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a b s t r a c t

There is general agreement in the fact that fully three-dimensional (3D) numerical techniques provide
the most precise tools for simulating the behavior of RC buildings even when their computational costs
for real structures became them unpractical. Moreover, one-dimensional formulations (1D) are rather
limited for predicting the mechanical behavior of framed structures which present local weakness that
can determine their global responses, such as it is the case of poor detailed joints of RC buildings
in seismic zones or precast concrete structures. An alternative approach, combining both simplicity
and computational efficiency, is given by coupling reduced models for prismatic elements with full
3D models for the zones corresponding to connecting joints. In this work, a two-scale approach is
developed for obtaining the nonlinear dynamic response of RC buildings with local non-prismatic parts.
At global scale level all the elements are rods; however, if local parts with complex geometry appear, the
corresponding elements are analyzed considering fully 3D models which constitute the local scale level.
The dimensional-coupling between scales is performed imposing the kinematics hypothesis of the beam
model on surface-interfaces of the 3Dmodel. An iterative Newton–Raphson schemewhich considers the
interaction between scales is developed to obtain the response at global level. The tangential stiffness
of the local models are obtained numerically. Computationally, the problem is managed by means of
a master–slave approach, where the global scale problem acts as the master and the local models are
the slaves; iterative communication between scales considers internal forces and moments as well as
tangential tensors. The process stopswhen global convergence is achieved. From the computational point
of view, the developed method is implemented in a parallelized scheme, where the master and slave
problems are solved independently by different programs thus minimizing the intervention on existing
codes specific for beams and solids. Finally, numerical examples are included.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Fully 3D numerical techniques provide the most precise tools
for simulating the nonlinear behavior of RC buildings, although
the computing time required makes their applications unpractical
[61]. Considering that a great part of the elements in buildings
are prismatic, reduced (one-dimensional) formulations appear as
a solution combining both numerical precision and reasonable
computational costs [35,36]. Experimental evidence shows that
inelasticity in beam elements can be formulated in terms of cross-
sectional quantities [5] and, therefore, the beam’s behavior can
be described by means of concentrated models, sometimes called
plastic hinge models, which localizes all the inelastic behavior at
the ends of the beam by means of ad-hoc force–displacement or
moment–curvature relationships [13,61]. It is important to note
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that, in this case, the nonlinear constitutive laws are valid only
for specific shapes of the cross sections and that frequently some
components of the reduced forces and/or moments are treated
elastically [12,20,40,46]. A further refinement in the analysis of the
mechanical response of beam structures is obtained considering
inhomogeneous distributions of materials on arbitrarily shaped
cross sections [12]. In this case, the usual procedure consists
of obtaining the constitutive relationship at cross-sectional level
by integrating on a selected number of points corresponding to
fibers directed along the beam’s axis [53,62]. Thus, the mechanical
behavior of beams with complex combinations of materials can
be simulated [3,10]. Fiber models fall into the category known as
distributed beam models [21] due to the fact that inelasticity can
spread along the beam element axis [49]. In most cases, both types
of models, the concentrated and the distributed ones, have been
formulated under the hypothesis of infinitesimal deformation.
Geometric nonlinearity has mainly been treated by means

of two different approaches: (i) The co-rotated or inexact for-
mulations, which considers arbitrarily large displacements and
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rotations but the assumption of small strains as it can be reviewed
in reference [11]. (ii) The geometrically exact formulations are ob-
tained from the fully 3D theory of the continuum by means of re-
ducing the number of dimensions using appropriated kinematic
hypothesis [22]. One of the most successful geometrically exact
formulation for beams is that due to Simo [56] and Simo and Vu-
Quoc [57,58] which extends to the three-dimensional case the for-
mulation originally presented by Reissner [50,51] and allows to
consider finite extension, shearing, flexure and torsion, but with
the restriction of maintaining the planarity of the cross sections.
Additionally, other works based on alternative kinematic hypoth-
esis allow considering the warping of the cross section [17,59]. In
spite of the great capacity of the mentioned formulations, works
considering both inelasticity and a geometrically exact kinematics
are rather scarce. Some recent works can be reviewed, for exam-
ple, in [7] a new (mesh independent) element for the full nonlin-
ear analysis of RC plane frames based on the interpolation of the
strains is presented. In [24] (see also references therein) Izzuddin
and Lloyd Smith present a computationally efficient method for
the analysis of RC structures based on adaptive analysis concepts
which consider coupled geometric and constitutive sources of non-
linearity.
Most of the geometrically exact nonlinear models are limited

to the elastic case [56,57] and the inelastic behavior has
been mainly restricted to plasticity [17,52,59]. Recently, Mata
et al. [35,36] have extended the geometrically exact formulation
for beams of Reissner, Simo and others [23,25,27] including
an arbitrary distribution of composite materials with inelastic
constitutive laws on the cross sections for the static and
dynamic cases. The linearized version of the weak form of
the balance equations is employed for the developing a step-
by-step integration procedure for solving the resulting system
of equations. The mesh independent response when strain
localization for softening materials occurs is also considered
by means of a regularization of the energy dissipated [3,20].
Alternatively, other approaches based on strong discontinuities
have been successfully applied to the study of the mechanical
behavior of softening beams [2].
As it has been explained, although a great amount of work

has been devoted to the development of refined nonlinear models
for beam structures, all of them are subjected to the following
limitations: (i) beam structures present either fully monolithic
connections among elements or some of their degree of freedoms
are released [26] (e.g. pinned connections). Therefore, structural
failures due to damage inside of the nodes, such as those occurred
in poorly designed RC buildings [6] or in the so called semi-rigid
connections of steel or composite structures [1], are often not
properly considered. (ii) The shape and the mechanical properties
of the cross sections are considered constants in an element (or
they have smooth variations) and, therefore, the beam models
show serious difficulties in reproducing structural behaviors
dominated by local changes in the geometry such as those observed
in the connecting joints of precast concrete structures [47,48].
Several attempts have been made for modeling the effects

of local irregularities or local complex stress concentrations in
framed structures. Probably, the most common approach consists
of employing plastic hinge models with moment–curvature rela-
tions reflecting the mechanical characteristics of the connecting
joints [29], although this approach has the previously described
limitations. Other authors have focused their efforts towards de-
veloping specific solid-to-beam transition elements e.g. [64]. More
realistic numerical studies of beam–column connections involve
fully 3D finite element (FE)models as it is shownby Fu et al. in [14];
however, in their work the purpose still is obtaining simpler mo-
ment/curvature relationship for the connecting joints.
An alternative approach, combining precision, generality and

