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ABSTRACT

This study presents numerical solutions for the time-fractional Newell-
Whitehead-Segel (NWS) equation with a Caputo-Fabrizio derivative. Spa-
tial derivatives are discretized using three B-splines-cubic, cubic trigono-
metric and extended cubic B-splines-while temporal discretization is han-
dled by a finite difference scheme. The proposed schemes are rigorously
analyzed for stability and convergence. Their performance is evaluated in
terms of accuracy and computational efficiency. Numerical experiments
confirm the effectiveness of these techniques in capturing the dynamics of
the fractional NWS equation. Each B-spline variant demonstrates unique
strengths, highlighting the flexibility of B-spline approaches for solving
fractional differential equations with nonlocal, memory-dependent oper-
ators. These results affirm the reliability and robustness of B-spline-based
methods for such problems, paving the way for future advancements in
this area.
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1 Introduction

The time-fractional Newell-Whitehead-Segel (NWS) equation [1] is given by:

∂γ v(s, t)
∂tγ

= k
∂2v(s, t)

∂s2
+ av(s, t) − b(v(s, t))q, 0 < γ ≤ 1, s ∈ � = [0, 1], t ≥ 0, (1)

subject to the initial condition

v(s, t) = f (s), t = 0,
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and boundary condition

u(0, t) = φ1(t) and u(1, t) = φ2(t) t > 0.

where a, b, k are real parameters with k > 0, q is a positive integer and φ1(t), φ2(t), f (s) are known
functions. The time-fractional NWS equation finds important applications across multiple disciplines,
including pattern formation in biological systems, chemical reaction-diffusion processes, neural
dynamics, ecological population modeling and Rayleigh-Bénard convection in fluid dynamics. The
fractional order γ introduces crucial memory effects that capture anomalous diffusion and hereditary
properties observed in these complex systems, providing more realistic modeling of subdiffusive
transport and long-range spatial interactions than classical integer-order approaches.

The fractional derivative in (1) is defined in the Caputo-Fabrizio sense as:

CF
0 D

γ

t v(s, t) = M(γ )

1 − γ

∫ t

0

∂v(s, t)
∂y

exp
[
−γ

t − y
1 − γ

]
dy,

where v′(s, y) ∈ H1(s, y), b > 0 and M(γ ) is the normalization constant that satisfies M(0) =
M(1) = 1.

Fractional differential equations (FDEs) have gained significant attention due to their ability
to describe complex systems with non-local and memory-dependent dynamics such as anomalous
diffusion and heriditary processes. Applications span a wide range of fields, including tumor growth
[2], random walks [3], continuum mechanics [4], viscoplastic and viscoelastic flows [5], control theory
[6], transport phenomena [7] and turbulence [8,9].

Due to the lack of closed-form solutions for most FDEs, numerical methods play a central role
in their study.

The time-fractional NWS equation represents an important extension of the classical NWS model,
incorporating fractional derivatives to capture memory-dependent dynamics and anomalous diffusion
processes. The Caputo-Fabrizio fractional derivative operator is employed in this study due to its
specific physical and mathematical advantages for modeling the NWS equation. Unlike singular
kernel operators, the CF derivative features a non-singular exponential kernel that more realistically
represents certain physical processes, particularly those exhibiting exponential decay of memory
effects. This formulation is especially suitable for modeling pattern formation phenomena where the
memory effect diminishes exponentially over time, as observed in various reaction-diffusion systems.
The CF operator has been successfully applied in numerous physical contexts including viscoelastic
materials, thermal systems with fading memory, and biological processes with exponential relaxation
behavior. For the NWS equation specifically, the CF derivative captures the gradual, exponentially
decaying memory effects that characterize the evolution of amplitude modulations in convective
instabilities and biological pattern formation. Recent studies have employed various analytical and
numerical approaches to investigate this equation.

Korkmaz [10] explored complex wave solutions for the NWS equation using advanced methods to
uncover complicated behaviors. Kumar and Sharma [11] investigated the NWS equation of fractional
order to develop its numerical approximation. Patel et al. [12] developed the technique for finding exact
solutions to the NWS equation using the semi-analytical approach. Kumar and Yadav [13] applied
deep learning method to solve the NWS equation. Bekela and Deresse [14] presented an efficient
numerical technique for solving nonlinear fractional hyperbolic partial differential equations usig frac-
tional Shehu transform iterative method. Shawagfeh [15] explored analytical approximate solutions for
NWS equation. Patade and Bhalekar [16] introduced a novel iterative approach to obtain approximate
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analytical solutions of the NWS equation. Saadeh et al. [17] applied a fractional residual power
series algorithm to address the NWS equation in fractional order. Luo and Nadeem [18] extended
the solution space of the time-fractional NWS model by employing the Laplace residual power
series method. Saravanan and Magesh [19] conducted a comparative analysis between the reduced
differential transform method and the Adomian decomposition method for the NWS equation.
Ayata and Ozkan [20] proposed a conformable Laplace decomposition method to solve the fractional
NWS equation. Prakash et al. [21] utilized the fractional variational iteration method to solve the
time-fractional NWS equation employing the Caputo derivative operator, while Areshi et al. [22]
investigated the fractional-order Newell–Whitehead–Segel equation using the Atangana–Baleanu
fractional derivative. In contrast, our work employs the Caputo-Fabrizio fractional derivative, which
offers distinct mathematical properties including a non-singular kernel. The application of the Caputo-
Fabrizio operator to the NWS equation represents a novel aspect of our study. Exact and approximate
solutions are compared through graphs and tables, showing excellent agreement and high accuracy.
Jassim [23] applied the Homotopy Perturbation Transform Method (HPTM) to solve the Newell–
Whitehead–Segel equation. By combining the Laplace transform with the homotopy perturbation
technique, an efficient series solution was obtained. Newell and Whitehea [24] presented a theoretical
study on finite-bandwidth, finite-amplitude convection in fluid systems. They derived the Newell–
Whitehead–Segel (NWS) equation to describe pattern formation near the onset of convection. The
work established a fundamental model in nonlinear fluid dynamics, explaining how amplitude modu-
lations evolve in convective instabilities. They derived the Newell–Whitehead–Segel (NWS) equation
to describe pattern formation near the onset of convection. The work established a fundamental model
in nonlinear fluid dynamics, explaining how amplitude modulations evolve in convective instabilities.
Jani and Singh [25] express the solution as an infinite series via HPM, transform differential operators
using the Aboodh transform, and derive recurrence relations for the series coefficients. frontiersin.
They also analyze convergence and provide numerical examples demonstrating good agreement with
exact or known solutions. Caputo and Fabrizio [26,27] introduced a new fractional derivative with
an exponential (non-singular) kernel. This derivative, known as the Caputo–Fabrizio derivative,
eliminates the singularity present in classical fractional operators. It provides a smooth, physically
meaningful model for processes with memory effects, suitable for Laplace. Venkateswaran et al. [28]
present a hybrid simulation framework (combining discrete-event and continuous simulation) to model
and plan in a Vendor Managed Inventory (VMI) supply chain. Their method captures both operational
dynamics (e.g. replenishment, inventory flow) and planning decisions (e.g. shipment scheduling,
vendor vs. retailer control). Yousif and Hamasalh [29] discuss a hybrid numerical method that couples
non-polynomial spline interpolation with a conformable fractional continuity equation (CCE) to solve
nonlinear time-fractional differential equations. They prove stability (via Fourier method) and analyze
convergence order, showing the scheme works robustly under certain parameter ranges. Previous
research has explored various solution methods, but B-spline methods have never been used for the
fractional NWS equation. This body of work has significantly advanced our understanding of the
solution space and the behavior of the fractional NWS equation. The main contributions of this study
are:

• A novel B-spline-based numerical framework is developed for solving the nonlinear time-
fractional NWS equation involving the Caputo-Fabrizio derivative.

• Three types of B-spline basis functions–cubic, trigonometric cubic, and extended cubic—are
employed for spatial discretization, enabling a comparative performance analysis.

• A finite difference method is used for temporal discretization and the combined scheme is
analyzed for stability and convergence.
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• Comprehensive numerical experiments are conducted to validate the proposed methods and
demonstrate their accuracy and efficiency.

The remainder of this paper is structured as follows. Section 2 describes the proposed numerical
scheme and its mathematical formulation. Section 3 provides a rigorous stability analysis of the
method. Section 4 discusses the convergence properties. Section 5 presents and analyzes the numerical
results. Section 6 presents physical interpretation of the numerical results. Finally, Section 7 concludes
the paper with a summary and suggestions for future work.

2 Numerical Schemes

This section develops numerical techniques using three classes of B-Spline functions–cubic,
extended cubic and trigonometric cubic B-Splines for solving the time-fractional NWS Eq. (1).

Let τ = T
N

and h = L
M

denote temporal and spatial step sizes, respectively, where M, N ∈ Z
+.

