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Abstract 
 

In this paper, current developments on the coupled thermomechanical computational simulation of metal casting 
processes are presented A thermodynamically consistent constitutive material model is derived from a thermoviscoplastic 
free energy function. A continuous transition between the initial fluid-like and the final solid-like is modeled by consider-
ing a J2 thermoviscoplastic model. Thus, an thermoelastoviscoplastic model, suitable for the solid-like phase, degenerates 
into a pure thermoviscous model, suitable for the liquid-like phase, according to the evolution of the solid fraction func-
tion. A thermomechanical contact model, taking into account the insulated effects of the air-gap due to thermal shrinkage 
of the part during solidification and cooling, is introduced. A fractional step method, arising from an operator split of the 
governing differential equations, is considered to solve the coupled problem using a staggered scheme. Within a finite 
element setting, using low-order interpolation elements, a multiscale stabilization technique is introduced as a convenient 
framework to overcome the Babuska-Brezzi condition and avoid volumetric locking and pressure instabilities arising in 
incompressible or quasi-incompressible problems. Computational simulation of industrial castings show the good per-
formance of the model.  
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1. INTRODUCTION. MOTIVATION AND 
GOALS 

The numerical formulation of coupled thermo-
mechanical solidification processes has been one of 
the research topics of great interest over the last 
years. Also, during the last decade, a growing inter-
est on this and related topics has been shown by 
many industrial companies, such as automotive and 
aeronautical, motivated by the need to get high-
quality final products and to reduce manufacturing 
costs. However, and despite the enormous progress 
achieved in computational mechanics, the large-
scale numerical simulation of these problems con-
tinues to be nowadays a very complex task. This is 

mainly due to the highly non-linear nature of the 
problem, involving non-linear constitutive behavior, 
liquid-solid phase-change, non-linear thermal and 
mechanical boundary conditions and thermo-
mechanical contact interaction, among others. 

One of the goals of this work is to stress out that 
a coupled thermo-mechanical model, instead that a 
purely thermal one, should be used in the numerical 
simulation of metal die casting processes. Up to 
now, mostly purely thermal models have been con-
sidered to study the evolution of the solidification 
and cooling phenomena. This is mainly due to the 
fact that a (purely) thermal analysis is easier and less 
costly, and therefore more convenient for large scale 
industrial simulations. In the case of sand die casting 
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processes, a purely thermal model could be justified 
because thermal results are not so much affected by 
the mechanical behavior due to the low conductivity 
and stiffness of the sand. However, an accurate 
modeling of stresses and deformations during the 
solidification and cooling phases of the part is essen-
tial to capture the accurate thermal pattern in metal 
die casting processes. In fact, the thermal deforma-
tion of both part and mold modify the original inter-
facial heat transfer among all the casting tools in-
volved in the process. The relationship between heat 
transfer coefficients and air-gap has been closely 
observed (Hallam et al., 2000). Hence, an accurate 
prediction of air-gap widths by coupling the thermal 
simulation with a mechanical simulation is essential 
to produce a reliable casting model. On the other 
hand, it must be observed that the mechanical inter-
action between part and mold induced by the ther-
mal deformations and contact pressure leads to a 
modification of the final shape and residual stresses 
of the casting system. An accurate study of the 
thermal stresses induced during the casting process 
can prevent mold fissures and an excessive amount 
of accumulated residual stresses in the part, results 
that cannot be captured with a purely thermal simu-
lation. 

This paper presents an up-to-date finite element 
numerical tool for the simulation of foundry proc-
esses. A fully coupled thermo-mechanical formula-
tion including phase change phenomena is consid-
ered (Agelet de Saracibar et al., 1999; 2001; Cervera 
et al., 1999; Agelet de Saracibar, 2003; Chiumenti, 
1999). The mathematical framework to account for 
both thermal and mechanical constitutive and 
boundary assumptions is introduced. The proposed 
constitutive model is consistently derived from a 
thermo-elasto-viscoplastic free energy function. 
Mechanical and thermal material properties are as-
sumed to be temperature-dependent. A continuum 
transition from the initial fluid-like to the finial 
solid-like behavior of the part is modeled consider-
ing a temperature dependent viscoplastic-surface 
evolution. Phase-change contribution is taken into 
account assuming both latent-heat release and 
shrinkage effects. Moreover, an accurate definition 
of the interfacial heat transfer between the solidify-
ing casting and the mold, essential in producing a 
reliable casting model, has been considered. In fact, 
both the solidification process and the temperature 
evolution strongly depend on the heat exchange at 
the contact interface. This exchange is affected by 
the insulating effects of the air-gap due to the ther-