computational efficiency consists of coupling reduced 1D and full

3D numerical models describing different parts of the structure.
In this case, most of the elements are prismatic rods while the
local non-prismatic parts or zones corresponding to the connecting
joints receive amore detailed description. The connection between
models of different dimensions is done through interface-surfaces.
Research in this direction has been carried out by McCune et al.
[38] where a scheme for establishing displacement compatibility
and stress equilibrium at the interface is developed. The results are
finally implemented as multi-point constraint equations relating
the displacement field of the beam’s node (which includes
rotations) with the corresponding of the nodes of the solid at the
interface. A similar approach is followed by Shim et al. [54,55]
and an application to earthquake engineering can be reviewed
in [18]. The kinematic restrictions for a consistent beam-to-shell
transition element in finite deformation is presented in [63]. Garusi
and Tralli [15] develop hypostatic transition solid-to-beam and
plate-to-beam elements following a stress assumed method. In
[19], the dimensional-coupling is obtained applying the Lagrange
multiplier’s method. In all the cases, the numerical examples are
limited to the linear elastic case. In [16] a displacement based
super-element is used for studying the propagation of waves in
structures with singularities.
In this work, a two-scale approach (global and local) is

developed in order to study the nonlinear response of RC framed
buildings. At global scale level, all the elements of the FE model
are rods in finite deformation; however, if (locally) geometric
irregularities appear, a zoom view of the corresponding element
is performed, consisting in a fully 3D model which constitutes
the local scale level. The dimensional-coupling between scales
is performed through surface-interfaces imposing the kinematic
hypothesis assumed for the beammodel which consider the finite
rotations and finite displacements. This method avoids the use
of multi-points constraints or Lagrange multipliers. Starting from
the full 3D stress state existing in the local model, cross-sectional
forces and moments, required at global level, are recovered by
integrating at the surface interface in the sameway as for the cross-
sectional analysis of beams [35]. An iterative Newton–Raphson
scheme based on the displacement method, which considers the
interaction between scales is developed to obtain the response
at the global level even in the nonlinear dynamic range. Force
and displacement equilibrium is checked at both, local and global
levels, ensuring that compatible configurations are reached for
the whole problem. The tangential stiffness of the local model is
obtained numerically applying small perturbations on the current
configuration and obtaining the corresponding reaction forces
reduced to the degree of freedom of the global level.
From the point of view of the implementation in a numerical

code, the problem is managed by means of a master–slave
approach, where the global scale problem acts as the master,
sending a trial displacement field to the local scale models (slaves)
and then receives the corresponding internal forces, moments
and tangential tensors estimated by means of integration on the
surface interfaces. The iterative process is finishedwhen the global
convergence is achieved. Computationally, the proposed approach
is well suited to be implemented in a parallelized algorithm,
where the master and slave problems are solved independently by
different programs. The communication between processes (and
processors) is carried out by means of an appropriated library
of communication. In this way, minimal intervention on existing
codes (specific for beams and solids) allow obtaining the response
of thewhole structure in the nonlinear static and dynamic analysis.
Finally, numerical examples are included showing the capabilities
of the proposed formulation.
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Fig. 1. Schematic representation of the two-scale model.

2. Description of the proposed model

The whole body of the framed structure can be seen as divided
in two different sets: (i) By one hand, B corresponds to the part
of the body1 which is susceptible to be described by means of an
assembly of reduced 1D models which are connected each to the
others by means of monolithic joints. (ii) By the another hand,
�s := {

∑
p�ps} is the set of p = 1 . . .NΩ parts of the structure

which present local non-prismatic parts.
The set B constitutes the global scale of the problem, where

the advantages of the dimensional-reduction of the problem are
taken into account, including geometric nonlinearities. Beam cross
sections can be meshed into a grid of fibers with appropriated
constitutive laws. The geometry and the distribution of materials
of each element of the set �s is described carefully by means of
a full 3D approach; therefore, elements of this set are treated at
a more reduced scale, the local scale (in terms of the degree of
detailing considered). The connection between B and one part
�ps is obtained through the set ∂�ps := {

⋃
k∂�kps}, where k =

1 . . .NpΩ is an index which runs over the number of interface-
surfaces, ∂�kps ∈ R2. Each element of ∂�ps has one-to-one
correspondence with the end cross section of a beam element
connecting to�ps (See Fig. 1).
At global scale level, the so called dimensional-coupling [38,39]

is obtained enforcing at local level, i.e. on each ∂�kps of a given
�ps, the fulfillment of the kinematic hypothesis assumed for the
1D model. In the present work, planarity of the cross section is
assumed during the motion and, therefore, the surface-interfaces
of the local model displace and rotate as a rigid body and, in
this sense, warping or cross-sectional distortion is not included.
Reduced forces and moments from the local models are obtained
though integration of the reaction forces in the interfaces in an
analogousmanner as for the cross- sectional analysis of beams [35].
The local model constitutes a zoom view made on a part of the
structure, �ps, which is treated at global level as an additional
1D element. Fig. 2 shows an illustrative example: a structure
consisting of a 1Dmodel and a 2Dmodel deformsdue to themotion
φ(t) where t is the time. It is possible to see that the cross section
of the end of the beam corresponds to the surface interface of the
3D model, which moves as a 2D rigid body.

1 By simplicity, in this work a part of a body is identified with all the material
points which occupy a region on the 3D space and can be conveniently described
using a coordinate system. For a more elaborated definition see [33].

Fig. 2. Kinematics hypothesis of the 1D model imposed on the surface-interface
∂�p1 .

In other words, given a motion of the structure, the global
scale only treats with dimensionally-reduced quantities as usual
in beam’s theories but the required quantities originating from
elements of the set�s are obtained solving a 3D problem subjected
to the beam kinematics’s assumptions as boundary conditions on
the displacements of ∂�ps. In the following sections, a presentation
of both, the local and the global models, as well as of the step-
by-step numerical algorithm for solving the two-scale problem is
given.
It is worth to note some advantages of the proposed approach:

(I) It avoids the construction ofmulti-point constraints relating the
displacement (and rotation) fields at both scales as described,
for example, in [38]. In general, the design of such type of
constraints requires a rather significant number of hypothesis
about the local scale stress field which are valid mainly in
the elastic range and for simple (non-composite) materials. An
extension of such an approach to the full nonlinear geometric
and inelastic case is not obvious.