We define:

• Temporal nodes: tm = mτ for m = 0, 1, · · · , N

• Spatial nodes: sj = jh for j = 0, 1, · · · , M

• Solution domain: � = [a, b] partioned into M equal subintervals [sj, sj+1]

2.1 Trigonometric Cubic B-Spline Scheme
The approximate solution V(s, t) is constructed as:

V(s, t) =
M+1∑
j=−1

Cj(t)TB4
j (s), (2)

where Cj(t) are time-dependent coefficients and TB4
j (s) are trigonometric cubic B-Splines (TCuBS)

basis functions [30]:

TB4
j (s) = 1

p

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

l3(sj), s ∈ [sj, sj+1)

l(sj)(l(sj)m(sj+2) + m(sj+3)l(sj+1)) + m(sj+4)l2(sj+1), s ∈ [sj+1, sj+2)

m(sj+4)(l(sj+1)m(sj+3) + m(sj+4)l(sj+2)) + l(sj)m2(sj+3), s ∈ [sj+2, sj+3)

m3(sj+4), s ∈ [sj+3, sj+4),

(3)

with l(sj) = sin
(

s − sj

2

)
, m(sj) = sin

(
sj − s

2

)
and p = sin

(
h
2

)
sin(h) sin

(
3h
2

)
.

The set {T−3,4, T−2,4, . . . , TM−2,4, TM−1,4} forms a basis over [a, b]. Due to the local support property
of trignometric B-splines, only three non-zero basis functions Tj−3,4(s), Tj−2,4(s) and Tj−1,4(s) contribute
at the grid point (sj, tM). Thus the approximate solution at the M-th time level is given by:

vm
j =

j+1∑
w=j−1

Cm
w (t)TB4

w(s). (4)

where Cm
j are time-dependent unknowns calculated using initial and boundary conditions. The

differential equation is enforced at the spatial nodes sj = jh for j = 0, 1, . . . , M, which serve as our
collocation points. At these collocation points, the approximate solutions and their derivatives are
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expressed in terms of Cm
j as:⎧⎪⎪⎨⎪⎪⎩

vm
j = a1Cm

j−1 + a2Cm
j + a1Cm

j+1,

(vm
j )s = −b1Cm

j−1 + b2Cm
j+1 + b3Cm

j+1,

(vm
j )ss = c1Cm

j−1 + c2Cm
j + c1Cm

j+1,

(5)

where coefficients ai, bi, ci are given in (6).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 = csc(h) csc
(

3h
2

)
sin2

(
h
2

)
,

a2 = 2
1 + 2 cos(h)

,

b1 = 3
4

csc
(

3h
2

)
,

b2 = 0,

c1 = 3 + 9 cos(h)

4 cos
(

h
2

) − 4 cos
(

5h
2

)
,

c2 = −
3 cot2

(
h
2

)
2 + 4 cos(h)

.

(6)

The Caputo-Fabrizio derivative is approximated as [31]:

CF
0 D

γ

t v(sj, tm+1) =
{

w0[Mk+1
k+1 (v

k+1(x) − vk(x)) + ∑k

j=1(v
j(x) − vj−1(x))Mk+1

j ], k ≥ 1,

w0M1
1 (v

1(x) − v0(x)), k = 0,
(7)

where w0 = (γ τ)−1 and Mk
j defined in (8) satisfies the properties of Lemmas 1–2.

Mk
j = exp(−γ τ

k + 1 − j
1 − γ

) − exp(−γ τ
k − j + 2

1 − γ
)), j = 1, 2, . . . k − 1. (8)

Lemma 1: [32] From the definition in (8), we have:

Mk
j > 0, Mk

j+1 = Mk−1
j , Mk

j+1 = Mk−1
j and Mk

j ≤ Mk
j+1 ∀j ≤ k.

Lemma 2: [33] Let v(t) ∈ C4,4
s,t ([0, L] × [0, T ]). Then:

0 ≤ Mj − Mj+1 ≤ CτMj and 0 ≤ Mj ≤ Cτ ,

where C Positive constant independent of j.

The discretized form of (1) is:
CF
0 D

γ

t v(sj, tn+1) = k(vn+1
j )ss + a(vn+1

j ) − b(vn
j )

q, 0 < γ ≤ 1. (9)
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For n = 0, we have:

w0M1
1 (v

1(x) − v0) = k(v1
j )ss + a(v1

j ) − b(v0
j )

q. (10)

Using the TCuBS approximations (5) into (21), we get:

η1C1
j−1 + η2C1

j + η1C1
j+1 = w0M1

1

(
a1C0

j−1 + a2C0
j + a1C0

j+1

)−
b
(
a1C0

j−1 + a2C0
j + a1C0

j+1

)q
,

where η1 = w0M1
1 a1 − kc1 − aa1 and η2 = w0M1

1 a2 − kc2 − aa2. In matrix form:

A3C1 = w0M1
1 A2C0 − b(A2C0)q,

where:

A2 =

⎡⎢⎢⎢⎢⎢⎣
a1 a2 a1 0 . . . 0

0 a1 a2 a1
. . .

...
...

. . . . . . . . . . . . 0
0 . . . a1 a2 a1 0
0 . . . 0 a1 a2 a1

⎤⎥⎥⎥⎥⎥⎦ , A3 =

⎡⎢⎢⎢⎢⎢⎣
η1 η2 η1 0 . . . 0

0 η1 η2 η1
. . .

...
...

. . . . . . . . . . . . 0
0 . . . η1 η2 η1 0
0 . . . 0 η1 η2 η1

⎤⎥⎥⎥⎥⎥⎦ .

For n ≥ 1, the scheme becomes:

w0[Mn+1
n+1 (v

n+1(x) − vn +
n∑

j=1

(vj(x) − vJ−1(x))Mn+1
j ] = k(vn+1

j )ss + a(vn+1
j ) − b(vn

j )
q. (11)

Using the TCuBS approximations (5) in above equation, we obtain:

η3Cn+1
j−1 + η4Cn+1

j + η3Cn+1
j+1 = w0Mn+1

n+1

(
a1Cn

j−1 + a2Cn
j + a1Cn

j+1

)
−

n∑
j=1

Mn+1
j

[
(a1Cj

j−1 + a2Cj
j + a1Cj

j+1)

− (a1Cj−1
j−1 + a2Cj−1

j + a1Cj−1
j+1)

]
− b

(
a1Cn

j−1 + a2Cn
j + a1Cn

j+1

)q
, (12)

where η3 = w0Mn+1
n+1 a1 − kc1 − aa1 and η4 = w0Mn+1

n+1 a2 − kc2 − aa2.

In matrix form:

A4Cn+1 = w0Mn+1
n+1 A2Cn − b(A2Cn)q −

n∑
j=1

(Cj − Cj−1)Mn+1
j ,

where

A4 =

⎡⎢⎢⎢⎢⎢⎣
η3 η4 η3 0 . . . 0

0 η3 η4 η3
. . .

...
...

. . . . . . . . . . . . 0
0 . . . η3 η4 η3 0
0 . . . 0 η3 η4 η3

⎤⎥⎥⎥⎥⎥⎦ .
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The above system consists of (M+1) equations in (M+3) unknowns. To ensure a unique solution,
two additional equations are needed. We use the boundary conditions for this purpose as follows:

vn+1
0 = ζ1Cm+1

−1 + ζ2Cm+1
0 + ζ1Cm+1

1 = φ1(tn+1), (13)

vn+1
M = ζ1Cm+1

M−1 + ζ2Cm+1
M + ζ1Cm+1

M+1 = φ2(tn+1). (14)

The complete system for each time level n + 1 then consists of:

• M + 1 equations from the collocation at interior spatial points,

• 2 equations from the boundary Eqs. (13) and (14).

Eqs. (12)–(14) yield a nonlinear system of M+3 equations in M+3 unknowns Cn+1
−1 , Cn+1

0 , . . . , Cn+1
M+1,

which can be efficiently solved using a suitable numerical solver.

2.2 Cubic B-Spline Scheme
The approximate solution V(s, t) is constructed as:

V(s, t) =
M+1∑
j=−1

Cj(t)Bj(s), (15)

where Cj(t) are time-dependent coefficients and Bj(s) are cubic B-spline (CuBS) basis functions [34]:

Bj(s) = 1
6h3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(s − sj)
3, s ∈ [sj, sj+1]

h3 + 3h2(s − sj+1)

+3h(s − sj+1)
2 − 3(s − sj+1)

3, s ∈ [sj+1, sj+2]

h3 + 3h2(sj+3 − s)

+3h(sj+3 − s)2 − 3(sj+1 − s)3, s ∈ [sj+2, sj+3]

(sj+4 − s)3, s ∈ [sj+3, sj+4]

0, otherwise.

(16)

The set {B−3,4, B−2,4, . . . , BM−2,4, BM−1,4} forms a basis over [a, b]. Due to the local support property
of cubic B-splines, only three non-zero basis functions Bj−3,4(s), Bj−2,4(s) and Bj−1,4(s) contribute at the
grid point (sj, tM). Thus the approximate solution at the M-th time level is given by:

v(sj, tm) = vm
j =

j+1∑
w=j−1

Cm
w (t)Bw(s), (17)

where Cm
j are time-dependent unknowns calculated using initial and boundary conditions. From (16)

and (17), the approximate solutions and their derivatives are expressed in terms of Cm
j as:⎧⎪⎪⎪⎨⎪⎪⎪⎩

vm
j = d1Cm

j−1 + d2Cm
j + d1Cm

j+1,

(vm
j )s = −e1Cm

j−1 + e1Cm
j+1,

(vm
j )ss = f1Cm

j−1 + f2Cm
j + f1Cm

j+1,

(18)
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where the coefficients are given by:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

d1 = 1
6

, d2 = 4
6

,

e1 = 1
2h

,

f1 = 1
h2

, f2 = − 2
h2

.