mal shrinkage of the casting part during the solidifi-
cation and cooling phases. A fractional step method, 
arising from an operator split of the governing dif-
ferential equations, is considered to solve the cou-
pled problem using a staggered scheme Agelet de 
Saracibar et al., 1999; 2001; Cervera et al., 1999; 
Agelet de Saracibar, 2003; Chiumenti, 1999). Within 
a finite element setting, using low-order interpola-
tion elements, a multiscale stabilization technique is 
introduced as a convenient framework to overcome 
the Babuska-Brezzi condition and avoid volumetric 
locking and pressure instabilities arising in incom-
pressible or quasi-incompressible problems (Agelet 
de Saracibar et al., 2004; 2006; Cervera et al., 2003; 
Chiumenti et al., 2002; 2004; Christ et al., 2003; 
Valverde et al., 2002). Computational simulations of 
industrial castings using the coupled thermome-
chanical finite element code VULCAN, developed 
by the authors at CIMNE and commercialised by 
QUANTECH (VULCAN), show the good perform-
ance of the model. 
 

2. FORMULATION OF THE COUPLED 
THERMOMECHANICAL PROBLEM 

The local system of partial differential equations 
governing the (quasi-static) coupled thermo-
mechanical problem is defined by the energy and 
momentum balance equations, restricted by the ine-
qualities arising from the second law of the thermo-
dynamics.  

The local form of the energy and momentum 
balance equations can be written as 

bσ0
q
+⋅∇=

++⋅−∇=Θ intDRS&
 (1)

where Θ  is the temperature field, S the specific 
entropy, q the heat flux per unit surface, R the pre-
scribed heat sources per unit of volume, intD  the 
internal dissipation per unit of volume, σ  is the 
Cauchy stress tensor and b the prescribed body 
forces per unit of volume.  

Specific entropy and Cauchy stress tensor are 
defined by suitable constitutive equations, typically 
formulated in terms of the internal energy E per unit 
of volume, and subjected to the restriction on the 
internal dissipation per unit of volume intD  arising 
from the second law of the thermodynamics, given 
by: 

0≥−Θ+= ESDint
&&&ε:σ  (2)
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where ε  is the infinitesimal strain tensor and E is 
the internal energy per unit of volume.  

Heat flux q is defined by a constitutive equation, 
say Fourier’s law, subjected to a restriction on the 
dissipation by conduction conD  given by: 

01
≥Θ∇⋅

Θ
−= qDcon  (3) 

Phenomenological models of infinitesimal strain 
plasticity adopt a local additive decomposition of the 
infinitesimal strain tensor into elastic and plastic 
parts. Hardening mechanisms in the material are 
characterized by an additional set of phenomenol-
ogical internal variables in the strain space, collec-
tively denoted here as αξ . An additive split of the 
local entropy into elastic and plastic parts is also 
adopted, where the plastic entropy is viewed as an 
additional internal variable arising as a result of dis-
location and lattice defect motion. The above con-
siderations motivate the following additive split of 
the infinitesimal strain, local entropy and set of in-
ternal variables: 

pe εεε +=  
pe SSS +=  

{ }pp S,, αξεG =  
(4) 

The internal energy depends on the elastic strain 
tensor eε , the set of internal hardening variables αξ  
and the local elastic entropy Se taking the functional 
form: 

),,(ˆ ee SEE αξε=  (5) 
Introducing the functional form of the internal 

energy into the expression of the internal dissipation 
(2), taking the time derivative, applying the chain 
rule and using the additive split of the infinitesimal 
strain tensor and local entropy, a straightforward 
argument yields the following constitutive equations 
and reduced internal dissipation: 