(II) Lagrange multipliers (see e.g. [19]) are a recognized method to
enforce a large set of different types of kinematic conditions;
however, in contrast with the present approach, the resulting
global problem has an increased number of variables to be
determined.

Remark 1. The proposed formulation can be seen as an ad-hoc
numerical homogenization by means of an appropriated micro
description of the domain corresponding to the local scale using
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Fig. 3. Reduced cross-sectional quantities. (a): Strains. (b): Stress resultants.

the FEM. A similar approach has been used for the treatment of
structures made of composite materials [45] in the context of 2D
continuum problems. �

3. Global scale model: Beams

The Reissner–Simo geometrically exact formulation for beams
[50,56,57] has been expanded by the authors for considering
an inhomogeneous distribution of (inelastic) composite materials
on the cross sections [35,36]. The FE implementation of this
formulation is used as the global scale problem. In following some
aspects of this theory, relevant to the development of the present
two-scale approach, are reviewed.

3.1. Summary of the theory

Let {Êi} and {êi} be the fixed2 material and spatial frames,
respectively. The curved reference beam is a spatially fixed curve
ϕ̂0(S) ∈ R3, with S ∈ [0, L] being the arch-length coordinate. On
each S there is rigidly attached an orthogonal local frame t̂0i(S) =
30Êi, where30 ∈ SO(3) and ϕ̂0 ,S = t̂01(S). The beam cross section
A(S) ∈ R2 is defined considering the local coordinate system ξβ
directed along {t̂0β}.
The deformation moves ϕ̂0(S) to ϕ̂(S, t) at time t adding a

translational displacement and 30(S) is rotated to 3(S, t) =
3n30 ∈ SO(3) by means of the incremental rotation tensor
3n(S, t). In general, t̂1 6= ϕ̂ ,S because of the shearing [22]. The
position vector of any material point with coordinates (S, ξβ) on
the reference beam configuration, x̂0, and on the current beam
configuration, x̂, are given by

x̂0 = ϕ̂0(S)+30(S)ξβ Êβ , x̂ = ϕ̂(S, t)+3(S, t)ξβ Êβ , (1)

respectively. Then the displacement field on eachmaterial point on
a cross sectionA(S), at time t , is obtained as

û(S, ξβ , t) = x̂− x̂0. (2)

Eq. (1) implies that the current configuration is determined by
(ϕ̂,3) ∈ R3× SO(3) [57] and a kinematically admissible variation
field3 is (δϕ̂, δθ̂) ∈ R3 × T spa3 .
The deformation gradients of the curved reference beam and of

the current beam are denoted by F0 and F , respectively; (see [35]).
Then, Fn := FF−10 relates differential arch-length elements of

2 Latin indices run over 1 to 3 and Greek indices over 1 to 2. The symbol (•) ,x is
used to denote partial differentiation of (•)with respect to the variable x.
3 The symbol T spa3 is the spatial linear vector space of rotations on SO(3)with base

point3. For more details consult [32].

the curved reference configuration with the corresponding in the
current placement and it is possible to construct the strain tensor
εn = Fn − 3n. The associated spatial strain vector acting on a
material point on the current beam cross section is

ε̂n = g−10 (γ̂n + ω̂n × ξβ t̂β) (3)

where g0 is the determinant of F0, γ̂n = ϕ̂ ,S −t̂1 measures
elongation and shearing [23,56] and ω̂n is the current curvature
vector relative to the curved reference beam (the axial vector of
ω̃n ≡ 3n ,S 3

T
n ). The material version of ε̂n is given by

Ên = 3
T ε̂n = g−10 (0̂n + �̂n × ξβ Êβ) (4)

where 0̂n = 3T γ̂n and �̂n = 3T ω̂n constitute the (material)
reduced strains, while Ên is the strain measure on a point the cross
section (see Fig. 3a).
An objectivemeasure of the strain rate vector ŝn can be deduced

using the Lie derivative operator [35] as

ŝn = ˙̂ϕ ,S −ṽnϕ̂ ,S +ṽn ,S ξβ t̂β (5)

where ṽn = 3̇n3Tn is the spatial angular velocity tensor referred to
the curved reference beam (see [36]). The corresponding material
form is Ŝn = 3Tŝn.
Lets P̂1 be the First Piola Kirchhoff (FPK) stress vector (on a point

of the cross section) referred to the curved reference beam, which
is energetically conjugated to Ên. Integrating over the cross section,
it is possible to obtain the stress resultant n̂ and the stress couple m̂
according to

n̂(S) =
∫

A

P̂1dA; m̂(S) =
∫

A

(x̂− ϕ̂)× P̂1dA (6)

withmaterial forms given by P̂m1 = 3
TP̂1, N̂ = 3T n̂ and M̂ = 3T m̂,

respectively (see Fig. 3b).
The reduced balance equations referred to the curved reference

beam, can be written as [27]

n̂ ,S +n̂p = Aρ0 ¨̂ϕ, m̂ ,S +ϕ̂ ,S ×n̂+ m̂p = Iρ0α̂n + ṽnIρ0v̂n (7)

where n̂p and m̂p are the external (applied) force and moment per
unit of reference length, respectively; α̂n is the angular acceleration
vector, Aρ0 and Iρ0 are the mass density and the second mass
moment density per unit of length of the curved reference beam,
respectively [27,57].
Considering an admissible variation ĥ = (δϕ̂, δθ̂) [57], taking

the dot product with Eq. (7) after some manipulations, one may
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obtain the functional GG(ϕ̂,3, ĥ) corresponding to the virtual work
principle:

GG =
∫
L

[
δ
O
γ ·n̂+ δ

O
ωn · m̂

]
dS︸ ︷︷ ︸

GGint(ϕ̂,3,h)

+

∫
L

[
δϕ̂ · Aρ0 ¨̂ϕ + δθ̂ · (Iρ0 α̂n + ṽnIρ0 v̂n)

]
dS︸ ︷︷ ︸

GGine(ϕ̂,3,h)

−

∫
L

[
δϕ̂ · n̂p + δθ̂ · m̂p

]
dS︸ ︷︷ ︸

GGext(ϕ̂,3,h)

−
[
(δϕ̂ · n̂)

∣∣L
0 + (δθ̂ · m̂)

∣∣L
0

]

= 0 (8)

where δ
O
γ and δ

O
ωn are the co-rotated variations of γ̂ and ω̂n,

respectively. The functional GG is the sum of the internal, inertial
and external contributions, GGint, GGine and GGext, respectively.