(19)

The discretized form of (1) is:
CF
0 D

γ

t v(sj, tn+1) = k(vn+1
j )ss + a(vn+1

j ) − b(vn
j )

q, 0 < γ ≤ 1. (20)

For n = 0, we have

w0M1
1 (v

1(x) − v0) = k(v1
j )ss + a(v1

j ) − b(v0
j )

q. (21)

Using the CuBS approximation (18) in (21), we get:

η5C1
j−1 + η6C1

j + η5C1
j+1 = w0M1

1

(
d1C0

j−1 + d2C0
j + d1C0

j+1

)
− b

(
d1C0

j−1 + d2C0
j + d1C0

j+1

)q
,

where η5 = w0M1
1 d1 − kf1 − ad1 and η6 = w0M1

1 d2 − kf2 − ad2.

In matrix form:

A6C1 = w0M1
1 A7C0 − b(A7C0)q

where:

A7 =

⎡⎢⎢⎢⎢⎢⎣
d1 d2 d1 0 . . . 0

0 d1 d2 d1
. . .

...
...

. . . . . . . . . . . . 0
0 . . . d1 d2 d1 0
0 . . . 0 d1 d2 d1

⎤⎥⎥⎥⎥⎥⎦ , A6 =

⎡⎢⎢⎢⎢⎢⎣
η5 η6 η5 0 . . . 0

0 η5 η6 η5
. . .

...
...

. . . . . . . . . . . . 0
0 . . . η5 η6 η5 0
0 . . . 0 η5 η6 η5

⎤⎥⎥⎥⎥⎥⎦ .

For n ≥ 1, the scheme becomes:

w0

[
Mn+1

n+1 (v
n+1(x) − vn) +

n∑
j=1

(vj(x) − vj−1(x))Mn+1
j

]
= k(vn+1

j )ss + a(vn+1
j ) − b(vn

j )
q.

Using the CuBS approximations (18), we obtain:

η7Cn+1
j−1 + η8Cn+1

j + η7Cn+1
j+1 = w0Mn+1

n+1

(
d1Cn

j−1 + d2Cn
j + d1Cn

j+1

)
−

n∑
j=1

Mn+1
j

[ (
d1Cj

j−1 + d2Cj
j + d1Cj

j+1

) − (
d1Cj−1

j−1 + d2Cj−1
j + d1Cj−1

j+1

) ]
− b

(
d1Cn

j−1 + d2Cn
j + d1Cn

j+1

)q

(22)

where η7 = w0Mn+1
n+1 d1 − kf1 − ad1 and η8 = w0Mn+1

n+1 d2 − kf2 − ad2.
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In matrix form:

A8Cn+1 = w0Mn+1
n+1 A7Cn − b(A7Cn)q −

n∑
j=1

(cj(x) − cj−1(x))Mn+1
j

where:

A8 =

⎡⎢⎢⎢⎢⎢⎣
η7 η8 η7 0 . . . 0

0 η7 η8 η7
. . .

...
...

. . . . . . . . . . . . 0
0 . . . η7 η8 η7 0
0 . . . 0 η7 η8 η8

⎤⎥⎥⎥⎥⎥⎦ .

The above system consists of (M + 1) equations involving (M + 3) unknowns. To ensure a unique
solution, two additional equations are needed from the boundary conditions:{

ζ3Cm+1
−1 + ζ4Cm+1

0 + ζ3Cm+1
1 = 0,

ζ3Cm+1
M−1 + ζ4Cm+1

M + ζ3Cm+1
M+1 = 0.

(23)

Combining (22) and (23) yields a nonlinear system of (M + 3) in M + 3 unknowns Cn+1
−1 ,

Cn+1
0 , . . . , Cn+1

M+1, which can be solved using standard numerical techniques.

2.3 Extended Cubic B-Spline Scheme
An extended cubic B-Spline of degree four with a free parameter η is constructed by adding an

extra term to the standard cubic B-Spline. The extended cubic B-Splines (ECuBS) basis functions,
EB4

j (s, η) are given by:

EB4
j (s, η) = 1

24h4

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4h(1 − η)(s − sj)
3 + 3η(s − sj)

4, s ∈ [sj, sj+1]

(4 − η)h4 + 12h3(s − sj+1) + 6h2(2 + η)(s − sj+1)
2

−12h(s − sj+1)
3 − 3η(s − sj+1)

4, s ∈ [sj+1, sj+2]

(4 − η)h4 + 12h3(sj+3 − s) + 6h2(2 + η)(sj+3 − s)2

−12h(sj+3 − s)3 − 3η(sj+1 − s)4, s ∈ [sj+2, sj+3]

4h(1 − η)(sj+4 − s)3 + 3η(sj+4 − s)4, s ∈ [sj+3, sj+4]

0, otherwise,

(24)

where η ∈ [−8, 1]. Due to local support property, only EB4
j−1(s), EB4

j (s) and EB4
j+1(s) contribute to

the approximation at any point: support characteristic of the extended cubic B-splines so that the
approximation vm

j at the grid point (sj, tm) at mth time level is given as

v(sj, tm) = vm
j =

j+1∑
w=j−1

Cm
w (t)B4

w(s, η). (25)
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The approximation and its derivatives are given by:⎧⎪⎪⎨⎪⎪⎩
vm

j = g1Cm
j−1 + g2Cm

j + g1Cm
j+1,

(vm
j )s = −h1Cm

j−1 + h1Cm
j+1,

(vm
j )ss = i1Cm

j−1 + i2Cm
j + i1Cm

j+1,

(26)

where the coefficients are:

g1 = 4 − η

24
, g2 = 8 + η

12
, h1 = 1

2h
, i1 = 2 + η

2h2
, i2 = −2 + η

2h2
.

Following the same procedure as before, for n = 0, the scheme becomes:

η′
1C

1
j−1 + η′

2C
1
j + η′

1C
1
j+1 = w0M1

1

[
g1C0

j−1 + g2C0
j + g1C0

j+1

]
− b

[
g1C0

j−1 + g2C0
j + g1C0

j+1

]q
, (27)

where η′
1 = w0M1

1 g1 − ki1 − ag1 and η′
2 = w0M1

1 g2 − ki2 − ag2.

In matrix form:

A′
6C

1 = w0M1
1 A′

7C
0 − b(A′

7C
0)q,

with matrices defined as:

A′
7 =

⎡⎢⎢⎢⎢⎢⎣
g1 g2 g1 0 · · · 0

0 g1 g2 g1
. . .

...
...

. . . . . . . . . . . . 0
0 · · · g1 g2 g1 0
0 · · · 0 g1 g2 g1

⎤⎥⎥⎥⎥⎥⎦ , A′
6 =

⎡⎢⎢⎢⎢⎢⎣
η′

1 η′
2 η′

1 0 · · · 0

0 η′
1 η′

2 η′
1

. . .
...

...
. . . . . . . . . . . . 0

0 · · · η′
1 η′

2 η′
1 0

0 · · · 0 η′
1 η′

2 η′
1

⎤⎥⎥⎥⎥⎥⎦ .

For n ≥ 1, the scheme is:

η′
3C

n+1
j−1 + η′

4C
n+1
j + η′

3C
n+1
j+1 = w0Mn+1

n+1

(
g1Cn

j−1 + g2Cn
j + g1Cn

j+1

)
−

n∑
j=1

Mn+1
j

[(
g1Cj

j−1 + g2Cj
j + g1Cj

j+1

)
− (

g1Cj−1
j−1 + g2Cj−1

j + g1Cj−1
j+1

)]
− b

[
g1Cn

j−1 + g2Cn
j + g1Cn

j+1

]q
, (28)

where η′
3 = w0Mn+1

n+1 g1 − ki1 − ag1 and η′
4 = w0Mn+1

n+1 g2 − ki2 − ag2.

The matrix form becomes:

A′
8C

n + 1 = w0Mn+1
n+1 A′

7C
n − b(A′

7C
n)q −

n∑
j=1

(cj(x) − cj−1(x))Mn+1
j
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with:

A′
8 =

⎡⎢⎢⎢⎢⎢⎣
η′

7 η′
8 η′

7 0 . . . 0

0 η′
7 η′

8 η′
7

. . .
...

...
. . . . . . . . . . . . 0

0 . . . η′
7 η′

8 η′
7 0

0 . . . 0 η′
7 η′

8 η′
8

⎤⎥⎥⎥⎥⎥⎦ .

The system consists of (M + 1) equations with (M + 3) unknowns. The boundary conditions
complete the system:{

ζ ′
3C

m+1
−1 + ζ ′

4C
m+1
0 + ζ ′

3C
m+1
1 = 0,

ζ ′
3C

m+1
M−1 + ζ ′

4C
m+1
M + ζ ′

3C
m+1
M+1 = 0.