),,(ˆ
),,(ˆ
),,(ˆ

ee

ee
S

ee

SE

SE

SξE

e

e

αξ
α

α

αε

ξβ

ξ

α
ε

ε

εσ

∂=

∂=Θ

∂=

 

 
0≥+= thermechint DDD  with 

0≥⋅+= α
αp

mech ξβD &&ε:σ , p
ther HD &Θ=  

(6) 

Using the Legendre transformation 
eHE Θ−=Ψ , the free energy function takes the 

functional form: 
),,(ˆ ΘΨ=Ψ αξ

eε  (7) 

Taking the time derivative of the free energy 
function (7) and applying the chain rule, a straight-
forward yields the following alternative expressions 
for the constitutive equations: 

),,(ˆ
),,(ˆ

),,(ˆ

ΘΨ∂=

ΘΨ∂=

ΘΨ∂=

αξ
α

α

αε

ξβ

ξ

α

e

e
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e

e

e

e

S

ξ

ε

ε

εσ

 

0≥+= thermechint DDD  with 

0≥⋅+= α
αp

mech ξβD &&ε:σ , p
ther HD &Θ=  

(8)

 
1. Formulation of the Thermal Problem Using the 
additive split of the local entropy into elastic and 
plastic parts given in (4) and the additive split of the 
internal dissipation into mechanical and thermal part 
given in (6), the energy balance equation can be 
written as: 

mech
e DRS ++⋅−∇=Θ q&  (9)

Alternatively, using the constitutive equation for 
the elastic entropy given in (8), taking its time de-
rivative and applying the chain rule, the energy bal-
ance equation can be written in temperature-form or 
enthalpy-form as: 

ep
mechDRLc Η−++⋅−∇=+Θ q&&  

ep
mechDRH Η−++⋅−∇= q&  

(10)

where c  is the (temperature dependent) heat capac-
ity, L is the latent heat, Hep is the elastoplastic heat-
ing and H is the enthalpy. The mechanical dissipa-
tion and elastoplastic heating can be considered as 
negligible for casting processes, in comparison with 
the heat flux generated by the thermal gradient be-
tween the part and mold. 

The rate of latent heat released during the solidi-
fication process can be computed in terms of the 
solid fraction function )(ΘSf  as: 

Θ
Θ
Θ

−= &&
d

dfLL Spc )(  (11)

where pcL is the total amount of heat realeased dur-
ing the phase-change and the solid fraction function 
satisfies 

SS

LS

iff
iff

Θ≤Θ=Θ
Θ≥Θ=Θ

1)(
0)(

 (12)

where LΘ  is the liquidus temperature and SΘ  is the 
solidus temperature, and a non linear interpolation 
function is used to compute the solid fraction in the 
mushy zone. 
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The heat flux q is computed as a function of the 
temperature field using Fourier’s law as: 

Θ∇Θ−= )(kq  (13) 
where k(Θ) is the temperature-dependent heat con-
ductivity. 

Let Ω be the integration domain with smooth 
boundaries Ω∂ . Let δϑ  be the test function associ-
ated to the temperature field Θ. Denoting by ⋅⋅,  the 

inner product in L2(Ω), the weak form of the energy 
balance equation (neglecting the mechanical disspa-
tion and elastoplastic heating terms) takes the fol-
lowing expression Agelet de Saracibar et al., 1999; 
2001; Cervera et al., 1999; Agelet de Saracibar, 
2003; Chiumenti, 1999): 

kLC =∇Θ∇++Θ ϑδϑ ,,&&  

c
radconvcond qqqqR

Ω∂Ω∂
++−− δϑδϑδϑ ,,,

(14)

where q  is the prescribed normal heat flux on the 
boundary and qcond, qconv, qrad are the conduction, 
convection and radiation heat fluxes, respectively, at 
the contact interfaces of the casting tools.  

The last term of the weak form defined above is 
probably the most important one, and drives the 
solidification and cooling evolution. It is possible to 
observe either experimentally (Hallam et al., 2000) 
or numerically Agelet de Saracibar, 1999; 2001; 
Cervera et al., 1999; Agelet de Saracibar, 2003; 
Chiumenti, 1999) that a reliable solidification model 
highly depends on the appropriate definition of the 
thermo-mechanical heat transfer at the contact inter-
face. 