3.2. Constitutive laws

Points on the cross sections are assumed to have associated a
composite material as explained in [44]. The composite is formed
by several simple constituents which can have associated any of
the following constitutive models: linear elasticity, rate indepen-
dent plasticity and damage or visco damage. All these models have
been developed considering a suitable form compatible with the
kinematics described in Eq. (1) and the details can be consulted in
[35,36]. For the purpose of explaining the present two-scale for-
mulation it is enough to say that each compounding substance on
a given material point has associated a constitutive law in the fol-
lowing way:

P̂m1 = f (Ên, Ŝn, ᾱ) (9)

where P̂m1 and Ên are the material form of the FPK stress and strain
vectors, respectively, f (•) is the function describing the constitu-
tive relation depending on the set ᾱ = {ᾱ1, . . . , ᾱn} composed by n
internal variables. Additionally, a tangent consecutive relation be-
tween linearized increments of strain and stress exist and is ex-
pressed as

δP̂m1 = CmtδÊn. (10)
Themixing rule for composites [9] is used to obtain the resulting

stress and tangential tensor at material point level according to

P̂m1 =
Nc∑
p=1

kp(P̂m1 )p, C̄
mt
=

Nc∑
p=1

kp(Cmt)p (11)

where (P̂m1 )p and (C
mt)i are the stress vector and tangential

tensor for the p = 1 . . .Nc compounding substances which
participates according to their volumetric fraction kp [9]. On the
other hand, a mesh independent response of the structure is
obtained regularizing the dissipated energy at constitutive level as
explained in reference [35].

3.3. Damage index

The details of the damage index, Ď, used in this work can be
consulted in references [35,36]. It constitutes a measure of the
damage level of a material point obtained as the ratio of the
existing stress level to its visco elastic counter part as follows:

∑
i

|Pmt1i | = (1− Ď)
∑
i

|Pmt1i0| =→ Ď = 1−

∑
i
|Pmt1i |∑

i
|Pmt1i0|

(12)

where |Pmt1i | and |P
mt
1i0| are the absolute values of the components

of the existing (rate dependent) and visco elastic stress vectors,
respectively. Initially, Ď = 0, but when the entire fracture energy
of the material is dissipated |Pmt1i | → 0 and Ď → 1. Eq. (12)
can be applied to consider a structural member, a part of the
structure or the whole structure, by integrating the stresses over
the corresponding volume of the structure.

4. Local model: 3D connecting joint

Once a local non-prismatic part has been detected on a given
rod, a zoom view, corresponding to the local 3D scale, is opened.
This section is devoted to explain the mechanical problem which
has to be solved at local level. It is worth to recall that the
dimensional-coupling between scales is obtained by imposing the
plane section assumption for beams on the surface-interfaces in
the 3D model (see Fig. 2).

4.1. Equilibrium equations and boundary conditions

Assuming a massless local model (ρ0 = 0), we obtain that
points on the (plane) surface-interfaces are subjected to the same
motion as the corresponding cross sections of the beams connected
to them. At local level, the momentum balance equations of the
body �ps, with ∂�ps =

⋃
k∂�psk (k = 1, . . . ,NpΩ) surface-

interfaces, are described by

∇ · (FS) = 0
S = ST in�ps ∈ R3 (13a)

x̂ = φ(ϕ̂k,3k) in ∂�psk ∈ R2, k = 1, . . . ,NpΩ (13b)

where S is the second Piola–Kirchhoff (SPK) stress tensor, no
external body forces are applied i.e. b̂0 = 0 as well as prescribed
traction on the boundaries (S · N̂ = 0). The functions φk of
Eq. (13b), defining the natural boundary conditions of the problem,
are prescribed in accordance with Eq. (1) and they are expressed4

as

x̂L = ϕ̂k − ϕ̂0k + χβ(3k −30k)Êβ = ûk; ∀x̂L ∈ ∂�psk (14)

where ϕ̂k, ϕ̂0k,3k,30k are the current and reference displacement
fields and rotation tensors associated to the beam connecting to
the kth surface-interface, ûk is the corresponding displacement, χβ
are the local (orthogonal) coordinates of thematerial point x̂L lying
on the surface-interface ∂�psk. In an analogous manner as for the
finite strain beam theoryχβ are directed along amovable local axis
t̂k(β) = 3kÊβ (see Fig. 4).
Following standard arguments in continuummechanics [33]we

have that the weak statement of Eqs. (13a) and (13b) is given by

GL(x̂, δx̂) =
∫
�ps(t=0)

S : δEdV = 0 (15)

where E is the Green–Lagrange (GL) strain tensor energetically
conjugated to S and t the time. It is worth to note that the strain
and stress fields developed in the body�ps during the motion, are
derived from the imposition of the displacement field of Eq. (13b).

4 The subscript L has been introduced to highlight that the respective quantity is
referred to the local model.
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Fig. 4. Time evolution of the material points lying on the surface-interfaces.

4.2. Constitutive equations

Material points on �ps are assumed to have associated a
composite [9,44] formed by several simple constituents with their
own constitutivemodels. In this case, theGL tensorE is complete in
the sense that all the 9 components can be determined froma given
displacement field; therefore, rate dependent and independent
constitutive models for plastic and degrading materials can be
formulated based on a solid thermodynamic basis. Additionally,
the mixing rule is used to treat the resulting composite [9].
In following, a brief review of the main characteristics of the
employed models is given; however, more detailed descriptions
can be consulted in previous works of the authors [9,30,41,43,44].
Particularly, concrete is treated by means of a isotropic damage

model, where the degrading behavior of a material point is
conducted by the evolution of a scalar parameter which range
over [0, 1] (0 for the undamaged behavior and 1 for a complete
degradation). The model is able to differentiate between tensile
and compressive properties of the material. A detailed description
of this model can be found in [30,41]. Alternatively, other models
can also be employed, for example, the coupled plastic damage
model of Ref. [31].
The longitudinal reinforcement can be seen as a material

which has elastic plastic behavior directed along the line of the
reinforcing bars. A plastic model for orthotropic materials is used
to simulate the mechanical behavior of steel reinforcements [9].
Imposing themechanical properties of the concrete in the direction
perpendicular to the axis of the reinforcing bar and orienting the
plastic flow in the direction of the reinforcement, it is possible to
simulate the typical behavior of the steel bars.
From the point of view of the construction of a FE model of

the local non-prismatic part, one proceed meshing the geometry
as usual; then the material associated to elements located in
places where steel reinforcements are present, is considered as
a composite material according to the mixing rule [43,44]. The
composite material is made of two phases: (i) A concrete phase
described by means of a degrading material and (ii) a phase
corresponding to the content of steel reinforcements (longitudinal
and/or transversal). The mechanical properties of the steel phase
are defined in a manner such that the directionality of the
reinforcement is considered.
Fig. 5 shows the 3D joint of a typical RC structure. The view A−A

shows a typical FE discretization of one of its cross sections where
three kinds of materials are used: (i) a purely damaging model for
the elements of the unconfined zone. (ii) A coupled plastic damage
model for the confined zone of the concrete. (iii) A composite
material with three phases for the zone where longitudinal
and transversal steel reinforcements appear altogether with the
concrete. Each phase of the mixture contributes according to its

volumetric fraction [34]. The proposed approach for the local scale
model has the advantage of avoiding the usage of highly refined FE
meshes.