(29)

Combining (28) and (29) yields a (M + 3) × (M + 3) nonlinear system that can be solved for the
unknown coefficients.

Remark 1: A key advantage of ECuBS over its classical counterpart is the free parameter λ, which offers
great flexibility in shaping the numerical solution and typically leads to improved accuracy. The standard
cubic B-spline is reovered when λ = 0.

Note on Notations: Throughout this paper, we employ the spatial variable s and fracitonal order
parameter γ in place of the more conventional x and α. This deliberate choice in notation helps
distinguish our work from existing literature while maintaining mathematical rigour. All symbols are
explicitly defined to ensure clarity for the reader.

2.4 Initial State
To initiate the iteration procedure, it’s crucial to determine the initial vector C0 given by

C0 = [
C0

−1, C0
0 , . . . , C0

M , C0
M+1

]T

The initial conditions for the problem are incorporated through the following set of equations:⎧⎪⎪⎨⎪⎪⎩
v′

0 = φ ′(s0),

v0
j = φ(sj), quadj = 0, 1, 2, 3, ..., M,

v′
M = φ ′(sM).

These equation specify the initial values and derivatives of the approximate solution for the initial
time level (m = 0). Here, φ represents the initial function. This leads to the formulation of a system of
(M +3)× (M +3) linear equations. This system can be written more compactly using matrix notation
as:

A5C0 = B2,
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where the matrices A5, C0 and B2 are defined as:

A5 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−ζ3 ζ4 ζ3 0 . . . 0
ζ1 ζ2 ζ1 0 . . . 0

0 ζ1 ζ2 ζ1
. . .

...
...

. . . . . . . . . . . . 0
0 . . . 0 ζ1 ζ2 ζ1

0 . . . 0 −ζ3 ζ4 ζ3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

C0 = [
C0

−1, C0
0 , . . . , C0

M , C0
M+1

]T
,

and

B2 = [
φ ′(s0), φ(s0) , . . . , φ(sM), φ ′(sM)

]T
.

3 Stability Analysis

This section examines whether our trigonometric cubic B-spline method (11) stays stable. The
same approach can be used to check stability for cubic and extended cubic B-spline methods too.
Analyzing stability for nonlinear equations required careful treatment. We linearize Eq. (11) by setting
(v(s, t))q = cv, where c is a constant, following the approach of [35], and apply the von-Neumann
method to obtain:

w0

[
Mn+1

n+1 (v
n+1(x) − vn(x)) + w0

n∑
r=1

Mn+1
r (vr(x) − vr−1(x))

]
= k(vn+1

j )ss + avn+1
j − bcvn

j . (30)

This leads to the discretized form:[
(w0Mn+1

n+1 a1 − kc1 − aa1)Cn+1
j−1 + (w0Mn+1

n+1 a2 − kc2 − aa2)Cn+1
j

+ (w0Mn+1
n+1 a1 − kc1 − aa1)Cn+1

j+1

]
= (w0Mn+1

n+1 − bc)(a1Cn
j−1 + a2Cn

j + a1Cn
j+1)

− w0

n∑
r=1

Mn+1
r

[
(a1Cr

j−1 + a2Cr
j + a1Cr

j+1) − (a1Cr−1
j−1 + a2Cr−1

j + a1Cr−1
j+1 )

]
.

(31)

Let ρn
j be the exact growth factor and ρ̃n

j be its approximation. Defining the error En
j = ρn

j − ρ̃n
j

yields:[
(w0Mn+1

n+1 a1 − kc1 − aa1)En+1
j−1 + (w0Mn+1

n+1 a2 − kc2 − aa2)En+1
j

+ (w0Mn+1
n+1 a1 − kc1 − aa1)En+1

j+1

]
= (w0Mn+1

n+1 − bc)(a1En
j−1 + a2En

j + a1En
j+1)

− w0

n∑
r=1

Mn+1
r

[
(a1Er

j−1 + a2Er
j + a1Er

j+1) − (a1Er−1
j−1 + a2Er−1

j + a1Er−1
j+1 )

]
.

(32)

The error satisfies the boundary and initial conditions:

En
0 = ψ0(tk), En

M = ψ1(tk), n = 0, 1, . . . , N (33)
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E0
j = φ0(xj), (Et)

0
j = φ1(xj), j = 1, 2, . . . , M (34)

Define the grid function:

En(x) =
{

En
j , xj − h/2 < x ≤ xj + h/2, j = 1, . . . , M − 1

0, otherwise

Its Fourier expansion is:

En(x) =
∞∑

m=−∞
ξn(m)ei2πmx/L,

where ξn(m) = 1
b − a

b∫
a

En(x)e
−i

2πmx
b − a dx. Let En = [

En
1 En

2 . . . En
M−1

]T
.

The L2-norm on En is:

‖En‖2 =
(

M−1∑
j=1

h|En
j |2

) 1
2

=
[∫ b

a

|En(x)|2 dx
] 1

2

.

By Parseval identity, we have:∫ b

a

|En(x)|2 dx =
∞∑

m=−∞
|ξn(m)|2,

which implies that

‖En‖2
2 =

∞∑
m=−∞

|ξn(m)|2. (35)

Assume solutions of the form En
j = ηneiβjs, where i = √−1 and β ∈ [−π , π ]. Substituting into

(32), dividing by eiβjs and using the relation e−iβs + eiβs = 2 cos(βs), we obtain:[
2(w0Mn+1

n+1 − a)a1 cos(βh) + (w0Mn+1
n+1 − a)a2 − k(2c1 cos(βh) + c2)

]
ηn+1

= (w0Mn+1
n+1 − bc)(2a1 cos(βh) + a2)ηn

− w0

n∑
r=1

Mn+1
r (2a1 cos(βh) + a2)(ηr − ηr−1).

For β = 0, this simplifies to:(
(w0Mn+1

n+1 − a) − k(2c1 + c2)

2a1 + a2

)
ηn+1

= (w0Mn+1
n+1 − bc)ηn − w0

n∑
r=1

Mn+1
r (ηr − ηr−1).
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which can be written as:

ηn+1 = d
ζ

ηn − w0

ζ

n∑
r=1

Mn+1
r (ηr − ηr−1), (36)

where d = (w0Mn+1
n+1 − bc) and ζ = ((w0Mn+1

n+1 − a) − k(2c1 + c2)

2a1 + a2

). Note that 2c1 + c2 = 0, which implies

ζ ≥ 1.

Proposition 1: The growth factor ηn satisfies |ηn| ≤ D|η0| for n = 0, 1, 2, . . . , N, D = |d|2.

Proof: By mathematical induction:

• Base case (n = 0): Eq. (36) implies: |η1| ≤ |d/ζ ||η0| ≤ |d|2|η0| since ζ ≥ 1.

• Inductive step: Assume |ηk| ≤ D|η0| for k ≤ n, then

|ηn+1| ≤ |d|
ζ

|ηn| + w0

ζ

n∑
r=1

Mn+1
r (|ηr| − |ηr−1|)

≤ |d|2|η0| − w0|d|
n∑

r=1

Mn+1
r (|η0| − |η0|)

= D|η0|
where we have used the inequality ||a| − |b|| ≤ |a − b| for a, b ∈ R. �

Theorem 1: The collocation scheme (11) is unconditionally stable.

Proof: From Proposition 1 and Parseval’s equality (35):

‖En‖2
2 =

∑
|ξn(m)|2 ≤ D2

∑
|ξ0(m)|2 = D2‖E0‖2

2.

Thus the scheme is unconditionally stable. �

4 Convergence Analysis

Temporal Convergece

This section derives convergence estimates for the cubic trigonometric B-spline scheme (11):

w0

[
Mn+1

n+1 (v
n+1(x) − vn(x)) +

n∑
j=1

(vj(x) − vj−1(x))Mn+1
j

]
= k(vn+1

j )ss + avn+1
j − b(vn

j )
q. (37)

The analysis can be similarly extended to examine schemes using cubic and extended cubic
B-splines.

We linearize the equation by setting (v(s, t))q = cv, where c is a constant, yielding:

w0

[
Mn+1

n+1 (v
n+1(x) − vn(x)) +

n∑
j=1

(vj(x) − vj−1(x))Mn+1
j

]
= k(vn+1

j )ss + avn+1
j − bcvn

j . (38)
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Reformulating above equation yields:

(w0Mn+1
n+1 − a)vn+1 − k(vn+1)ss = (w0Mn+1

n+1 − bc)vn

− w0Mn+1
1 (v1 − v0) − w0

n∑
j=2

(vj − vj−1)Mn+1
j .

(39)

Theorem 2: Let {u(x, tn)}N
n=2 be the analytical solution of Eq. (1) with initial and boundary conditions (2)

and {un}N
n=2 be the time discrete solution (39). The error estimate satisfies:

‖en+1‖ ≤ Cτ 2−γ

where en+1 = u(x, tn+1) − un+1, 0 < γ < 1 and C is a constant.