Assuming that only small deformations of the 
casting tools can occur, the radiation heat flux qrad 
can be computed as a direct function of the surface 
temperatures cΘ  and mΘ  of the two bodies in con-

tact and their emissivities cε  and mε  as: 

( )
( )111

44

−+
Θ−Θ

=
mc

mca
radq

εε
σ

 
(15) 

On the other hand, heat conduction through the 
contact surface, qcond, can be assumed to be propor-
tional to the thermal gap Θg  between the contact 
surfaces, in the form: 

Θ= ghq condcond  (16) 
In this case the surfaces of the two bodies are in 

contact that is no macroscopical air-gap is formed 
due to the thermal shrinkage of the casting during 
the cooling phase. As a consequence, the model 
assumes that a thermal resistance, Rcond, only arises 
as a result of the air (gasses) trapped between the 

mold and the casting surfaces, due to the roughness 
values measured on those surfaces. In addition, the 
thermal resistance due to the mold coating can be 
also considered. As a result, the total thermal resis-
tance Rcond, can be computed as (Hallam et al., 
2000): 

c

c

a

z
cond kk

RR δ
+= 5.0

 
(17)

where 2
,

2
, moldzcastzz RRR +=  is the mean peak-to-

valley height of the rough surfaces, cδ  is the effec-
tive thickness of the coating and ka and kc are the 
thermal conductivity of the gas trapped and the coat-
ing, respectively. Moreover, it is also possible to 
assume that the microscopical interaction between 
the contact surfaces depends on the normal contact 
pressure tN so that the heat conduction coefficient 
hcond can be defined using the following expression: 

( )
n

e

N

cond
Ncond H

t
R

th ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1

 
(18)

where eH  is the Vickers hardness and 0.16.0 ≤≤ n  
a constant exponent. 

Finally, heat convection between the two bodies 
arises when they separate from each other due to 
thermal shrinkage. Heat convection qconv has been 
assumed to be a function of coefficient hconv depend-
ing on the air-gap, gN, multiplied by the thermal gap 

Θg , in the form (Ransing and Lewis, 1998): 

( ) Θ= gghq Nconvconv  (19)
In this case, the heat transfer coefficient convh is 

defined by the inverse of the thermal resistances of 
both air-gap and coating as: 

( ) ccazN
conv kkRg

h
δ+

=
,max

1

 
(20)

Observe that both heat conduction and heat con-
vection coefficients depend on mechanical quantities 
such as the contact pressure or the air-gap induced 
by the actual deformation of the casting tools. As a 
consequence, the solidification and cooling proc-
esses are driven by a heat exchange at the contact 
interfaces that is non-uniform and that in general 
cannot be expressed as a direct function of the tem-
perature field. This is the main reason why a fully 
coupled thermo-mechanical simulation is required. 
 
2. Formulation of the mechanical problem The 
mechanical model for the cast part and the mold 
material has been formulated to take into account 
many important features as thermal shrinkage of the 
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cast during the phase-change, a smooth transition 
from the liquid-like to a solid-like behavior and the 
incompressibility constraint when the casting is still 
liquid, among others. To deal with these complex 
phenomena the mechanical model chosen is based 
on the recent developments of the authors in the 
fields of incompressibility in solid mechanics (Age-
let de Saracibar et al., 2004; 2006; Cervera et al., 
2003; Chiumenti et al., 2002; 2004; Christ et al., 
2003; Valverde et al., 2002). The mixed variational 
formulation proposed uses linear displacements and 
pressure interpolations, leading to robust and flexi-
ble triangular or tetrahedral elements suitable for 
large-scale computation of constrained media prob-
lems. An orthogonal sub-grid scale approach, intro-
duced by Codina in the field of CFD (Codina, 2000; 
2002), is assumed as an attractive alternative to cir-
cumvent the Babuska-Brezzi stability condition 
(Brezzi and Fortin, 1991). 

