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Abstract

This paper presents a unified formulation for the combination of the finite element method (FEM) and the boundary element method
(BEM) in 3D frictional contact problems that is based on the use of localized Lagrange multipliers (LLMs). Resolution methods for the
contact problem between non-matching meshes have traditionally been based on a direct coupling of the contacting solids using classical
Lagrange multipliers. These methods tend to generate strongly coupled systems that require a deep knowledge of the discretization char-
acteristics on each side of the contact zone complicating the process of mixing different numerical techniques. In this work a displacement
contact frame is inserted between the FE and BE interface meshes, discretized and finally connected to the contacting substructures using
LLMs collocated at the mesh-interface nodes. This methodology will provide a partitioned formulation which preserves software mod-
ularity and facilitates the connection of non-matching FE and BE meshes.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In computational structural mechanics, problems
involving frictional contact surfaces combined with non-
matching meshes are often considered a difficult task even
when using the same numerical method for the two sub-
structures participating in the contact process. The source
of this difficulty comes not only from the strong non-line-
arity of the frictional contact law, involving multi-valued
relationships between kinematic and static variables, but
also from the severe discontinuity forced by the different
meshes used to model the contact interface. Such a diffi-
culty explains the existence of many alternatives to treat
the problem, differing for example in the way that the con-
tact conditions are imposed: exactly, approximately or in a
weak-form, with differences in the range of applications
considered: conformal contact, frictionless, with friction,
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or in the approach used to treat the contact process: node
to node, node to element or node to surface.

Two of the best known techniques to solve the contact
problem are the penalty method and the Lagrange multi-
plier method. In the penalty method the displacement con-
straints are imposed in an approximated way introducing
some extra stiffness terms in the global stiffness matrix to
force the numerical fulfilment of the contact conditions
with a predefined degree of error. This approach usually
uses contact elements to control the gap and relative tan-
gential displacements between the nodes of a master sub-
structure and the elements of a contacting slave
substructure. The main disadvantage of this method is that
the resulting system of equations often suffers from ill-con-
ditioning due to important differences between the natural
structural stiffness and the artificial stiffness terms intro-
duced to impose the contact conditions.

A preferred alternative is the Lagrange multiplier
method that was first introduced by Hughes et al. [18]
for contact-impact problems. This method is based on
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introducing a new set of unknowns into the equations of
motion representing the interface contact forces and has
evolved from its initial formulation, restricted to friction-
less node to node contact situations, to more recent pro-
posals adopting node to element master–slave approaches
with dissimilar meshes.

However and related with the solution of contact prob-
lems interfacing non-matching meshes, classical node to
element techniques showed their incapacity of passing the
contact patch tests proposed by Taylor and Papadopoulos
[32] and Crisfield [6]. Faced with this and other shortcom-
ings of classical node to surface approaches, some
researches like Simó et al. [31] and Papadopoulos and Tay-
lor [23] proposed the idea of introducing an intermediate
contact surface, an explicit representation of the contact
zone, where contact variables could be defined and interpo-
lated. A more complete overview of the different
approaches used in FE contact problems can be found in
the books of Wriggers [34] and Laursen [19].

In recent years, techniques and approximations initially
designed for domain decomposition problems with non-
matching meshes are being applied to contact mechanics;
examples of these techniques are the mortar method and
the LLM method.

In the mortar method two different discretized surfaces
are connected using Lagrange multipliers; these multipliers
are approximated by shape functions which have to match
the displacement approximation in order to arrive at a sta-
ble discretization scheme. The first extension of the mortar
FEM to the unilateral contact problem was made by Belga-
cem et al. [3] presenting a theoretical basis that was imple-
mented by Hild [16]. Later different proposals arrived; for
example the work of McDevitt and Laursen [20] using
the mortar method to variationally project displacements
from contacting continua to an intermediate surface, more
recently its application to segment contact by Puso and
Laursen [28], the work of Fisher et al. [9] solving friction-
less large deformation contact problems using non-match-
ing meshes and mortar methods, and the dual mortar
method proposed by Wohlmuth [33] applied to 2D contact
problems in elasticity by Flemish et al. [10].

The LLM method proposed by Park and Felippa [24–
26] is a general variational framework used to solve parti-
tioned systems in structural mechanics that also introduces
between the substructures an intermediate surface called
frame, that is endowed with independent degrees of free-
dom and treated with a FEM discretization to approximate
the interface variables. Finally, this frame is connected to
the substructures using classical Lagrange multipliers
defined on the substructure interface nodes, obtaining an
approximation that naturally allows the treatment of
non-matching meshes and can be constructed in order to
preserve the constant-stress interface patch test, as demon-
strated by Park et al. [27].