Proof: The exact solution satisfies the semi-discrete scheme (39) so that we have:

(w0Mn+1
n+1 − a)v(x, tn+1) − kv(x, tn+1)ss = (w0Mn+1

n+1 − bc)v(x, tn)

− w0Mn+1
1 (v(x, t1) − v(x, t0))

− w0

n∑
j=2

Mn+1
j [v(x, tj) − v(x, tj−1)] + rn+1

τ
.

(40)

Subtracting (39) from (40) yields:

(w0Mn+1
n+1 − a)en+1 − k(en+1)xx = (w0Mn+1

n+1 − bc)en − w0Mn+1
1 e1 + w0Mn+1

1 e0

− w0

n∑
j=2

(ej − ej−1) + rn+1
τ

.
(41)

Taking the inner product with en+1 and using e0 = 0:

(w0Mn+1
n+1 − a)‖en+1‖2 = k〈(en+1)xx, en+1〉 + (w0Mn+1

n+1 − bc)〈en, en+1〉
− w0Mn+1

1 〈e1, en+1〉

− w0

n∑
j=2

Mn+1
j

(〈ej, en+1〉 − 〈ej−1, en+1〉)
+ 〈rn+1

τ
, en+1〉

= −k‖(en+1)x‖2 + (w0Mn+1
n+1 − bc)〈en, en+1〉

− w0Mn+1
1 〈e1, en+1〉

− w0

n∑
j=2

Mn+1
j

(〈ej, en+1〉 − 〈ej−1, en+1〉)
+ 〈rn+1

τ
, en+1〉
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≤ (w0Mn+1
n+1 − bc)〈en, en+1〉

− w0Mn+1
1 〈e1, en+1〉

− w0

n∑
j=2

Mn+1
j

(〈ej, en+1〉 − 〈ej−1, en+1〉)
+ 〈rn+1

τ
, en+1〉

where we have used 〈uxx, u〉 = −〈ux, ux〉 and ||(en+1)x||2 ≥ 0. Applying the Cauchy–Schwarz inequality:(
w0Mn+1

n+1 − a
)

||en+1||2 ≤
(

w0Mn+1
n+1 − bc

)
‖en‖‖en+1‖ − w0Mn+1

1 ‖e1‖‖en+1‖

− w0

n−1∑
j=1

Mn+1
j (‖ej‖‖en+1‖ − ‖ej−1‖‖en+1‖) + ‖rn+1

τ
‖‖en+1‖

which further simplifies to:

(w0Mn+1
n+1 − a)‖en+1‖ ≤ (w0Mn+1

n+1 − bc)‖en‖ − w0Mn+1
1 ‖e1‖

− w0

n∑
j=2

Mn+1
j (‖ej‖ − ‖ej−1‖) + ‖rn+1

τ
‖.

For n = 0:

‖e1‖ ≤ 1
w0M1

1 − a + bc
‖r1

τ
‖ ≤ C0τ

2−γ .

By induction, assume that ‖ej‖ ≤ Cτ 2−γ for j ≤ q. Then:(
w0Mq+1

q+1 − a
)

||eq+1|| ≤
(

w0Mq+1
q+1 − bc

)
‖eq‖ − w0Mq+1

1 ‖e1‖

− w0

q∑
j=2

Mq+1
j (‖ej‖ − ‖ej−1‖|) + ‖rq+1

τ
‖

Let F = max
0≤i≤q

||ei|| ≤ C1τ
2−γ and G = max

0≤j≤q
||ej|| − ||ej−1|| ≤ C2τ

2−γ . Then above inequality can be

expressed as:

(w0Mq+1
q+1 − a)‖eq+1‖ ≤

[
(w0Mq+1

q+1 − bc)C1 − w0Mq+1
1 C0 + Cu

− w0

q∑
j=2

Mq+1
j C2

]
τ 2−γ

which implies:

||eq+1|| ≤ Cτ 2−γ ,
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where C = (w0M
q+1
q+1 − bc)C1 − w0M

q+1
1 C0 + Cu − w0

∑q

j=2 Mq+1
j C2

w0M
q+1
q+1 − a

.

This completes the proof. �
Spatial Convergence

The methodology described in [35] is employed to examine the convergence of the proposed
numerical scheme. We begin with the following fundamental convergence theorem:

Lemma 3: The set {T−3,4, T−2,4, . . . , TM−1,4} of trignometric B-spline basis functions of order 4 satisfies the
inequality:
M−1∑
j=−3

∣∣Tj,4(x)
∣∣ ≤ K, ∀x ∈ [a, b], (42)

where [a, b] is the approximation domain and the coefficients satisfy 2a1 + a2 = 1 and 2c1 + c2 = 0.
Here K is an arbitrary positive constant.

Proof: We prove this resutl by examining the number and structure of nonzero basis functions at any
fixed x ∈ [a, b], taking into account the local support property of the cubic trigonometric B-splines.

Case 1: At knots x = xj Due to the local support property of B-spline basis functions of order 4, exactly
three B-splines overlap at each knot xj:
M−1∑
k=−3

|Tk,4(xj)| = |Tj−3,4(xj)| + |Tj−2,4(xj)| + |Tj−1,4(xj)|

= a1 + a2 + a1 = 2a1 + a2 = 1 < K.

Case 2: Between knots x ∈ (xj, xj+1)

M−1∑
k=−3

|Tk,4(x)| ≤ a1 + a2 + a2 + a1 = 2a1 + 2a2

= (2a1 + a2) + a2 = 1 + a2 ≤ K

Boundary Cases: At the domain boundaries x = a and x = b, fewer than four basis functions are
non-zero. Therefore,
M−1∑
j=−3

|Tj,4(x)| ≤ K, ∀x ∈ [a, b]. (43)

Hence, the inequality holds forany positive constant K which completes the proof. �

Theorem 3: Let q ∈ C2[a, b] and suppose u(x, t) ∈ C4[a, b] × C2[0, ∞). Consider a uniform partition
of [a, b], χ = {a = x0 < x1 < · · · < xM−1 < xM = b} with xj = a + jh for j = 0, 1, . . . , M, where
h = (b − a)/M. Let Ũ(x, t) denote the unique spline that interpolates u(x, t) at the nodes xj ∈ χ . Then
for every t ≥ 0, there exist constants ρj > 0 independent of h such that for j = 0, 1, 2,

‖Dj(u(x, t) − Ũ(x, t))‖∞ ≤ ρjh4−j (44)
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Theorem 4: The numerical solution U(x, t) converges to the exact solution u(x, t) of NWSE. Furthermore,
if q ∈ C2[a, b], then there exists a constant ρ̃ > 0 independent of the mesh size h such that for all t ≥ 0,

‖u(x, t) − U(x, t)‖∞ ≤ ρ̃h2 (45)

provided that h is sufficiently small.

Proof: Let Ũ(x, t) =
M−1∑
j=−3

dj(t)Tj,4(x) be the trignometric B-spline approximation of U(x, t). By the

triangle inequality,

‖u(x, t) − U(x, t)‖∞ ≤ ‖u(x, t) − Ũ(x, t)‖∞ + ‖Ũ(x, t) − U(x, t)‖∞ (46)

From Theorem 3 with j = 0, we have

‖u(x, t) − Ũ(x, t)‖∞ ≤ ρ0h4. (47)

For the discretization error e(x, t) = Ũ − U , consider the collocation equations at the nodes:

Lu(xj, t) = f (xj, t), LŨ = f (xj, t) + τj(t),

where the spatial truncation error satisfies |τj‖∞ ≤ Cτ h2 due to the approximation peoperties of th
B-spline.

The error equation at the spatial nodes is:[
(w0Mn+1

n+1 − a)(2a1 + a1) − k(2c1 + c2)
]
en+1

j = (w0Mn+1
n+1 − bc)(c1en

j−1 + c2en
j + c1en

j+1)

−w0

n∑
r=1

Mn+1
r �2er−k

j + τ n+1
j .

(48)

where �2en
j = en

j − en−1
j and ‖τ n+1

j ‖∞ ≤ Cτ h2. Using 2a1 + a2 = 1, 2c1 + c2 = 0, and defining

� = (w0Mn+1
n+1 − a) > 0:

�‖en+1‖∞ ≤ (w0Mn+1
n+1 − bc)‖en‖∞ + w0

n∑
r=1

Mn+1
r ‖�2er−k

j ‖∞ + Cτ h2. (49)

Base Case (n = 0):

�‖e1‖∞ ≤ Cτ h2 ⇒ ‖e1‖∞ ≤ Cτ h2

�
.

Inductive Step: Assume that ‖ek‖∞ ≤ ρh2 holds for k ≤ n. Then: From Eq. (49), taking absolute
values and using the inductive hypothesis:

�‖e1‖∞ ≤
[
(w0Mn+1

n+1 − bc) + 2w0

n∑
r=1

Mn+1
r

]
ρh2 + Cτ h2. (50)

Since
∑n

r=1 Mn+1
r ≤ Mn+1

n+1 bythepropertiesofMr, we obtain:

‖en+1‖ ≤
[
(3w0Mn+1

n+1 − bc)ρ + Cτ

�

]
h2. (51)
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Choose ρ large enough so that
(3w0Mn+1

n+1 − bc)ρ + Cτ

�
≤ ρ yield uniform boundedness.