Remark 2. A really large number of works has been devoted
to the development of models for concrete including complex
phenomena such as intrinsic anisotropy, creep and fracture among
others (see e.g. [42]); however, the main contributions of the
present work, which are focused on the treatment of local
irregularities in buildings in finite deformation, are independent
of the constitutive model used �

4.3. Cross-sectional and boundary surface analysis

From the point of view of the numerical implementation, a
beam cross section is meshed into a grid of quadrilaterals, each
of them corresponding to a fiber oriented along the beam axis.
An appropriated cross-sectional analysis for fiber beam models
in finite deformation has been presented in references [35,36]. In
those works, an integration of the constitutive equation of each
simple material existing on each fiber level is followed by the
application of the mixing rule and a posterior integration on the
cross-sectional surface. The same procedure allows to determine
the cross-sectional tangential stiffness.
In the case of the dimensional-coupling between scales, after a

displacement field in the local scale problem fulfilling Eqs. (13a)
and (13b) has been determined, it remains opened the question
about how to determine the reduced forces and moments which
should equilibrate the system of Eq. (7). The solution to the
problem is provided by the fact that numerically the restriction
of Eq. (13b) is forced on a discrete set of points, Xpsk =

⋃
ix̂
i
psk,

corresponding to nodes of a FE mesh, on each surface interface
∂�psk (k = 1, . . . ,NpΩ ). After the numerical solution of the
discrete problem has been carried out, a set of reaction forces,
Rpsk =

⋃
i r̂
i
psk corresponding to the nodal reactions, appears on

each of the ∂�psk. The reduced forces and moments acting on the
kth surface-interface are then calculated as

N̂G =
∑
i

r̂ ipsk, M̂G =
∑
i

l̃i r̂ ipsk (16)

where N̂G, M̂G are the reduced force and moment vector obtained
from the full 3D problemof the local scale,̃ li is the skew-symmetric
tensor obtained from l̂i = (χ2, χ3)i, the vector of coordinates of the
ith restricted point on the kth surface-interface.

Remark 3. It is worth to note that in order to achieve equilibrium
at global level, the reduced forces and moments obtained from the
global and local scales have to self-equilibrate. Considering that
the displacement and rotation fields are the same for both scales
due to the kinematics assumption, one obtains that this condition
enforces that the work done by both models is the same at the
surface-interfaces �

5. Numerical procedure

In this section a Newton type numerical solution procedure
based on the linearized form of the weak form of Eq. (8) is
developed [23,57]. The interaction between scales is explained as
well as the method used to obtain the reduced tangential stiffness
tensor of the local scale problem.

5.1. Global scale: Consistent linearization for beams

At global scale level each element behaves as a rod, therefore,
the numerical solution for most of the elements is based
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Fig. 5. FE model of the local scale including directional reinforcements.

linearizing the functional of Eq. (8) which can be written as

L [GG∗(ĥ)] = GG∗(ĥ)+ DGG∗(ĥ) · p̂ (17)

where L [GG∗(ĥ)] is the linear part of GG at the configuration
defined by (ϕ̂∗,3∗) and p̂ ≡ (1ϕ̂,1θ̂ ) is an admissible variation.
The termGG∗(ĥ) supplies the unbalanced force andDGG∗(ĥ) · p̂ gives
the tangential stiffness.5
In the general (inelastic) case, Eq. (17) can be rewritten as

L [GG∗] = GG∗ + [KM + KG + KV + KP + Kine]∗ (18)

where KG∗, KM∗ give the geometric and the constitutive parts of the
tangential and stiffness and the term KV∗ gives the viscous part,
which considers the rate dependent contribution of the constitu-
tive laws [35,36]. The term KP∗ corresponds to the loading depen-
dent part and Kine∗ is the contribution of the inertial terms [8,58].
The numerical implementation in a FE code of the discrete

form of Eq. (18) follows standard procedures [23,28,57,58], an
appropriated version of the Newmark’s implicit time stepping
algorithm and an iterative procedure for updating the strain and
strain rate vectors can be reviewed in references [35,36].

5.2. Local scale: FE model and reduced tangential stiffness

At global scale level, an iterative step-by-stepNewton–Raphson
scheme is used to solve the discrete version of the linearized form
of the functional, GL, given in Eq. (15), considering the boundary
conditions of Eq. (13b). The usual FE procedure is applied as
described, for example, in [4]; therefore, details are omitted here.
After convergence is achieved, the reduced forces and moments
corresponding to the surface-interfaces are estimated from the
reaction forces as explained in Section 4.3.
The another ingredient required in the global scale is the

reduced tangential tensor, i.e. the tangential stiffness obtained from
the 3Dmodel but reduced to the beam’s degrees of freedom (DOFs)
connected to the surface-interfaces. This tensor is obtained by
means of applying the perturbationmethod [9] as follows:

(i) Supposing a local scale model used to describe the solid
�ps, with ∂�ps =

⋃
k∂�psk (k = 1, . . . ,NpΩ) surface-

interfaces, there are (6 × NpΩ ) DOFs corresponding to the
beams connected to the solid.6 After a displacement field
fulfilling Eqs. (13a) and (13b) (in the nonlinear range) has been
determined, a set of perturbations on each one of the (6×NpΩ )
DOFs is performed. In this case a perturbation in the pth DOF

5 Details can be consulted in [23,57].
6 They correspond to 3 displacements and 3 rotation on each surface-interface

connected to the solid.

consist in imposing of a displacement field with a magnitude
close to the numerical precision of the computer machine on
the nodes of the corresponding surface-interface.7 Let denote
one of such perturbations by δUpG .

