
Genome analysis

Sequanix: a dynamic graphical interface for

Snakemake workflows

Dimitri Desvillechabrol1,*, Rachel Legendre1,2, Claire Rioualen3,

Christiane Bouchier1, Jacques van Helden3, Sean Kennedy1 and

Thomas Cokelaer1,2,*

1Institut Pasteur—Biomics Pole—CITECH, F-75015, Paris, France, 2Institut Pasteur—Bioinformatics and

Biostatistics Hub—C3BI, USR 3756 IP CNRS, F-75015, Paris, France and 3Aix Marseille Univ, INSERM, TAGC,

UMR_S 1090, Marseille 13288, France

*To whom correspondence should be addressed.

Associate Editor: John Hancock

Received on July 20, 2017; revised on January 15, 2018; editorial decision on January 17, 2018; accepted on January 18, 2018

Abstract

Summary: We designed a PyQt graphical user interface—Sequanix—aimed at democratizing the

use of Snakemake pipelines in the NGS space and beyond. By default, Sequanix includes Sequana

NGS pipelines (Snakemake format) (http://sequana.readthedocs.io), and is also capable of loading

any external Snakemake pipeline. New users can easily, visually, edit configuration files of expert-

validated pipelines and can interactively execute these production-ready workflows. Sequanix will

be useful to both Snakemake developers in exposing their pipelines and to a wide audience of users.

Availability and implementation: Source on http://github.com/sequana/sequana, bio-containers on

http://bioconda.github.io and Singularity hub (http://singularity-hub.org).

Contact: dimitri.desvillechabrol@pasteur.fr or thomas.cokelaer@pasteur.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Context and motivation

Bioinformatics software dealing with biological data (large volumes

and variety of data structures) are routinely put together to design

sophisticated workflows (or pipelines). Fortuitously, many work-

flows can be decomposed into embarrassingly parallel problems: a

task can be applied in parallel on similar datasets (e.g. several DNA

samples). Yet, the long-term utility of these pipelines is often tenu-

ous, hampered of interwoven scripts and software libraries, numer-

ous files or complex dependencies between tasks.

Scripting languages may be sufficient to design workflows.

However, they usually lack the ability to handle dependencies be-

tween rules, re-entrancies (starting from an intermediate step rather

than from scratch), or distributed computing features to handle

time-intensive and multi-parametric tasks. To overcome these prob-

lems, various workflow managers have emerged as popular tools in

the field of bioinformatics (Leipzig, 2017). They usually possess all

relevant features to design workflows effectively. Consequently, de-

velopers have the luxury of choosing a framework amongst many

based on personal choice. Influencing factors may include the pro-

gramming language or the presence of a graphical user interface

(GUI). Workflow managers like Galaxy (Goecks, 2010) provides

GUI drag and drop capability allowing non-specialists to implement

de novo pipelines. On the other end of the spectrum, command line

interfaces (CLI, hereafter) are still widely employed. Indeed, most

developers would prefer a light-weight framework that could be

more flexible or accelerate the development of new pipelines.

Amongst the recent CLI-based workflow managers, Snakemake

(Köster and Rahmann, 2012) has been adopted by a large commu-

nity of developers. This is especially pronounced in the field of NGS

(see http://snakemake.readthedocs.io), where there is an increasing

demand for production-ready pipelines to handle massive amounts

of data from different technologies. Although Snakemake provides a

GUI interface, it is server-oriented, which is a limitation on some

distributed clusters. Moreover, the GUI is essentially a wrapper of

the command line itself. Besides, scientists willing to change the be-

haviour of the pipelines needs to edit the configuration file or

VC The Author(s) 2018. Published by Oxford University Press. 1934

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 34(11), 2018, 1934–1936

doi: 10.1093/bioinformatics/bty034

Advance Access Publication Date: 19 January 2018

Applications Note

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/11/1934/4817647 by guest on 12 February 2021

http://sequana.readthedocs.io
http://github.com/sequana/sequana
http://bioconda.github.io
http://singularity-hub.org
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty034#supplementary-data
http://snakemake.readthedocs.io
https://academic.oup.com/


masterize the numerous Snakemake arguments. In order to expose

our pipelines to a wider audience, we design a graphical interface—

Sequanix—to offer the ability to edit the configuration file

interactively, associate dedicated widgets to parameter types, or

add tooltips dynamically. Although Sequanix was designed to ex-

pose Sequana pipelines (Cokelaer, 2017), it can also load any

Snakemake pipelines as demonstrated in the Supplementary

Material with third-party pipelines available in the SnakeChunks li-

brary (Rioualen, 2017).

2 The graphical interface: Sequanix

Snakemake is a text-based workflow that uses Python and a definition

language to define rules and workflow properties. A Snakemake

pipeline is defined within a file called Snakefile (examples in

Supplementary Material). Although not strictly required, pipeline

parameters may be externalized within a configuration file in YAML

or JSON formats.

Sequana project provides a set of Snakemake pipelines dedicated

to NGS analysis (e.g. RNA-seq, variant calling, . . .). Hereafter, we

distinguish the Snakemake pipelines provided in Sequana from other

Snakemake pipelines. We refer to the former as Sequana pipelines

and to the latter as Generic pipelines. The first difference being that

every Sequana pipeline is made of a Snakefile and a configuration

file whereas Generic pipelines may not have a configuration file.

The second difference is that the Sequana configuration files are in

YAML format only. A third difference is that the configuration file

in Sequana must define specific fields which refer to the location or

type of inputs files (e.g. FastQ files).

