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Abstract  

Concrete gravity dams have trapezoidal shape in their cross section and shall guarantee the global 

stability against acting loads like hydrostatic and uplift pressures through his gravitational actions 

(self-weight and others). This study focuses on the shape optimization of concrete gravity dams using 

genetic algorithms. The cross section of dam is considered as the objective function and design 

variables are the geometric parameters of the gravity dam. The optimum cross-section design of 

concrete gravity dams is achieved by the Genetic Algorithm (GA) in Matlab. Sliding, overturning 

and floating constraints are considered. In order to assess the efficiency of the pro-posed methodology 

for gravity dam optimization, an example, the Belo Monte gravity dam as a real-world structure has 

been selected and the optimization of the dam subject to usual load condition has been achieved. 

Keywords: optimization, concrete, gravity dams, genetic algorithm, real example, design. 

 

1 Introduction 

Concrete gravity dams are hydraulic structures widely used as water reservoir to 

hydroelectric power plants in general. These structures have trapezoidal shape in their cross 

section and shall guarantee the global stability against acting loads like hydrostatic and uplift 

pressures through his gravitational actions (self-weight and others). Hence, finding a proper 

shape design minimization of the dam's cross-section area can remarkably reduce the 

construction costs [3]. 

For stability requirements, the dam must be safe against overturning and sliding. Moreover, 

the safe stresses in the concrete of the dam or in the foundation material shall not be exceeded. 

The potential failure plans as concrete-foundation contact, horizontal plans through the dam 

body or through the foundation, can be considered, according to the rupture mechanisms 

identified by the geotechnical model [11]. 

In order to assure the structural global stability and the allowable stress criteria for the 

concrete gravity dam design, as discussed in Gutstein [19] and [20], a trial and error 

procedure process is usually carried out from a preliminary cross section defined in the design 

initial phases, followed by stability and stress analysis studies. Then, if the chosen cross 

section does not meet the security criteria, it shall be modified and analyzed again; if safety 

criteria are being met with a little effort, a new study can be conducted with the purpose of 

optimizing the design. 

To achieve this purpose, several alternative schemes with various patterns should be selected 

and modified to obtain a number of feasible shapes. Therefore, the proper shape of dam 

considering the economy and safety of design, structural considerations, etc. is selected as 

the final shape. In order to reliably achieve an optimal shape for dams instead of this trial and 

error procedure, optimization techniques have been effectively utilized [24], [23] and [34]. 
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Genetic Algorithms (GA) are heuristic search approaches that are applicable to a wide range 

of optimization problems. This flexibility makes them attractive for many optimization 

problems in practice. They represent one branch of the field of study called evolutionary 

computation, in that they imitate the biological processes of reproduction and natural 

selection to solve for the fittest solutions [7]. 

GA can solve a broad class of engineering problems encountered in practice, possessing a 

large number of design parameters (integer, discrete, continuous and integer/discrete-

continuous) and a large number of constraints. It has been highly successful as one of 

evolutionary computation techniques in searching for a broad class of stacking sequence, 

size, topology optimization problems for composite structures [29], [30], [31] and [18]. 

Designing and constructing concrete gravity dams must be in a way that not only realize 

sustained conditions, but also impose the minimum production costs. The major imposed 

cost in such dams is expenses of excessive use of concrete [35]. 

Optimizing this cost requires cross-section optimization. The main aim of this paper is to 

present and discussed an optimization study for concrete gravity dams based on GA’s method 

and Matlab application. The present work brings a simple implementation using GA in 

Matlab for usual load condition, contrasting with the complexity presented in [3], [2], [35], 

[24], [23] and [14] which bring approaches with high complexity computational methods. 

The dam's geometry and the load effects over it must be considered in its design analysis 

procedure. In order to reduce the computational cost of the optimization process, the stopping 

criteria is limited to satisfactory values. To demonstrate the efficiency of GAs in finding the 

optimum design of concrete gravity dams, the shape optimization of a real dam from Belo 

Monte Hydropower is presented as an example for normal conditions. 

2 Stability Analysis of Concrete Gravity Dams 

In this study is used usual loading combination. Therefore, normal design reservoir elevation, 

with appropriate loads and uplift. Figure 1 shows the usual loads acting in a dam considering 

drain. Water pressure is the most major external load acting on such a dam. The horizontal 

water pressure, exerted by the weight of the water stored on the upstream side on the dam 

can be estimated from rule of hydrostatic pressure distribution. 
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Figure 1. Concrete Gravity Dam Cross-Section and Imposed Forces. 