(ii) For the new boundary condition corresponding to each δUpG ,
the problem defined by Eqs. (13a) and (13b) is solved and
then the corresponding increments in the reaction forces of
the restricted nodes of the body are calculated.

(iii) By using the formulas of Eq. (16), the increments of the
reduced forces and moments are calculated. Let us denote
them by δN̂pqG and δM̂

pq
G (q = 1, . . . ,NpΩ ), which physically

correspond to the stiffness in the qth DOF due to a
infinitesimal displacement (correspondingly, rotation) in the
pth DOF.

(iv) Regarding the sign of the δUpG ’s it is worth noting that it should
be defined consistently with the path of the strains,8 i.e.

sgn[δUpG] = sgn[U
i
G(n+1) − UG(n)]

where U iG(n+1) denotes the global displacement (equivalently,
rotation) at a generic time step tn+1 and iteration (i); andUG(n)
is its converged value at tn. In this manner, the perturbation
δUpG inherit the tendency (loading or unloading) of the global
scale deformation. If sgn[δUpG] < 0, unloading is induced in
the pth DOF.

Therefore, the numerical estimation tangential stiffness of the
local scale model reduced to the global DOFs is given by

[ ]
t
L =

δN̂
11
G · · · δN̂1qG
...

. . .
...

δM̂q1G · · · δN̂qqG

 . (19)

Initially, the tangent stiffness of Eq. (19) corresponds to the
elastic one, [ ]0L , and in this case, the applied perturbation can be
small or large.

Remark 4. Note that under certain circumstances, step (iv) of the
above list may yield to a situation where the body at local scale
remains in the elastic range. However, after applying the pertur-
bation, nonlinear incursions appear, affecting the values of the ob-
tained stiffness matrix and the convergence of the method. �

7 Perturbations on translational DOFs impose translational displacement fields
on the nodes of the surface-interface and perturbations on rotational DOFs impose
infinitesimal (additive) rigid body rotations.
8 sgn[•] denotes the sign of (•).
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Fig. 6. Flow chart of the two-scale Newton–Raphson iterative scheme.

5.3. Two-scale Newton–Raphson integration procedure

As it has been explained before, the two scales are dimension-
ally-coupled through the reduced forces and moments and the
tangential tensors. From the numerical point of view, at global
scale level, once a loading step is applied, the corresponding
displacement and rotation fields are obtained on the nodal DOFs.
After that, the following sequence of steps is carried out:

(i) If the element corresponds to a classical rod, the strain fields
are calculated on each fiber of the cross sections corresponding
to an integration point and the reduced forces, moments
and tangential matrices are determined as described in [35,
36]. If the element corresponds to a local non-prismatic part,
the full 3D problem at local scale level is solved using an
iterative Newton–Raphson scheme in the FEM and imposing
the rod’s kinematics assumptions on the surface interfaces. In

the nonlinear range, several iterations can be needed at local
scale level to obtain the converged fieldwhich provides the not
necessarily convergent (in a global sense) reduced forces and
moments at global scale level.

(ii) After convergence is achieved at local scale level the obtained
reduced forces, moments and tangential tensor are sent to the
global iterative scheme to the check convergence. If this is
the case: (1) the local data base is updated and (2) the global
algorithm proceed to apply a next load increment. If not, a new
iteration is performed at global level.

The flow chart of the two-scale Newton–Raphson iterative is
shown in Fig. 6. Note that based on (i) and (ii), when inelasticity
appears on both scales, each global iteration induces several
iterations at local level. In this sense, global convergence implies
local converge on each non-prismatic part.
Note also that inelasticity at local scale can induce iterations

at global scale but the converse is not true. On the contrary,
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Fig. 7. Schematic representation of the master–slave approach.

if only global converge is enforced in the Newton scheme, the
following pathological situation can appear: The global structure
is in equilibrium in the sense given by Eq. (8) but the displacement
field of the local non-prismatic part does not fulfill the equilibrium
of Eqs. (13a) and (13b) yielding to an unrealistic estimation of the
stress state in the non-prismatic elements.

5.4. Computational aspects

The proposed two-scale formulation for beam structures with
local irregularities is very well suited to be computationally
implemented using the advantages of the parallel computation.
The message passing interface (MPI) system [60] is used to pass
information among different process (or processors) which can
correspond to programs of different nature that share information
during execution. In the present case, a master–slave approach is
followed using the MPI library coupled with two Fortran codes;
one of them, the master, is specific for the structural analysis of
beams and the another one, corresponding to the slave, specific for
structural analysis of solids (see Fig. 7).
The following steps summarize the basic features of the

computational implementation of the Newton–Raphson iterative
scheme described in Section 5.3:

(i) The program which solves the global scale problem acts as
master and initially sends the order to run, in independent
processes, as many slave programs as local non-prismatic
parts appear in the structure.

(ii) Each one of the slaves is an independent process correspond-
ing to the execution of a specific program for the analysis of
solids, which is in charge of solving the local scale problem. It
is worth to note that each slave process can be executed on
the same processor of the computer as the master or in a dif-
ferent one if a multiprocessor computer is being used. In the
first case, the time required for the calculations increases lin-
early9 with the number of slaves because the processor can
run only one program at the same time. In the second case, the
time required decreases because the structural response from
several slaves can be obtained simultaneously. In any case, the
use of theMPI systemhelps to performaminimal intervention
on existing codes specific for the analysis of 1D or 3D struc-
tures. Themain advantage of using theMPI standard lies in the
fact that the changes to be implemented in existing codes are

9 Here the word ‘linearly’ is used to indicate that the time required for
calculations is function of the number of slaves, since it would not be possible to
maintain a strict linearity in the consumption of time when inelasticity has place in
the models.

limited to include the SEND and RECEIVE calls corresponding
to the synchronizedmessage passing between the master and
each one of the slaves.

(iii) The message passing among processes corresponds to the
sending from the master of the rotation and displacement
fields of the surface-interfaces of each slave and the receiving
from the slaves to the master of the reduced forces, moments
and tangential tensors corresponding to each iteration
according to the flow chart of Fig. 6. Other information, typical
of iterative schemes, such as global convergence in a time step
or warnings are also passed for the opportune updating of the
data base in the slave processes.

5.5. Limitations of the present formulation and its computational
implementation

From the computational point of view, in spite of thementioned
advantages obtained from using the MPI system some difficulties
can be mentioned:

(i) It is rather difficult to debug the execution of the coupled
problem using the standard debugging tools of the modern
developer environments which are, in most cases, developed
for the construction of individual programs.