The strong format of the momentum balance 
equation is stated introducing the hydrostatic pres-
sure p, as an independent unknown, additional to the 
displacement field, u, as: 

⎪⎩

⎪
⎨
⎧

=

=+∇+⋅∇

K
pe

p

e
vol

0bs

 

(21)

where ( )σs dev=  is the deviatoric part of the stress 
tensor σ  and K = K(Θ) is the (temperature depend-
ent) bulk modulus that controls the material com-
pressibility. The volumetric part of the elastic de-
formation e

vole  is defined as: 

( ) )(Θ−⋅∇== ϑetre ee
vol uε  (22) 

where the thermal deformation )(Θϑe  is computed 
taking into account the shrinkage effects during liq-
uid to solid phase-change and the thermal deforma-
tion during cooling as follows: 

( ) ( )
( )⎪

⎩

⎪
⎨

⎧

Θ≤ΘΘ

Θ≤Θ≤ΘΘ

Θ>Θ

=Θ

S
cool

LS
pc

L

ife
ife
if

e
0

ϑ  (23)

where ( )Θpce  and ( )Θcoole  are the thermal shrink-
age during phase-change and the thermal deforma-
tion during cooling phase, respectively defined as:  

( ) ( ) ( )

( ) ( )( ) ( )( )refSSref
cool

S

L
S

pc
pc

e

f
V
Ve

Θ−ΘΘ−Θ−ΘΘ=Θ

−Θ
=Θ

Δ
=Θ

αα

ρ
ρρ

33
0  (24) 

being ( )Θα  the (temperature dependent) dilatation 
coefficient, V0 the reference volume at the initial 

casting temperature and ΔVpc the total volume 
change experimentally observed during the phase 
change. 

As a result of the stabilized formulation pro-
posed by the authors in (Agelet de Saracibar et al., 
2004; 2006; Cervera et al., 2003; Chiumenti et al., 
2002; 2004; Christ et al., 2003; Valverde et al., 
2002), the weak form of the balance of momentum 
equation accounting for the incompressibility behav-
ior is the following: 

⎪
⎩

⎪
⎨

⎧

=−∇∇−−

+=⋅∇+∇

∑
=

0,,,

,,,,

1

Nelem

e
e

e
vol

s

pq
K
pqeq

p

Π

tvbvvsv

τ
 (25) 

where Π  is the smooth projection of the pressure 
gradient onto the finite element space, computed at 
each time-step as: 

0,, =∇− pηΠη  (26)
Observe that in case of liquid-like behavior, 
∞→K  and 0=ϑe , so that the second equation in 

(25) transforms into: 

0,,
1

=−∇∇−⋅∇ ∑
=

Nelem

e
e pqq Πu τ  (27)

which is the weak form associated to the equation of 
incompressibility, 0=⋅∇ u , where a stabilization 
term has been considered according to the orthogo-
nal sub-grid scale formulation. 

The mechanical model for the cast part and the 
mold material is consistently derived from a thermo-
elasto-viscoplastic free-energy potential. Constitu-
tive equations for the deviatoric part of the stress 
tensor s together with the kinematic and isotropic 
hardening stress-like variables q and q, respectively, 
are described by the following equations: 

( )
( )

( ) ( ) ( )( )[ ]ξδξσσ

ξ

Hfq

Kf

devG

S

S

vp

+−−Θ−=

Θ−=

−=

∞ exp1
3
2

2

0

ξq

εεs

 (28)

where ( )Θ= GG  is the (temperature dependent) 

shear modulus, ξK  and H are the coefficients of the 

linear kinematic and isotropic hardening laws and 
finally, ( )Θ= ∞∞ σσ  and ( )Θ= 00 σσ  are the 
(temperature dependent) saturation and initial flow 
stress parameters. 