By the Lemma (3) and the boundedness of the basis:

|Ũ − U‖∞ ≤ Kρh2. (52)

Combining (47) and (52):

‖u(x, t) − U(x, t)‖∞ ≤ ρ0h4 + Kρh2 ≤ ρ̃h2, (53)

where ρ̃ = ρ0h2
0 + Kρ for h < h0, which complete the proof. �

5 Numerical Experiments

This section aims to validate and evaluate the effectiveness of the proposed methodology by
employing a range of test problems and utilizing error norms. We compare the numerical results
obtained from our proposed scheme with those from [1]. All numerical computations and visualiza-
tions were performed using Mathematica 13.2. All simulations were executed on a window 10 (64-bit)
workstation equipped with an Intel Core i5 processor and 32 GB of system memory. We employ the
following error measures:

• Absolute error

• L∞ error norm

The absolute error is positive difference between the exact solution uext and the numerical
approximation Uapp at each grid point.

Absolute Error = ∣∣uext(xi) − U app(xi)
∣∣ ∀ xi ∈ [a, b]

The error norms are defined as:

L∞ = max
0≤i≤M

∣∣uext(xi) − U app(xi)
∣∣ ∀ xi ∈ [a, b]

Here uext(xi) and U app(xi) represent the exact and approximate solutions at fixed time t, respectively.
The convergence rate for spatial step size h is given by [36]:

ph =
log

(
E(h1) −E(h2)

E(h2) −E(h3)

)
log

(
h2
h1

) , where h1 > h2. (54)

For temporal step size �t:

p�t =
log

(
E(�t1) −E(�t2)

E(�t2) −E(�t3)

)
log

(
�t2
�t1

) , where �t1 > �t2, (55)

where E denotes error norm L∞.

Example 1: [1] Consider the time fractional NWS model:

∂γ v(s, t)
∂tγ

= ∂2v(s, t)
∂s2

− 2v(s, t), 0 < γ ≤ 1, s ∈ �, t ≥ 0,
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with ICs:

v(s, 0) = es.

and BCs:

v(0, t) = 0, v(1, t) = 0, t > 0.

We apply the proposed numerical scheme to solve this example. Tables 1–3 present detailed
quantitiative comparisons of our obtained results using different spline methods (TCuBS, CuBS and
ECuBS) against the exact solution for the integer order case (γ = 1) [1]. These tables reveal the
accuracy of the scheme at various fractional orders (γ = 0.9, 0.75, 0.5) and across different spatial
points s ∈ [0, 1]. Fig. 1 shows a visual comparison between the approximate solutions at different
values of γ using TCuBS. Fig. 2 shows a visual comparison between the approximate solutions at
different values of t using TCuBS. Table 4 gives comparision of absolute error of TCuBS and four term
solution at γ = 0.9. Table 5 gives spital convergence at different values of M. Table 6 gives temporal
convergence at different values of τ . Fig. 3 illustrates 3D approximate solutions at different values of
γ using TCuBS. The approximate solution with M = 80, τ = 0.01 and t = 1 is given by:

V(s, 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.413898 cos
( s

2

)
− 0.0460185 cos

(
3s
2

)
+ 2.00941 sin

( s
2

)
− 0.296075 sin

(
3s
2

)
, s ∈ [0,

1
20

)

0.415258 cos
( s

2

)
− 0.0473772 cos

(
3s
2

)
+ 1.95503 sin

( s
2

)
− 0.277993 sin

(
3s
2

)
, s ∈ [

1
20

,
1
10

)

0.4176 cos
( s

2

)
− 0.0497112 cos

(
3s
2

)
+ 1.90823 sin

( s
2

)
− 0.26255 sin

(
3s
2

)
, s ∈ [

1
10

,
3
20

)

.

.

.
.
.
.

0.62181 cos
( s

2

)
− 0.222638 cos

(
3s
2

)
+ 1.22904 sin

( s
2

)
− 0.119448 sin

(
3s
2

)
, s ∈ [

17
20

,
9
10

)

0.675575 cos
( s

2

)
− 0.26284 cos

(
3s
2

)
+ 1.11773 sin

( s
2

)
− 0.110424 sin

(
3s
2

)
, s ∈ [

9
10

,
19
20

)

0.742395 cos
( s

2

)
− 0.311025 cos

(
3s
2

)
+ 0.987803 sin

( s
2

)
− 0.103349 sin

(
3s
2

)
, s ∈ [

19
20

, 1]

Example 2: [1] Consider the time-fractional NWS model:

∂γ v(s, t)
∂tγ

= ∂2v(s, t)
∂s2

+ 3v(s, t) − 4v(s, t)3, 0 < γ ≤ 1, s ∈ �, t ≥ 0,

with ICs:

v(s, 0) =
√

3
4

e
√

6s

e
√

6s + exp
√

6
2 s

, 0 � s � 1,

and BCs:

v(0, t) = 0, v(1, t) = 0, t > 0,

and nonlinear term:

f (v) = v3.

https://www.scipedia.com/public/Shafique_et_al_2026 20

https://www.scipedia.com/public/Shafique_et_al_2026


M. Shafique, M. Yaseeen, S. Trabelsi and M. Balti,

Advanced computational study of nonlinear time-fractional newell-whitehead-segel

equation with caputo-fabrizio derivative using b-spline techniques,

Rev. int. métodos numér. cálc. diseño ing. (2026). Vol.0, (0), 0

Table 1: Comparison of approximate solutions using various splines when γ = 0.9, τ = 0.01,
t = 1 for Example 1

s TuBS CuBS ECuBS 4 term solution [1] Exact when γ = 1

0.1 0.411731 0.411741 0.418010 0.358075 0.406570
0.2 0.458745 0.458746 0.470220 0.395734 0.449329
0.3 0.509309 0.509321 0.524861 0.437354 0.496585
0.4 0.563829 0.563920 0.582152 0.483351 0.548812
0.5 0.622737 0.622841 0.642450 0.534186 0.606531
0.6 0.686487 0.686560 0.706051 0.590366 0.670321
0.7 0.75556 0.755630 0.773241 0.652456 0.740818
0.8 0.830466 0.830571 0.844450 0.721075 0.818731
0.9 0.911751 0.911851 0.919830 0.796911 0.904837

Table 2: Comparison of approximate solutions using various splines when γ = 0.75, τ = 0.01,
t = 1 for Example 1

s TuBS CuBS ECuBS 4 term solution [1] Exact when γ = 1

0.1 0.419672 0.419731 0.423850 0.310829 0.40657
0.2 0.473039 0.473051 0.480741 0.343552 0.449329
0.3 0.528486 0.528551 0.539040 0.379648 0.496585
0.4 0.586443 0.586470 0.598961 0.419576 0.548812
0.5 0.647260 0.647350 0.660530 0.463703 0.606531
0.6 0.711207 0.7112501 0.724250 0.512471 0.67032
0.7 0.778455 0.778541 0.789950 0.566368 0.740818
0.8 0.849069 0.849160 0.857951 0.625933 0.818731
0.9 0.922989 0.923051 0.928060 0.691763 0.904837

Table 3: Comparison of approximate solutions using various splines when γ = 0.5, τ = 0.01,
t = 1 for Example 1

s TuBS CuBS ECuBS 4 term solution [1] Exact when γ = 1

0.1 0.424061 0.42416 0.42662 0.184195 0.40657
0.2 0.480938 0.48094 0.48584 0.203567 0.449329
0.3 0.539081 0.53918 0.54586 0.224976 0.496585
0.4 0.598932 0.59894 0.60694 0.248637 0.548812
0.5 0.660798 0.66087 0.66925 0.274787 0.606531
0.6 0.724845 0.72485 0.73307 0.303686 0.670332
0.7 0.791081 0.79112 0.79824 0.335625 0.740818

(Continued)
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Table 3 (continued)

s TuBS CuBS ECuBS 4 term solution [1] Exact when γ = 1

0.8 0.859328 0.85933 0.86467 0.370923 0.818731
0.9 0.929188 0.92922 0.93204 0.409934 0.904837

Figure 1: Comparison of the approximate solution at different values of γ using TCuBS when
h = 1

80
, τ = 0.01, t = 1

Figure 2: Comparison of the approximate solution at different values of t using TCuBS when
h = 1

80
, τ = 0.01, γ = 0.8
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Table 4: Comparison of absolute error using trignometric B spline with absolute error of first three
terms solutions when γ = 0.9, τ = 0.01, t = 1 for Example 1

s TuBS 4 term solution [1] Exact when γ = 1 Absolute error [1] Absolute error TuBS

0.1 0.411731 0.358075 0.406570 0.048495 0.005161
0.2 0.458745 0.395734 0.449329 0.009416 0.004160
0.3 0.509309 0.437354 0.496585 0.059235 0.012724
0.4 0.563829 0.483351 0.548812 0.065461 0.015017
0.5 0.622737 0.534186 0.606531 0.072345 0.016202
0.6 0.686487 0.590366 0.670321 0.079955 0.016166
0.7 0.755560 0.652456 0.740818 0.088362 0.014742
0.8 0.830466 0.721075 0.818731 0.097656 0.011735
0.9 0.911751 0.796911 0.904837 0.107926 0.006914