 

For uplift determination, considering drain reduction, Hdm is adopted as shown in Equation 

1. 

𝐻𝑑𝑚 =

{
 

 

  

𝐻𝑗 +
1

3
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ℎ𝑔 +
1

3
∗ (𝐻𝑚 − ℎ𝑔) 𝑓𝑜𝑟  𝐻𝑗 < ℎ𝑔

 (1) 

hg is the height, Hm upstream water, Hj downstream water and Hdm is uplift height with drain 

reduction. To guarantee security for a dam, the dam cross section is verified against floating, 

overturning and sliding.  

Floating safety factor has the function to guarantee the stability of structure against the forces 

that tend to make the body float. It is calculated by Equation 2 [12]. 

𝐹𝑆𝐹 =  
∑𝑉

∑𝑈 
 (2) 

Where FSF is safety factor against floating, should be greater than 1.3. ΣV is resultant vertical 

force and ΣU is total uplift force. 

The overturning of a gravity dam may be calculated by dividing the total resisting moments 

by the total moments tending to cause overturning about the downstream toe, it is defined as 

the ratio between the resisting moments and overturning moments [33]. 

𝐹𝑆𝑂 =  
∑𝑀𝑟

∑𝑀𝑜
 (3) 

FSO is the safety factor against overturning, should be greater than 1.5. Mr are moments 

resisting and Mo moments overturning. 

A dam will fail in sliding at its base, or at any other level, if the horizontal forces causing 

sliding are greater than the resistance available to it at that level. The resistance against 

sliding may be due to friction alone, or due to friction and shear strength of the joint. The 
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sliding stability is based on a safety factor as a measure of determining the resistance of the 

structure against sliding [32]. 

𝐹𝑆𝑆 =  
µ∑𝑉

∑𝐻
 (4) 

FSS is the safety factor against sliding which should also be greater than 1.0. µ is coefficient 

of friction, ΣV is total vertical force acting on dam and ΣH is total horizontal force acting on 

dam. 

3 Geometrical Model of Concrete Gravity Dams and Problem 

Formulation 

In order to assign the geometrical model of concrete gravity dams, the shape can be defined 

using four parameters. Based on the model of concrete gravity dam depicted in Figure 2, the 

cross-section of concrete gravity dam studied is defined by the four parameters given by 

Equation 5. 

𝑋 = {ℎ𝑏 , 𝑏𝑐 , 𝑏𝑥 , ℎ𝑡} (5) 
 

 

Figure 2. Geometrical model of concrete gravity dam 

 

Where bc is a parameter required to defined crest of gravity dam. Also, the downstream slope 

is specified by the bx and ht design variables and hb is the dam’s height. 

The process of evaluating the overall stability of a concrete dam, makes use of the static 

equations to evaluate the equilibrium of rigid body of the part. In order to automate the 

calculation of the global stability of a concrete gravity dam, an evaluation program was 

developed in the Matlab language. This program will be used as a starting point of the 

research. 

The evaluation program has the ability to calculate overall stability and dam stress from the 

dimensions and conditions provided by the designer. This algorithm returns the values of the 

safety factors, calculated by equations 2,3 and 4. 
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After completing the calculations, the program displays the values obtained for FSF, FSO 

and FSS with a message indicating whether these values meet the design criteria, or whether 

the study section should be resized. 

Gravity dam optimization problem is explained in this section. The cross-sectional area of 

the dam is considered as an objective function to be minimized. An optimization problem 

subjected to design constraints can be expressed as follows: 

 

Find 𝑋𝐿 ≤ 𝑋 ≤ 𝑋𝑈 

Minimize  𝑓(𝑋) 
Subject to  𝑔(𝑋) ≤ 0  

Where f and g are the objective function and the constraints, respectively. XL and XU are the 

lower bound and the upper bound of the design variables, X , respectively [23]. 

The objective function is the function you want to optimize. For standard optimization 

algorithms, this is known as the objective function. In this optimization problem of concrete 

gravity dams, the cross-section area of gravity dam body is considered as objective function, 

f(X), that should be minimized. The cross-section area of concrete gravity dam can be 

determined as follows: 

𝑓(𝑋) = 𝑓(𝐴) = (ℎ𝑏 ∗ 𝑏𝑐 ) +
(𝑏𝑥 − 𝑏𝑐) ∗ (ℎ𝑏 − ℎ𝑡)

2
 (6) 

Where f(A) is cross-section area, and hb, bc, bx and ht are design variables showed in figure 

2. 