The viscoplastic strains vpε  are derived, together 
with the evolution laws for the kinematic and iso-
tropic strain hardening variable ξ  and ξ , according 
to the principle of maximum plastic dissipation as: 
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( )

( )

( )

( )
3
2,,

,,1
:,,

,,

γγξ

η
γ

γγ

γγ

=
∂

ΘΦ∂
=

⎪
⎪
⎩

⎪⎪
⎨

⎧

ΘΦ=

−
−

=

−=
∂

ΘΦ∂
=

=
∂

ΘΦ∂
=

q
q,

q,
whereq,

q,

n

vp

qs

qs

qs
qsn

n
q

qsξ

n
s

qsε

&

&

&

(29) 

where n and γ  are the unit normal to the yield sur-
face and the viscoplastic multiplier, respectively. It 
is possible to observe that the model considers a 
temperature dependent J2 yield surface and plastic 
potential ( )ΘΦ ,, q,qs  defined as: 

( ) ( )Θ−−=ΘΦ ,,, qRq, qsqs  (30) 
where ( )Θ,qR  is the (temperature dependent) yield-
surface radio defined as: 

( ) ( ) ( )[ ]qσfqR S −ΘΘ=Θ 03
2,  (31) 

It must be pointed out that the yield-surface ra-
dio, as well as the hardening effects, gradually re-
duce as the temperature increase, vanishing when 
liquidus temperature is reached. As a result, a purely 
viscous Norton model is assumed when liquid-like 
behavior must be simulated. In this case, the devia-
toric stress tensor is simply given by: 

vpεs &η=  (32) 
where ( )Θ=ηη  is the (temperature dependent) 
viscosity parameter. 

3. NUMERICAL SIMULATIONS 

The formulation presented in previous sections 
is illustrated here with a number of numerical simu-
lations. The goal is to demonstrate the good per-
formance of the proposed formulation in the frame-
work of infinitesimal strain coupled thermal-
plasticity for an industrial casting analysis, in par-
ticular for steel mold castings. Computations are 
performed with the finite element code VULCAN 
developed by the authors at the International Center 
for Numerical Method in Engineering (CIMNE) in 
Barcelona, Spain, and commercialized by 
QUANTECH ATZ (VULCAN). 

In all the simulations the Newton-Raphson 
method, combined with a line-search optimization 
procedure, is used to solve the nonlinear system of 
equations arising from the spatial and temporal dis-
cretization of the weak form of the governing equa-
tions. Convergence of the incremental iterative solu-
tion procedure was monitored by requiring a toler-
ance of 0.1% in the residual based error norm.  

 

 

 

 
Fig. 1. Different views of the geometry of the part 

1. First numerical simulation The first example is 
concerned with the solidification process of an iron 
casting specimen in a sand mould. Figures 1 and 2 
show different views of the geometry and finite ele-
ment mesh used for the part. The full mesh, includ-
ing the mold, consists of 237,126 tetrahedral ele-
ments. Figure 3 shows the distribution of solid frac-
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tion at time 500 s. and Figure 4 shows the tempera-
ture distribution at 1100 s. Figures 5 and 6 show J2 
von Mises deviatoric stress and displacement mod-
ule distributions, respectively, at different sections  
 

 

 

 
Fig. 2. Different views of the finite element mesh of the part 

 

Fig. 3. Solid fraction contour at time 500 s. 

 
Fig. 4. Temperatures distribution at time 1100 s. 

 

 

 
Fig. 5. Contours of J2 von Mises equivalent stress at different 
sections of the part 

of the part. In these figures it is also possible to ap-
preciate the air-gap between the part and the mold, 
responsible of a non-uniform heat flux at the contact 
interface. Maximum displacements modules shown 
at Figure 6 are (from top to bottom) 8.7466E-05, 
6.2714E-05 and 5.2890E-05 m. 
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Fig. 6. Contours of displacement modules at different sections of 
the part 

2. Second numerical simulation The second exam-
ple is concerned with the solidification process of an 
aluminium (AlSi7Mg) specimen in a steel 
(X40CrMoV5) mold. Geometrical and material data 
were provided by RUFFINI. Figure 7 shows a view 
of the finite element mesh used for the part and the 
cooling system. The full mesh, including the mold, 
consists of 380.000 tetrahedral elements. Aluminium 
material behavior has been modeled by the fully 
coupled thermo-viscoplastic model, while the steel 
mold behavior has been modeled by a simpler 
thermo-elastic model. The initial temperature is 
650ºC for the casting 250ºC for the mold. Cooling 
system has been kept at 20ºC. The heat transfer coef-
ficient takes into account the air-gap resistance due 
to the casting shrinkage. Temperature and solid frac-
tion distribution during solidification is shown in 
 

 

Fig. 7. Geometry and finite element discretization of the 
RUFFINI aluminium casting and cooling system 

 

 

 
Fig. 8. Temperature and solid fraction distribution during phase 
change (plane xy) 
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Fig. 9. Mean pressure and von Mises deviatoric effective stress 
during phase change (plane xy) 

Figure 8. Figure 9 shows the mean pressure and von 
Mises deviatoric effective stress distributions in a x-
y section. In these figures it is also possible to ap-
preciate the air-gap between the part and the mold, 
responsible of a non-uniform heat flux at the contact 
interface. 