Sequanix interface is designed in PyQt, which is a Python bind-

ing of the cross-platform GUI toolkit Qt (https://www.qt.io/). The

user interface consists of a main dialog (see Fig. 1), a Snakemake

dialog and a Preferences dialog (See Supplementary Material). The

Snakemake dialog is used to configure the Snakemake framework

behavior (e.g. number of CPUs to be used) while selection and

execution of a pipeline is performed in the main dialog as

explained below.

At the top of the main dialog (Fig. 1A) one can switch between

the Sequana or Generic mode. In Sequana mode, all released pipe-

lines are shown in pipeline selection tab. Once a pipeline is selected,

its configuration file is dynamically loaded (Fig. 1C) and users can

modify parameters interactively. Then, users can select the relevant

input data (Fig. 1A). Finally, a working directory must be set where

the project (Snakemake pipeline and configuration file edited by the

user) is saved. The Generic mode works in a similar fashion except

that the input data tab (specific to Sequana) is now replaced by the

config file tab. Here, users may provide a configuration file (if

needed). The only restriction is that the Snakemake pipeline must be

executable in the Sequanix’s environment. In other words, third-

party libraries and applications required by the pipeline must be

configured properly before starting Sequanix.

We designed Sequanix to build upon the Snakemake framework

and add important functionalities. We felt that users should not

manually edit configuration files. Therefore, configuration files are

loaded in a dedicated widget and their sections and parameters are

interpreted and shown in the interface (Fig. 1C). Some parameters

are associated with specific widgets. For instance a parameter name

ending in _file or _browser becomes a file or directory browser in-

stead of a simple editable line. We also propose to annotate config-

uration files (YAML format) with comments written as Python

docstrings (see Supplementary Material). Such comments are then

interpreted and appear as tooltips in the GUI. We also implemented

the ability for users to import a YAML schema file, which is used to

further validate the configuration file (e.g. check that threading par-

ameter are greater than zero).

The Snakemake framework scales without modification, from

single and multi-core workstations to cluster engines. This ability is

reflected in the Sequanix interface (Fig. 1B) and in the Snakemake

dialog where one can switch between local and cluster mode, set

the number of CPUs, or provide specific job scheduler arguments

(e.g. memory requirements).

Once a pipeline (Sequana or Generic) and a working directory

are set, the project can be saved (Save button) and the pipeline flow

(a directed acyclic graph) visualized (Pipeline button). Finally, the

pipeline can be executed (Run Button). Stopping the process (Stop

button) behaves as a normal Snakemake interruption allowing re-

entry. If an error occurs (e.g. missing file), one can quickly fix it and

re-enter the execution.

3 Conclusion

Sequanix provides a GUI for Snakemake workflows. Its simple interface

makes it easy for non-specialists to implement existing production-ready

pipelines that have been created by Snakemake developers. Users can

load a pipeline, edit the configuration file via various widgets or drop-

down menus (reducing typographical errors), execute the pipeline locally

or on a cluster, and track the progress of the analysis. Although Sequanix

was primarily developed to expose Sequana pipelines, it should also bene-

fit to the community of Snakemake developers willing to provide a graph-

ical interface to their users. Currently, Sequanix is included in Sequana,

that is available on Bioconda (Grüning, 2017) under the package named

Fig. 1. Main Sequanix dialog. One can switch between Sequana and Generic

modes (top panel). Then, one can select a Snakemake pipeline, or specify the

working directory where analysis is performed and results stored (A). The

analysis can be run locally or on a distributed computer (B). In the latter case,

cluster options may be provided in the Options menu. Configuration file is

editable (C). Finally, one can save, run or stop the pipeline execution (D)

Sequanix: a dynamic graphical interface for Snakemake workflows 1935

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/11/1934/4817647 by guest on 12 February 2021

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty034#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty034#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty034#supplementary-data
https://www.qt.io/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty034#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty034#supplementary-data


sequana as well as on the singularity hub (Kurtzer, 2017) (see http://

sequana.readthedocs.io for details). Finally, note that a Sequanix version,

independent of Sequana, will be provided in the future.

Funding

This work has been supported by France Génomique consortium (ANR10-

INBS-09-08 and ANR-10-INBS-09-10) and NIH grant GM0110597 &

FOINS-CONACYT—Fronteras de la Ciencia 2015—ID 15.

Conflict of Interest: none declared.

References

Cokelaer,T. et al. (2017) Sequana: a set of snakemake NGS pipelines. J. Open

Source Softw., 2, 352.

Goecks,J. et al. (2010) Galaxy: a comprehensive approach for supporting ac-

cessible, reproducible, and transparent computational research in the life

sciences. Genome Biol., 11, R86.

Grüning,B. et al. (2017). Bioconda: a sustainable and comprehensive software

distribution for the life sciences. bioRxiv doi: 10.1101/207092

Köster,J. and Rahmann,S. (2012) Snakemake – a scalable bioinformatics

workflow engine. Bioinformatics, 28, 2520–2522.

Kurtzer,G.M. et al. (2017) Singularity: scientific containers for mobility of

compute. PLoS ONE, 12, e0177459.

Leipzig,J. (2017) A review of bioinformatic pipeline frameworks. Brief.

Bioinf., 18, 530–536.

Rioualen,C. et al. (2017) SnakeChunks: modular blocks to build

Snakemake workflows for reproducible NGS analyses. bioRxiv doi: 10.

1101/165191

1936 D.Desvillechabrol et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/11/1934/4817647 by guest on 12 February 2021

http://sequana.readthedocs.io
http://sequana.readthedocs.io
http://dx.doi.org/10.1101/207092
http://dx.doi.org/10.1101/165191
http://dx.doi.org/10.1101/165191