(ii) For the moment, there is not control over the order in which
the synchronized messages are passed from different slaves
to the master. This aspect is complicated when studying the
execution of the programs by mean of writing texts to the
user–screen.

From the point of view of the formulation and its numerical
implementation, several limitations where observed during the
numerical simulation of the response of structures:

(i) At local level, if a great part of the 3D body suffer inelastic
incursions the stress distributions on the surface-interfaces
can become very complex influencing the global convergence.
The main reason for this behavior can be related with the
fact that in the nonlinear range, plane sections do not remain
plane10 and, therefore, the resulting reduced forces and
moments have values that are far from the ones obtained
on the cross sections of the connecting beams. A possible
solution for this problem consists of considering local models
representing a larger part of the structure, in such a way
that the local inelastic effects are concentrated in a zone
that remains far from the surface interfaces, limiting the
inelasticity. By the other hand, if the proposed solution is
employed, the massless assumption for the local scale model
can introduce larger errors in the dynamic analysis and a
new formulation considering inertial forces appears to be
necessary.
It is worth to mention that normally when inelastic

behavior appear in prismatic RC members, plane sections
where strain localization occur loose their planarity. However,
it is widely accepted that planarity (and a linear strain
distribution) is recovered at a distance equal to the height
of the cross section from the localized zone. Then, numerical
models of local non-prismatic parts should locate the surface-
interfaces at a distance from the zone where the geometry is
complex no shorter than the largest dimension of the cross
section of the connecting beams. This is the criterion used
in the construction of the numerical models of the examples
presented in the following section.

10 Mainly, when degrading materials are used.
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Fig. 8. Elastic cantilever beam subjected to 3D loading.

(ii) Imposing the restrictions given in Eq. (13b), enforces to
maintain the size and shape of the ∂�psk; therefore, reaction
forces contained in the plane of the surface-interfaces
derived from the Poisson coefficient, ν, of the materials
become those forces (shear forces and torsion moment) ‘ν-
dependent’. To overcome the difficulties encountered in the
numerical simulations an additional assumption has been
done, corresponding to assume ν = 0 for the materials of
the FE’s lying on the surface-interfaces. In this way, the plane
and undeformed hypothesis assumed for beam elements is
enforced in the local scale.

(iii) The number of local non-prismatic parts has to be defined
prior to run the numerical simulations and, in this sense, the
size of the problem is predefined. It would be desirable to have
a specific criteria for deciding when a local model of a part
of the structure has to be constructed. This last choice would
allow save memory resources when not all the critical zones
are in the nonlinear range.

6. Numerical examples

6.1. Elastic example

The fist example corresponds to the 3D loading of the cantilever
beam of Fig. 8. The beam is simulated using 5 quadratic beam
elements for each of the segments located on the right and left
sides of the central one. The central segment is simulated using a
two-scale approach. Ten linear hexahedra are used in the direction
X and amesh of 4×4 hexahedra are used for the surface interface,
giving a total of 192 elements in the local model. One Gauss

integration point is used in each FE of the local model. The applied
loadings as well as the material properties are given in the same
figure.
Fig. 9 shows a comparison between the displacement response

in the Y and Z directions obtained from the two-scale model and
the ones obtained using a simple elastic FE beam model. Its is
possible to see a good agreement between both results.
Fig. 10 shows the distribution of the reaction forces on the

surface-interface of the localmodel. It isworth noting that complex
force distributions are well reproduced in the local model due to
its capacity for representing the full 3D geometry of the beam,
in contrast with that obtained in the beam model, due to the
limitations of the kinematics assumptions.Moreover, as it has been
explained before, reduced forces andmoments are then calculated
using Eq. (16).
Some additional comments can be made: (1) The example is

solved using: (i) a two-scale model with 192 (linear) hexahedral
elements and 10 quadratic beams, giving a total of 212 integration
points; (ii) 11 quadratic elements (22 integration points) if only
beam were used and (iii) 1728 elements (and integration points)
if only hexahedra were used. The execution time for each loading
step is: 2.40 s, 0.27 s and 17.8 s for cases (i), (ii) and (iii),
respectively. It is possible to see the advantage of using the two-
scale approach in the sense of reducing the execution time about
7.4 times when compared with the full 3D model. (2) The time
delay in the communication between local and global scales is
negligible due to the fact that parallelism is established between
processes belonging to the same processor (AMD Athlon (tm) 64×
2 Dual. Core processor 4400+, 3 GB RAM). However, for a problem
including several local models solved in different processors, time
delay spent in communication may become significant.

6.2. Nonlinear static example

The seismic response of the precast RC industrial building
of Fig. 11 has been studied by the authors in reference [37]
consideringmonolithic joints. The building has a baywidth of 24m
and 12mof inter-axes length. The story hight is 12m. The concrete
has a ultimate compression of 35MPa, with E = 290.000MPa, ν =
0.2 and a tension/compression relation of 10. The ultimate tensile
stress for the steel is 510 MPa with ν = 0.15, E = 200 000 Mpa
and ν = 0.15. The dimensions of the columns are 60×60 cm2. The
beam has an initial high of 40 cm on the supports and 140 cm in
the middle of the span. The permanent loads are 1000 N/m2 and
the weight of upper half part of the closing walls with 225.000 N.
The building is meshed using 8 quadratic beam elements with

two Gauss integration points for the resulting beams and column.

Fig. 9. Comparison between the displacement response obtained from the beam and the two-scale models (a, b): Displacements in Y and Z directions, respectively.
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Fig. 10. Reaction force distributions on the surface-interfaces. (a): Force in X
direction. (b): Force in Y direction. (c): Force in Z direction.

Fig. 12. FE model of the local scale problem. (a): Mesh. (b): Distribution of
materials.