 
3. Third numerical simulation The third example 
is concerned with the solidification process of an 
aluminium (AlSi7Mg) motor block in a steel 
(X40CrMoV5) mold. Geometrical and material data 
were provided by TEKSID. Figure 10 shows a view 
of the finite element mesh used for the part and the 
cooling system. The full mesh, including the mold, 

consists of 580.000 tetrahedral P1P1 elements. Alu-
minium material behaviour has been modeled by the 
fully coupled thermoviscoplastic model, while the 
steel mold behaviour has been modeled by a simpler 
thermoelastic model. The initial temperature is 
650ºC for the casting and 250ºC for the mold. Cool-
ing system has been kept at 20ºC. The heat transfer 
coefficient takes into account the air-gap resistance 
due to the casting shrinkage. Temperature evolution 
as well as thermal shrinkage during solidification are 
shown in Figure 11. Figure 12 shows the tempera-
ture, von Mises deviatoric stress and equivalent plas-
tic strain distributions. 

 

 
Fig. 10. Geometry of a TEKSID aluminium motor-block casting 
and mould system 

4. CONCLUDING REMARKS 

A formulation for coupled thermo-mechanical 
problems has been presented. An enthalpy format of 
the balance of energy equation has been considered 
to control the latent-heat released during phase-
changes. Stress analysis is essential to define both 
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conduction and convection heat transfer at the con-
tact interfaces. A particular J2 thermoplastic model 
has been considered. Temperature dependency of 
both mechanical properties and yield surface allows 
to predict deformations and final residual stresses of 
the casting tools involved. The model has been suc-
cessfully applied to the numerical simulation of in-
dustrial foundry processes. 

 

 
 

 
 

 
Fig. 11. Temperature distribution and shrinkage (plane xy) 

 

 

 
Fig. 12. Temperature (a), J2 von Mises (b) and equivalent plas-
tic strain (c) distributions 
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STAN BADAŃ NAD SPRZĘŻONYM 
CIEPLNO-MECHANICZNYM MODELEM 

PROCESÓW ODLEWANIA METALI 
 

Streszczenie 
 

W artykule opisano stan badań nad cieplno-mechanicznym 
modelem procesów odlewania metali. Termodynamicznie spój-
ny konstytutywny model materiału został opracowany w oparciu 
o funkcję termo-lepkoplastycznej energii swobodnej. Ciągłe 
przejście od cieczy do ciała stałego modelowano za pomocą 
termo-lepkoplastycznego modelu typu J2. W konsekwencji, 
stosownie do zmian ułamka objętości fazy stałej termo-
sprężysto-lepkoplastyczny model, opracowany dla ciał w stanie 
stałym, jest przekształcany w termo-lepkoplastyczny model 
odpowiedni dla cieczy. Do programu wprowadzono termo-
lepkoplastyczny model styku, uwzględniający izolacyjny wpływ 
szczeliny powietrza powstającej w wyniku skurczu objętościo-
wego krzepnącego metalu. W rozwiązaniu sprzężonego proble-
mu zastosowano metodę kroków cząstkowych, wynikającą z 
operatorowego rozdziału różniczkowego równania cząstkowego. 
W rozwiązaniu metodą elementów skończonych zastosowano 
wieloskalową metodę stabilizacji w elementach niskiego rzędu. 
Jest to efektywna metoda pozwalająca ominąć kryterium Babu-
ski-Brezzi’ego i uniknąć lokingu objętościowego i niestabilności 
ciśnienia powstających w quasi-nieściśliwych problemach. 
Symulacje przemysłowych procesów odlewania wykazały dobrą 
dokładność opracowanego modelu. 
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