In the present study, the behavior and stability constraints are considered as the problem 

constraints, g(X). The behavior constraints consist on the safety factor against floating, 

overturning and sliding, calculated by equations 2, 3 and 4. 
1.3 − 𝐹𝑆𝐹 ≤ 0  
1.5 − 𝐹𝑆𝑂 ≤ 0   
1.0 − 𝐹𝑆𝑆 ≤ 0   

4 The Optimization Algorithm (Optdam) 

4.1 Genetic Algorithm (GA) 

Genetic algorithm (GA) is a method for solving both constrained and unconstrained 

optimization problems that is based on natural selection, the process that drives biological 

evolution. It is an optimization and search technique based on the principles of genetics and 

natural selection [21]. An individual is any point to which you can apply the fitness function 

[1]. 

The value of the fitness function for an individual is its score. A population is an array of 

individuals. At each iteration, the genetic algorithm performs a series of computations on the 

current population to produce a new population. Each successive population is called a new 

generation. The best fitness value for a population is the smallest fitness value for any 

individual in the population [15]. 

To create the next generation, the genetic algorithm selects certain individuals in the current 

population, called parents, and uses them to create individuals in the next generation, called 

children. Typically, the algorithm is more likely to select parents that have better fitness 

values [28]. 
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A GA allows a population composed of many individuals to evolve under specified selection 

rules to a state that maximizes the fitness (minimizes the cost function). The genetic 

algorithm repeatedly modifies a population of individual solutions [27]. 

Evolution is the basis of Genetic Algorithms. The current variety and success of species is a 

good reason for believing in the power of evolution. Species are able to adapt to their 

environment. They have developed to complex structures that allow the survival in different 

kinds of environments. Mating and getting offspring to evolve belong to the main principles 

of the success of evolution. These are good reasons for adapting evolutionary principles to 

solving optimization problems [25]. 

It presumes that the potential solution of a problem is an individual and can be represented 

by a set of parameters. These parameters are regarded as the genes of a chromosome and can 

be structured by a string of values in binary form. A positive value, generally known as fitness 

value, is used to reflect the degree of “good-ness” of the chromosome for solving the 

problem, and this value is closely related to its objective value [26]. 

At each step, the genetic algorithm selects individuals at random from the current population 

to be parents and uses them to produce the children for the next generation. They combine 

survival of the fittest among string structures with a structured yet randomized information 

exchange search algorithm with some of innovative flair of human search [16]. Over 

successive generations, the population evolves toward an optimal solution. 

It can be applied to solve a variety of optimization problems that are not well suited for 

standard optimization algorithms, including problems in which the objective function is 

discontinuous, nondifferentiable, stochastic, or highly nonlinear. The genetic algorithm can 

address problems of mixed integer programming, where some components are restricted to 

be integer-valued [10]. 

The genetic algorithm differs from a classical, derivative-based, optimization algorithm in 

two main ways. First, classical algorithms generate a single point at each iteration. The 

sequence of points approaches an optimal solution, GA generates a population of points at 

each iteration and the best point in the population approaches an optimal solution. The second 

difference is that classical algorithms selects the next point in the sequence by a deterministic 

computation, instead, GA selects the next population by computation which uses random 

number generators. 

4.2 Penalty Function 

In generic search methods, most applications of GAs to constraint optimization problems 

have used the penalty function approach of handling constraints. The penalty function 

approach involves a number of penal-ty parameters which must be set right in any problem 

to obtain feasible solutions [22]. 

It's applied constraint handling method for genetic algorithms. It uses the penalty function in 

Equation 7, where infeasible solutions are compared based only on their constraint violation 

[8]. 

𝐹(�⃗�) = {

𝑓(�⃗�), 𝑖𝑓 𝑔𝑗(�⃗�) ≥ 0   ∀𝑗= 1,2,…𝑚,

𝑓𝑚𝑎𝑥 +∑ 𝑅𝑗〈𝑔𝑗(�⃗�)〉
𝑚

𝑗=1
 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(7) 
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Where g(x) denotes the absolute value of the operand, if the operand is negative and returns 

a value zero, otherwise. The parameter Rj is the penalty parameter of the jh inequality 

constraint. The purpose of a penalty parameter Rj is to make the constraint violation g(x) of 

the same order of magnitude as the objective function value f(x) [9]. 

The parameter fmax is the objective function value of the worst feasible solution in the 

population. Thus, the fitness of an infeasible solution not only depends on the amount of 

constraint violation, but also on the population of solutions at hand. However, the fitness of 

a feasible solution is always fixed and is equal to its objective function value. 