Table 5: Spatial convergence corresponding L∞ error at different values of M for Example 1 at time
t = 1, τ = 1

100
and γ = 0.9

M L∞ Error ph

10 3.05081 × 10−3 −−−−
20 2.88750 × 10−3 2.0000
40 2.84683 × 10−3 1.9916
80 2.83660 × 10−3 2.04439
160 2.83412 × 10−3 −−−−−

Table 6: Temporal convergence corresponding L∞ error at different values of τ for Example 1 at time
t = 1, M = 20 and γ = 0.9

τ L∞ Error p�t

1
10

2.20565 × 10−2 −−−−
1
20

8.50420 × 10−3 2.00000

1
40

2.97733 × 10−3 1.65530

1
80

1.22271 × 10−3 1.85220

1
160

7.37809 × 10−4 −−−−−
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Figure 3: 3D comparison of approximate solutions at various γ using TCuBS when h = 1
80

, τ = 0.01,
T = 1

We apply the proposed numerical scheme is to solve this example. Tables 7–9 present compre-
hensive numerical comparisons of our results obtained using different spline methods (TCuBS, CuBS
and ECuBS) against the exact solution for the integer-order case (γ = 1). These tables quantitatively
demonstrate the accuracy of our method across different fractioal orders (γ = 0.9, 0.75, 0.5) and
spatial locations showing particularly good agreement with the exact solution while mantaining the
computational efficiency. Table 10 gives comparision of absolute error of TCuBS and four term
solution at γ = 0.9. Table 11 gives spatial convergence at different values of M. Table 12 gives temporal
convergence at different values of τ . Fig. 4 shows a visual comparison between the approximate
solutions at different values of γ using TCuBS. Fig. 5 shows a visual comparison between the
approximate solutions at different values of t using TCuBS. Fig. 6 presents 3D visualization of the
approximate solutions at various γ values using TCuBS, demonstrating the spatiotemporal behavior
of the solutions. The approximate solution with M = 80, τ = 0.01 and t = 1 is given as:
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V(s, 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.966166 cos
( s

2

)
− 0.109655 cos

(
3s
2

)
− 0.061874 sin

( s
2

)
+ 0.0352843 sin

(
3s
2

)
, s ∈

[
0,

1
20

)
0.965056 cos

( s
2

)
− 0.108546 cos

(
3s
2

)
− 0.0174789 sin

( s
2

)
+ 0.0205229 sin

(
3s
2

)
, s ∈

[
1
20

,
1
10

)
0.963151 cos

( s
2

)
− 0.106648 cos

(
3s
2

)
+ 0.0205828 sin

( s
2

)
+ 0.00796241 sin

(
3s
2

)
, s ∈

[
1
10

,
3
20

)
.
.
.

.

.

.

0.998012 cos
( s

2

)
− 0.132853 cos

(
3s
2

)
+ 0.0123645 sin

( s
2

)
+ 0.00917574 sin

(
3s
2

)
, s ∈

[
17
20

,
9
10

)
1.01524 cos

( s
2

)
− 0.145737 cos

(
3s
2

)
− 0.023305 sin

( s
2

)
− 0.00628389 sin

(
3s
2

)
, s ∈

[
9
10

,
19
20

)
1.03631 cos

( s
2

)
− 0.160931 cos

(
3s
2

)
− 0.0642746 sin

( s
2

)
− 0.00405288 sin

(
3s
2

)
, s ∈

[
19
20

, 1
]

Table 7: Comparison of the approximate solutions using various splines when γ = 0.9, τ = 0.01,
t = 1 for Example 2

s TuBS CuBS ECuBS 4 term solution [1] Exact when γ = 1

0.1 0.866541 0.86653 0.86432 1.46487 0.857597
0.2 0.873867 0.87391 0.87023 1.47719 0.85856
0.3 0.879897 0.87907 0.87441 1.48288 0.859414
0.4 0.882178 0.88234 0.87715 1.48207 0.860171
0.5 0.883681 0.88372 0.87853 1.47514 0.860842
0.6 0.883543 0.88353 0.87854 1.46262 0.861436
0.7 0.881697 0.88174 0.87710 1.44518 0.861963
0.8 0.877948 0.87793 0.87423 1.42360 0.862429
0.9 0.871954 0.87193 0.86970 1.39869 0.862842

Table 8: Comparison of the approximate solutions using various splines when γ = 0.75, τ = 0.01,
t = 1 for Example 2

s TuBS CuBS ECuBS 4 term solution [1] Exact when γ = 1

0.1 0.863014 0.86302 0.85884 1.51075 0.857597
0.2 0.868119 0.86812 0.86105 1.52185 0.85856
0.3 0.871978 0.87202 0.86306 1.52621 0.859414
0.4 0.874683 0.87472 0.86478 1.52394 0.860171
0.5 0.876262 0.87633 0.86604 1.51541 0.860842
0.6 0.876678 0.87678 0.86693 1.50115 0.861436
0.7 0.875823 0.87584 0.86724 1.48186 0.861963
0.8 0.873506 0.87353 0.86682 1.45832 0.862429
0.9 80.869437 0.86944 0.86555 1.43136 0.862842
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Table 9: Comparison of the approximate solutions using various splines when γ = 0.5, τ = 0.01,
t = 1 for Example 2

s TuBS CuBS ECuBS 4 term solution [1] Exact when γ = 1

0.1 0.858616 0.85862 0.85881 1.54829 0.857597
0.2 0.860720 0.86073 0.86102 1.55782 0.85856
0.3 0.862672 0.86268 0.86302 1.56071 0.859414
0.4 0.864337 0.86435 0.86472 1.55701 0.860171
0.5 0.865795 0.86582 0.86603 1.54701 0.860842
0.6 0.866863 0.86692 0.86694 1.53125 0.861436
0.7 0.867387 0.86743 0.86723 1.51041 0.861963
0.8 0.867154 0.86724 0.86680 1.48528 0.862429
0.9 0.865882 0.86593 0.86551 1.45670 0.862842

Table 10: Comparison of absolute error using trignometric B spline with absolute error of first three
terms solutions when γ = 0.9, τ = 0.01, t = 1 for Example 2

s TuBS 4 term solution [1] Exact when γ = 1 Absolute error [1] Absolute error TuBS

0.1 0.866541 1.46487 0.857597 0.607273 0.008944
0.2 0.873867 1.47719 0.858560 0.618630 0.015307
0.3 0.879897 1.48288 0.859414 0.623466 0.020483
0.4 0.882178 1.48207 0.860171 0.621899 0.022007
0.5 0.883681 1.47514 0.860842 0.614298 0.022839
0.6 0.883543 1.46262 0.861436 0.601184 0.022107
0.7 0.881697 1.44518 0.861963 0.583217 0.019734
0.8 0.877948 1.42360 0.862429 0.561171 0.015519
0.9 0.871954 1.39869 0.862842 0.536270 0.009534

Table 11: Spatial convergence corresponding L∞ error at different values of M for Example 2 at time
t = 1, τ = 1

100
and γ = 0.9

M L∞ Error ph

10 1.45731 × 10−6 −−−−
20 3.63490 × 10−7 2.0000
40 9.08195 × 10−8 2.0000
80 2.27015 × 10−8 1.97990
160 5.67518 × 10−9 −−−−−
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Table 12: Temporal convergence corresponding L∞ error at different values of τ for Example 2 at time
t = 1, M = 20 and γ = 0.9

τ L∞ Error p�t

1
10

3.54840 × 10−6 −−−−
1
20

1.76043 × 10−6 2.003320

1
40

8.44685 × 10−7 2.000842

1
80

3.81215 × 10−7 2.000215

1
160

1.48061 × 10−7 −−−−−

Figure 4: Comparison of the approximate solution at different values of γ using TCuBS when
h = 1

80
, τ = 0.01, t = 1

Figure 5: Comparison of the approximate solution at different values of t using TCuBS when
h = 1

80
, τ = 0.01, γ = 0.8
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Figure 6: 3D approximate solutions for Example 2 at different γ using TCuBS when h = 1
80

, τ = 0.01,
and t = 1

Example 3: [1] Consider the time-fractional NWS model:

∂γ v(s, t)
∂tγ

= ∂2v(s, t)
∂s2

+ v(s, t) − v(s, t)2, 0 < γ ≤ 1, s ∈ �, t ≥ 0,

with ICs:

v(s, 0) = 1

(1 + e
s√
6 )2

BCs:

v(0, t) = 0, v(1, t) = 0, t > 0.

and nonlinear term:

f (v) = v2.