Details about the steel reinforcement and the grid of quadrilateral
of the cross sections can be consulted in the same reference.
Additionally, we consider a local scale model corresponding to the
precast connecting joint which is clearly a local irregularity in the
structure, see Fig. 11. The FEmodel used for the local scale is shown
in Fig. 12 and it corresponds to a segment of the column and beam
of 60 cm measured along their respective axis, which allows to
cover completely the connecting zone where two steel bars with
16 mm diameter are used to transmit forces and moments among
vertical and horizontal elements.
A total of 608hexahedral FE are usedwith oneGauss integration

point. Considering that the mixing rule is used in the local 3D
model, several zones (see Fig. 12b) with different volumetric
fractions of steel and concrete are defined, representing the
longitudinal and transversal reinforcements in the structure. A
static pushover analysis is performed considering: (i) the frame
with monolithic joints in finite deformation. (ii) The two-scale

Fig. 11. Description of the structure.
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Fig. 13. (a): Capacity curves. (b): Evolution of the global damage index.

model in finite deformation. The purpose is to establish clearly the
importance of considering an appropriated description of the local
irregularities in the structures as well as the second order effect
coupled with inelasticity in the study of flexible structures.
Fig. 13a shows the capacity curves obtained for the two

mentioned cases. It is possible to see in this figure that the
stiffness and ductility levels are overestimated in the case when
the monolithic joints are employed. The use of finite deformation
allows to take into account the so called effect P–∆ [37] and an
anticipated strength degradation is observed for displacements
over 60mmwhich is a lateral displacement level expectable under
strong seismic excitations. Softening behavior is observed for both
models. Fig. 13b shows the evolution of the global damage index
for both models. This index grows quickly for the two-scale model
due to the fact that the greater part of the degradation and energy
dissipation take place inside of the connecting joint.

6.3. Nonlinear dynamic example

In this example, the nonlinear seismic response of the structure
of Section 6.2 is simulated by means of the two-scale model.
The input acceleration is the N–S component of the El Centro
1940 earthquake record. The response obtained from the two-scale
model is comparedwith that obtained from the nonlinear dynamic
response of a beam model. Fig. 14 shows the hysteretic cycles
obtained from the lateral displacement of the upper beam–column
joint and the horizontal reaction (base shear) in the columns for
both models. Again it is possible to appreciate the influence of the
local irregularity in the dynamic response:more energy dissipation
and lateral displacements are obtained in the two-scale model.
Fig. 15 shows the time history response of the horizontal dis-

placement and acceleration of the upper beam–column joint for
both models. Displacements and accelerations are greater (∼45%
and ∼14%, respectively) when the two-scale model is used in the
numerical simulations, revealing that the nonlinear seismic re-
sponse of precast and of other RC structures with local irregular-
ities can be dominated by the mechanical behavior of the joints.
Fig. 16 shows several stages of the nonlinear inclusions

experienced by the local model.
Finally, some additional comments: In Sections 6.2 and 6.3,

most of the computing time was consumed in the local scale
calculations (1824 DOFs versus 21 DOF in the global model).
Moreover, the number of iterations and the time consumption
in each iteration increased when the structure presented larger
incursions in the nonlinear range. Typical values at the end of the
simulations were: (i) Iterative computing time (a) Global scale:

Fig. 14. Base shear–displacement relationship.

Fig. 15. Time history responses of the top beam–column joint. (a): Horizontal
displacement. (b): Acceleration.

∼25 s (b) Local scale: ∼5.5 min. (ii) Number of iterations to
converge: (a) Global scale:∼20–35. (b) Local scale:∼30–50.
Again, time delay in the communication process between local

and global problems is negligible by the same reasons as explained
in Section 6.1. The numerical experiments indicate that more
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Fig. 16. Nonlinear response in the local model at times t = 2.0, 3.1, 4.2 s. (a): Stress in the Y direction. (b): Damage concentration around the connecting bar in the joint.

pronounced difficulties to achieve convergence appear according
to the size of the part of the structure that suffer inelastic incur-
sions.

7. Conclusions

A two-scale, global and local, approach has been developed for
studying the nonlinear response of RC framed buildings which
present local irregularities. At global scale level, all the elements
of the model are 1D i.e. prismatic rods which consider the geo-
metrically exact formulation due to Reissner and Simo, extended
to include an arbitrary distribution of inelastic composite materi-
als in the cross sections. Constitutive laws for the simple materials
are based on thermodynamically consistent formulations obtain-
ing more realistic estimations of the dissipated energy. A mesh-
independent response is obtained bymeans of the regularization of
the energy dissipated at constitutive level. The simple mixing rule
is applied for composites. An appropriated cross-sectional analysis
is used to treat inelasticity at cross-sectional level. Consistent tan-
gential constitutive tensors are considered to obtain the tangential
beam stiffness matrix by means of cross-sectional integration.
If local geometric irregularities appear, a refined model of the

corresponding element is carried out, constructing a fully 3Dmodel
which constitutes the local scale level. In analogy with the rods,
inelastic composite materials are considered. The dimensional-
coupling between scales is developed through surface-interfaces
imposing the kinematic hypothesis assumed for the beam model
which consider finite deformation. Starting from the full 3D
stress state existing in the local model, cross-sectional forces and
moments, required at global level, are recovered by integrating the
reaction forces at surface-interface level.
An iterative Newton–Raphson scheme based on the displace-

ment method, which considers the interaction between scales is
developed to obtain the response at the global level even in the
nonlinear dynamic range. Equilibrium is checked at both, local and
global levels, ensuring that compatible configurations are reached
for the whole problem. The tangential stiffness of the local model
is obtained numerically applying the perturbation method on the

current configuration and obtaining the corresponding reaction
forces reduced to the degree of freedom of the rod model.
The computational implementation manages the problem by

means of themaster–slave approach. The global scale problem acts
as the master, sending the iterative displacement/rotation fields
to the local scale models which are the (slaves) and then receives
the corresponding internal forces, moments and tangential ten-
sors obtained by integration on the surface-interfaces. The iterative
process is stopped when the global convergence is achieved. The
proposed approach is implemented in a parallelized algorithm,
where the mater and slave problems are solved independently
by different programs. The message passing between processes
and/or processors is carried out using the MPI library of commu-
nication. In this way, minimal intervention on specific codes for
beams and solids is required.
Additionally, the presented framework for the treatment of lo-

cal geometric irregularities can be easily extended to include other
type of kinematic assumptions for the beammodel, modifying ap-
propriately the restrictions imposed on the displacements of the
surface-interfaces. Moreover, the constitutive models used in both
scales can be selected according to the degree of refinement re-
quired by the user and are not limited only to the cases discussed
here.
Finally, numerical examples are included showing the capabil-

ities of the proposed formulation in the elastic and inelastic dy-
namic cases, highlighting the effect of considering appropriately
the effects of local irregularities. The present formulation appears
as a convenient approach for studying the dynamic nonlinear be-
havior or realistic RC structures where the response of the struc-
ture is dominated by local irregularities such as is the case of
precast structures. The employment of refined FE models only at
local level combinedwith a parallelizing computational techniques
minimize the size of the problem allowing the application of ad-
vanced numerical techniques to realistic structures of engineering.
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