4.3 Optdam 

Bearing in mind the importance of studying dams and application for evolutionary computing 

methods of optimization, the aim now is to comment on the Optdam program developed in 

Matlab. This program allows finding an optical dam’s cross section. The program was 

developed to cover general cross sections of dams in terms of geometry as showed in figure 

2. 

At the beginning, a set of solutions, which is denoted as initial population, is initialized. This 

initialization is recommended to randomly cover the whole solution space or to model and 

incorporate expert knowledge. The representation determines the initialization process. 

Initial population is shown in figure 3 [16]. 

 

 
Figure 3. Initial Population 

 

After initial population, GA scores each member of the current population by computing its 

fitness value, scales the raw fitness scores to convert them into a more usable range of values, 

then selects members, called parents, based on their fitness.  

Some of the individuals in the current population that have lower fitness are chosen as elite 

[17]. These elite individuals are passed to the next population. Produces children from the 

parents. Hence, children are produced either by making random changes to a single parent, 

mutation, or by combining the vector entries of a pair of parents, crossover. Therefore, GA 

replaces the current population with the children to form the next generation [5] and [6]. The 

conception of the new generations is presented in figure 4. 
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Figure 4. Creating the next generation 

 

Resuming, the GA in Matlab uses three main types of rules at each step to create the next 

generation from the current population. 

• Selection rules select the individuals, called parents, that contribute to the population 

at the next generation. 

• Crossover rules combine two parents to form children for the next generation. 

• Mutation rules apply random changes to individual parents to form children. 

The algorithm stops when one of the stopping criteria is met. Figure 5 shown the convergence 

process. The GA parameters of Optdam program are shown in table 1. In Figure 6 are shown 

a flowchart illustrating the GA in program. 

 



9 

 

 

 

 
Figure 5. Convergence Process 

 
Table 1 GA Information 

GA Parameters 

Parameters Adopted 

Population type Double vector 

Population size 100 

Fitness scaling Rank 

Elite count 40 

Cross-over fraction 0.8 

Mutation function Constraint dependent 

Cross-over function Constraint dependent 

Migration direction forward 

Migration fraction 0.2 

Migration interval 20 

Initial penalty 10 

Penalty factor 100 

Maximum number of generations 100 

Stall generations 50 

Function tolerance 10-6 

Constraint tolerance 10-3 

Stall time  60 (s) 

Compile timeout 180 (s)  
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Figure 5. Convergence Process 

 

5 Example: Idealized Cross-Section of the Belo Monte HPP Dam 

In order to show the applicability of the Optdam program in cases referring to reality faced 

by the designers, an optimization study is made for a concrete gravity dam adapted from one 

of the dams at the site of the hydroelectric Belo Monte. This dam is a lateral retaining wall. 

The initial design of Belo Monte dam is shown in Figure 7. 
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Figure 7. Belo Monte’s Dam 

 

In order to evaluate cross-section’s dam stability, it is necessary to define the properties of 

the materials used in the calculation.   For this case the materials used in the calculation were 

obtained from values commonly used for dams executed in the Belo Monte HPP region. The 

properties of such materials employed in this example are shown in table 2. 

 
Table 2 Materials Properties 

The properties of materials 

Material Value Unit 

Concrete’s Young Modulus 240.00 MPa 

Concrete resistance 25.00 MPa 

Poison’s ratio of concrete 0.2 - 

Mass density of concrete 2500 Kg/m³ 

Speed of pressure wave 1440 m/s 

Wave reflection coefficient 0.9 - 

Rock friction angle π/5 rad 

Partial friction safety factor 1 - 
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Internal friction coefficient 0.7 - 

Elasticity modulus of rock 27.580 MPa 

Poison’s ratio of foundation  0.2 - 

 

The analyzed section presents the geometric parameters shown in table 3. Table 3 also shows 

other important parameters for optimizing the section, being the water columns to which the 

dam is submitted, the search space defined from the minimum dimensions defined by the 

project specifications (such as free-board). This table also shows the safety factors obtained 

for such a section, from which we can see that the study section has room for improvement, 

how much it can be improved is what Opdam shows.  
Table 3 Dam Information 

Geometry parameters 

Parameter Value Unit 

Cross section area 2410 m² 

Concrete volume 2410000 m³ 

Water columns 

Parameter Value Unit 

Upstream water 70 m 

Downstream water 5 m 

Search Space 

Design variable Lower bound (m) Upper bound (m) 

h 75 80 

bc 2 10 

bx 16 56 

ht 2 10 

Safety factors 

Factor Design criteria request Achieved values 

FSF 3.00 4.52 

FSO 1.50 2.08 

FSS 1.00 1.32 

 

It is worth noting that this is an example that refers to a dam designed and executed, not being 

configured as a case study, since the values of the constants (cohesion, angle of friction, 

specific gravity of concrete, etc.) among other specificities of the project are not known with 

exactness. 