We apply the proposed numerical scheme is to solve this example. Tables 13–15 provide detailed
numerical comparisons between our results using different spline methods (TCuBS,CuBS and ECuBS)
against the exact solution for the integer-order case (γ = 1). These tables quantitatively access the
accuracy of our method across different fractional orders (γ = 0.9, 0.75, 0.5) and spatial locations
showing excellent agrement with the exact solution. Table 16 gives comparision of absolute error
of TCuBS and four term solution at γ = 0.9. Table 17 gives spital convergence at different values
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of M. Table 18 gives temporal convergence at different values of τ . Fig. 7 presents a comparison
of approximate solutions at different values of γ using TCuBS. Fig. 8 presents a comparison of
approximate solutions at different values of t using TCuBS. Fig. 9 shows 3D visualization of the
approximate solutions at various γ values using TCuBS. The approximate solution with M = 80,
τ = 0.01 and T = 1 is given by:

V(s, 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.571478 cos
( s

2

)
− 0.0855868 cos

(
3s
2

)
− 0.373819 sin

( s
2

)
+ 0.0326049 sin

(
3s
2

)
, s ∈ [0,

1
20

)

0.5708 cos
( s

2

)
− 0.0849086 cos

(
3s
2

)
− 0.346676 sin

( s
2

)
+ 0.0235798 sin

(
3s
2

)
, s ∈ [

1
20

,
1
10

)

0.569495 cos
( s

2

)
− 0.0836081 cos

(
3s
2

)
− 0.3206 sin

( s
2

)
+ 0.0149745 sin

(
3s
2

)
, s ∈ [

1
10

,
3
20

)

.

.

.
.
.
.

0.493297 cos
( s

2

)
− 0.0165519 cos

(
3s
2

)
− 0.0110574 sin

( s
2

)
− 0.0609313 sin

(
3s
2

)
, s ∈ [

17
20

,
9
10

)

0.484777 cos
( s

2

)
− 0.0101816 cos

(
3s
2

)
+ 0.00657908 sin

( s
2

)
− 0.0623612 sin

(
3s
2

)
, s ∈ [

9
10

,
19
20

)

0.475777 cos
( s

2

)
− 0.0036914 cos

(
3s
2

)
+ 0.0240798 sin

( s
2

)
− 0.0633142 sin

(
3s
2

)
, s ∈ [

19
20

, 1]

Table 13: Comparison of approximate solutions using various splines when γ = 0.9, τ = 0.01, T = 1
for Example 3

s TuBS CuBS ECuBS 4 term solution [1] Exact (γ = 1)

0.1 0.47299 0.47301 0.47331 0.48834 0.47385
0.2 0.46027 0.46032 0.46082 0.47662 0.46178
0.3 0.44775 0.44783 0.44842 0.46483 0.44969
0.4 0.43541 0.43541 0.43624 0.45299 0.43759
0.5 0.42326 0.42334 0.42411 0.44112 0.42551
0.6 0.41131 0.41132 0.41210 0.429221 0.41344
0.7 0.39956 0.39964 0.40035 0.41728 0.40141
0.8 0.38803 0.38803 0.38863 0.40535 0.38942
0.9 0.37672 0.37672 0.37702 0.39343 0.37751

Table 14: Comparison of approximate solutions using various splines when γ = 0.75, τ = 0.01, t = 1
for Example 3

s TuBS CuBS ECuBS 4 term solution [1] Exact (γ = 1)

0.1 0.47198 0.47204 0.47252 0.50101 0.47385
0.2 0.45855 0.45863 0.45942 0.48941 0.46178
0.3 0.44557 0.44563 0.44684 0.47772 0.44969
0.4 0.43299 0.43304 0.43434 0.46595 0.43759
0.5 0.42080 0.42083 0.42224 0.45413 0.42551
0.6 0.40898 0.40994 0.41035 0.44225 0.41344
0.7 0.39754 0.39754 0.39873 0.43034 0.40141

(Continued)
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Table 14 (continued)

s TuBS CuBS ECuBS 4 term solution [1] Exact (γ = 1)

0.8 0.38649 0.38653 0.38744 0.41841 0.3894
0.9 0.37585 0.37583 0.37645 0.40645 0.37757

Table 15: Comparison of approximate solutions using various splines when γ = 0.5, τ = 0.01, t = 1
for Example 3

s TuBS CuBS ECuBS 4 term solution [1] Exact (γ = 1)

0.1 0.472332 0.47234 0.47283 0.51163 0.47385
0.2 0.459201 0.45924 0.45993 0.50013 0.46182
0.3 0.446445 0.44645 0.44744 0.48853 0.44969
0.4 0.434023 0.43403 0.43502 0.47685 0.43759
0.5 0.421907 0.42194 0.42294 0.46509 0.42551
0.6 0.410078 0.41014 0.41103 0.45325 0.41344
0.7 0.398531 0.39853 0.39944 0.44137 0.40141
0.8 0.387268 0.38732 0.38793 0.42944 0.38942
0.9 0.376304 0.37632 0.37674 0.41747 0.37751

Table 16: Comparison of absolute error using trignometric B spline with absolute error of first three
terms solutions when γ = 0.9, τ = 0.01, t = 1 for Example 3

s TuBS 4 term solution [1] Exact when γ = 1 Absolute error [1] Absolute error TuBS

0.1 0.47299 0.48834 0.47385 0.01499 0.00086
0.2 0.46027 0.47662 0.46178 0.01484 0.00151
0.3 0.44775 0.46483 0.44969 0.01514 0.00194
0.4 0.43541 0.45299 0.43759 0.01540 0.00218
0.5 0.42326 0.44112 0.42551 0.01561 0.00225
0.6 0.41131 0.429221 0.41344 0.015781 0.00213
0.7 0.39956 0.41728 0.40141 0.01587 0.00185
0.8 0.38803 0.40535 0.38942 0.01593 0.00139
0.9 0.37672 0.39343 0.37751 0.01592 0.00079
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Table 17: Spatial convergence corresponding L∞ error at different values of M for Example 3 at time
t = 1, τ = 1

100
and γ = 0.9

M L∞ Error ph

10 3.63933 × 10−3 −−−−
20 3.61059 × 10−3 2.00503
40 3.60343 × 10−3 2.0000
80 3.60164 × 10−3 1.99160
160 3.60119 × 10−3 −−−−−

Table 18: Temporal convergence corresponding L∞ error at different values of τ for Example 3 at time
t = 1, M = 20 and γ = 0.9

τ L∞ Error p�t

1
10

1.16757 × 10−2 −−−−
1
20

2.91255 × 10−3 2.02900

1
40

7.66505 × 10−4 1.93570

1
80

2.05566 × 10−4 1.63420

1
160

2.48633 × 10−5 −−−−−

Figure 7: Comparison of approximate solutions at various γ using TCuBS when h = 1
80

, τ = 0.01,
t = 1
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Figure 8: Comparison of the approximate solution at different values of t using TCuBS when
h = 1

80
, τ = 0.01, γ = 0.8

Figure 9: 3D approximate solutions for Example 3 at different γ using TCuBS when h = 1
80

, τ = 0.01,
and t = 1
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6 Physical Interpretation of Numerical Results

The quantitative results shown in 2D Figures give physical insight into the dynamics of the
time-fractional Newell-Whitehead-Segel equation. The 2D spatial plots are pattern amplitudes in
population densities, chemical concentration waves, or neural activity, showing how initial distur-
bances develop. The 3D surface plots encode the complete spatiotemporal development, in which
the fractional order γ has a direct control over memory effects and anomalous subdiffusion; γ < 1
accounts for transport across intricate media such as biological tissues or porous materials, resulting
in a retardation of propagation and stabilization of patterns relative to regular diffusion (γ = 1). In
addition, comparison over various values of γ brings out the transition from subdiffusive to normal
transport, and plots of error identify numerical sensitivity regions usually corresponding to physical
stability regions. Together, all these graphics illustrate how fractional derivatives with non-local kernels
better describe pattern formation dynamics in systems that possess hereditary characteristics and
spatial heterogeneity.

7 Concluding Remarks

This study has developed numerical solutions for the time-fractional Newell-Whitehead-Segel
equation with a Caputo-Fabrizio derivative, employing three B-spline-based methods for spatial
discretization: cubic, trigonometric cubic and extended cubic B-splines. Supported by rigorous sta-
bility and convergence analysis, the numerical results confirm the accuracy and robustness of all
three schemes. Each method exhibits distinct strengths. Cubic B-splines offer a balance of simplic-
ity and efficiency, making them suitable for general-purpose approximations. Trigonometric cubic
B-splines demonstrate superior performance for problems with inherent oscillatory or periodic
behavior. Extended cubic B-splines provide the highest degree of flexibility and accuracy, particulary
for handling complex geometries or boundary conditions. The fractional order γ was shown to
significantly influence the solution, underscoring the critical role of incorporating memory effects.
The Caputo-Fabrizio derivative, with its non-singular kernel, proved effective in modeling these
nonlocal temporal dynamics. Overall, the results highlight the potential of B-spline-based techniques
as a powerful and versatile framework for solving time-fractional partial differential equations. Key
advantages include exceptional numerical accuracy, computational efficiency via sparse systems and
a firm theoretical foundation established through stability and convergence proofs. We acknowledge
certain limitaions, including computational costs at high resolutions, the need for parameter tuning in
the extended cubic B-spline formulations and validation constraints due to the limited availability
of exact fractional-order solutions. Future work may focus on extending these methods to multi-
dimensional and coupled systems, incorporating variable-order fractional derivatives and exploring
adaptive mesh refinement to enhance accuracy. These limitations and extensions present valuable
opportunities for future research.
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