for turbulent flows the effect of modeling the emitting and absorbing radiation
effects as 4κe(T )σB(Th+ T̃ )4, in a purely numerical form, will model the turbulent radiation interaction
enhancing the obtained solution.

Performance of the methods The total number of nonlinear iterations needed to solve the problem
(i.e. the sum of the nonlinear iterations performed in all time steps) and the total CPU time are indicated
in Table 1 when using the P1 method. The CPU time spent when using the DOM is much higher for
the radiation problem, but it is similar for the low Mach number problem. The CPU time spent for the
assembly of the low Mach equations (which includes numerical integration and solution of the subscale
problem, i.e. operations involving a loop over integration points) and the CPU time spent in the (linear)
solver procedures are also indicated. The CPU time spent solving the radiation equation is also indicated.

The total number of nonlinear iterations for the low Mach equations is 5% lower using the DSS
method. However, the use of this method increases the CPU time of assembly operations per iteration,
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Figure 7: Temperature and vertical velocity distributions along the z direction using the DOM

Figure 8: Time evolution of temperature and vertical velocity (i.e. uz) at point (1.55, 1.4, 0.55)m using
P1 method

and therefore the total CPU time is 6.5% higher using DSS method, but the obtained solution is much
better. The same behavior was observed in the same problem in [3], without radiation, using a smaller
fire source and the same mesh with the same time step. The DSS method is observed to be very
competitive. The CPU time spent solving the radiation equations does not differ more than 1% using
the different methods in low Mach number equations. The CPU time of DSS method does not change
when taking into account the temperature splitting in the radiative term. The CPU solver time is a
little lower using the SUPG method, that is, the system is a little better conditioned. This is due to the
spatial discontinuities of the subscales that worsens the matrix condition. This small extra CPU time
when using DSS method occurs at expenses of obtaining a much better solution.

7 Conclusions

A finite element approximation of the low Mach number equations coupled with a radiative heat transfer
model based on a splitting of the unknowns into finite element and unresolvable components has been
developed. The main ingredients of the formulation are:

• To consider time dependent subscales.

• To keep the subscale components in all the nonlinear terms.
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Figure 9: Time evolution of temperature and vertical velocity (i.e. uz) at point (1.3, 1.3, 0.2)m using P1

method

Figure 10: Time evolution of temperature and vertical velocity (i.e. uz) at point (1.4, 1.4, 1.0)m using
P1 method

The effect of considering time dependent subscales is well known [5] and our experience with the
low Mach number equations [3, 2] confirms the properties known for incompressible flows. The effect
of considering the splitting of the unknowns in all the terms leads to a more accurate solution than
classical stabilization methods and provides global mass, momentum and energy conservation when
using equal interpolation spaces for the velocity, pressure and temperature equations. An improvement
in the quality of the solution is obtained when considering the spliting of the radiation terms in the
temperature equation.

We would like to stress, once again, that we keep the splitting of the unknowns in all terms also in
the subscale equations, and we have numerically verified that this makes a difference in the accuracy of
the scheme.

This nonlinear and transient treatment of the subscales has a computational cost, both in memory
requirements and in CPU time. Nevertheless, the extra amount of memory needed only grows linearly
with the number of nodes and will be usually dominated by the memory needed to solve the linear
system and, as we have observed, the increase of CPU time in the DSS is very small.

The formulation intrinsically contains cross- and Reynolds- stress terms, and TRI terms that try
to model the unsolved eddies and subgrid interaction between radiation and temperature, presenting
an open door to turbulence modeling. The present method remains unchanged irrespective of whether
laminar, transitional and turbulent situations are present.
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Figure 11: Time evolution of temperature and vertical velocity (i.e. uz) at point (1.55, 1.4, 0.55)m using
the DOM

Figure 12: Time evolution of temperature and vertical velocity (i.e. uz) at point (1.3, 1.3, 0.2)m using
the DOM

We have emphasized the advantages of the temperature splitting (Th+ T̃ ) inside the radiative model
and the radiative terms in the energy equation. When performing this splitting more accurate solutions
were found in the numerical examples.
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