6 Results 

The optimum design of the gravity dam for Belo Monte’s dam using GA is given in Table 5. 

By comparing the solution obtained for the dam with the GA can significantly reduce the 

concrete volume of dam. 
Table 5 Optimization Results 

Optimum designs of the dam obtained by Optdam (GA) 

Design variable Value Unit 

h 78 m 
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bc 7 m 

bx 43 m 

ht 7 m 

FSF 4.5062 - 

FSO 1.5001 - 

FSS 1.0030 - 

Cross section area 1824 m² 

Concrete savings 586000 m³ 

savings percentage 24.31 % 

 

In order to limit the computational cost and to streamline the section optimization process, 

four stop criteria were defined for Optdam, these criteria were presented in table 1 along with 

the other program information. In order to make the program's functionality clearer, the 

stopping criteria are further analyzed here. The Optdam’s stopping criteria are stall 

generations, stall time, maximum number of generations and compile timeout.  

Stall generations defines the number of generations in which there is no significant gain in 

the optimization of the objective function. Stall time defines the timeout in which there are 

generations without significant gain in optimization. Maximum number of generations 

specifies the maximum number of iterations the genetic algorithm performs and compile 

timeout defines the maximum time the program can take to find the optimal solution. Figure 

8 shows the operation of the stop criteria in the example.  

 

 
Figure 8. Stopping Criteria 

 

Due to the rapid convergence of GA, already in the first generations tends to obtain 

satisfactory results. This makes the number of fifty stall generations a high measure of 

reliability that global minimum has been achieved. Since stall generations is the decisive 

stopping criterion, it is noted that the stopping criteria validate each other. The graph in 

Figure 9 presents the best cross section area value of the objective function in each generation 
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versus the generation number. The best values and mean values are highlighted for each 

iteration.  

 
Figure 9. Stopping Criteria 

 

It can be concluded that the methodology presents too much robustness in the resolution of 

the problem (reduction of area), as discussed in the stopping criteria, already in the first 

generations, in its best solution, have acceptable results. It is noted that as the iterations 

progress, the mean values obtained are approaching the best values, this is due to the GA’s 

natural selection excludes the values of lesser fitness and starts to work only with the values 

that best fit adapt to the solution of the problem. 

Figure 10 shows the optimized cross section within the actual section. The red strip showing 

the area economy obtained in the example (assuming the same resistance parameters adopted 

here, cohesion, friction and concrete specific gravity), section optimization reduces an area 

strip to the right of the section, taking a notable reduction in the dam base. 
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Figure 10. Optimized Section 

 

7 Conclusions 

An efficient optimization procedure is introduced to find the optimal shapes of concrete 

gravity using genetic algorithm in Matlab software. The concrete gravity dam body is treated 

as a two-dimensional structure involving the geometry. 

An example based on a real dam has been presented. The GA optimum solution obtained for 

such dam reveals how already executed dams could have more slender sections and how 

bends to be projected can avail of optimization mechanisms for the choice of concrete gravity 

dam sections, producing more economical dams. 

Results demonstrated the ability of these algorithms for this type of continuous optimization 

problem. Status of optimally designed dam for the algorithm is also provided for better 

assessment of safety factors. It is shown that all the constraints are completely satisfied. 

This research provides useful optimization formulations for trapezoidal concrete gravity 

dams and can be extended to other dams. The final result is a robust genetic algorithm 

program for shape optimization of concrete gravity dams, that is simple from a mathematical 

point of view and is able to work with trapezoidal dams under different load and bounder 

conditions. The proposed method reduces the cross-section area and consequently the volume 

of dam up to 20% with very low computational effort. 

However, it is worth mentioning that the program developed here makes use of the global 

stability conditions as limiting for the evaluation and selection of the cross sections, being 

this necessary but not sufficient condition in a concrete dam design by gravity.  

In real design situations, (even though project practices indicate that once the overall stability 

criteria are met, the section will meet the stress criterion and other possible criteria [19]) the 

Optdam must be used to select the cross section that must then be evaluated for stress criteria 

(usually using finite elements) and specific conditions that vary with each project 

(earthquakes, silting, etc.). 
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