This localized approach, initially dedicated to structural
substructuring and coupled problems, was later extended
to contact problems by Rebel et al. [29] who treated the
two dimensional frictional contact problem between non-
matching meshes using an intermediate contact surface
that was named contact frame. However, Rebel et al. con-
sidered the contact zone to be a priori known after apply-
ing a two stages predictor–corrector algorithm to find the
contact frame position and decided the contact point states
using a trial and error based algorithm that was revisited
after each contact iteration. Later, González et al. [13]
allowed the contact frame to separate from the substruc-
tures in all directions, making the frame a completely free
system between the substructures that moves maintaining
the contact zone as an unknown. Differences in this work
were also in the way of finding the contact states, because
the contact conditions were imposed mathematically using
an augmented Lagrangian formulation with projection
functions, making the trial and error contact search
unnecessary.

In contact problems the region of interest is usually
restricted to a local area around the contact zone where
stress concentration with locally plastic deformations can
occur, while extensive parts of the solid remain almost
unloaded. This is a situation well suited for a combination
of the FEM and the BEM, but the main difficulty when
mixing locally or inside a particular substructure the
FEM and the BEM is that the system of equations pro-
duced by these two methods are expressed in different vari-
ables and cannot be linked without modifications. Many
coupling techniques have been proposed trying to alter
the formulation of one of the methods to make it compat-
ible with the other combining their advantages. The first
BEM–FEM coupling formulations were proposed in the
pioneering works of Zienkiewicz et al. [35,36] and Brebbia
and Georgiou [4] that formulated the problem using two
different points of view; the first one considers the BE
region as a FE region, forcing a symmetrization of the
BE substructure on the basis of energy error minimization
considerations; and the second one tries to reformulate the
FE region to make it compatible with the BE equations. In
this area, González et al. [14] proposed a novel method to
couple the FEM and the BEM using LLMs and the varia-
tional framework developed by Park and Felippa, intro-
ducing the BEM elastic equations with the boundary
tractions transformed into forces and connecting them to
a frame where the interface displacements were
interpolated.

Most of the contributions mixing the BEM and the
FEM in contact problems do not consider a change of
the numerical method through the contact interface, com-
bining these numerical methods only inside the contacting
substructures and assuming at the end a FEM–FEM or
BEM–BEM contact approach. Examples are the works
of Ezawa and Okamoto [8] using special contact elements
and Oysu and Fenner [21] coupling the BEM and the
FEM locally in elastoplastic contact problems.

In this work we extend the contact formulation using
LLMs of [13] with the BEM–FEM coupling technique
proposed in [14], demonstrating the modularity and
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extensibility of partitioned approximations based on
LLMs. The resulting formulation will be applied to the
solution of 3D frictional contact problems between the
FEM and the BEM with non-matching meshes.

2. Notation

The notation of the expressions contained in this paper
is based on the following conventions: vectors and tensors
are written in bold-face, repeated tensor and matrix indices
appearing as both sub/super-index imply summation and
repeated indices that appear only as subindex do not imply
summation. Also the usual convention that Greek indices
run from 1 to 2 will be adopted.

3. Contact frame

Let us consider two solids in contact and denote their
domains X and X with a common interface Cc. To formu-
late the contact problem, instead of considering the direct
interaction between these two bodies during the contact
process, we will insert a deforming non-physical surface
called contact frame K with Cc � K and reformulate the
contact problem in terms of interaction of the solids with
this auxiliary surface using LLMs collocated on each side
of the frame.

The contact forces acting on the frame are represented
in the exploded view of Fig. 1 where the LLMs connecting
the solid X with the frame are named using the vector
quantity k ¼ ðkn; k

1
t ; k

2
t Þ

t and the multipliers connecting
solid X are named �k ¼ ð�kn; �k1

t ;
�k2

t Þ
t. These forces are

expressed using two locally orthonormal base systems
attached to the frame; B = [n,a1,a2] used to describe k
Fig. 1. Left: Abstract representation of two solids in contact with an inte
multipliers connecting the BE and FE meshes to the frame.
and B ¼ ½�n; �a1; �a2� used for �k. These frame local systems
are defined in the following way; a1 and a2 are the orthog-
onal vectors contained in the frame tangent plane at the
considered point and vector n points towards solid X.
The barred base system B at the same position, will be
defined in opposite direction to B.

A key approach of the present localized formulation is
to treat the non-matching contact interfaces by the method
of LLMs using either the BEM or the FEM to model the
contacting solids.
3.1. Frame kinematics

In order to describe the motion of the two solids we use
the displacement fields u and �u defined on X and X, respec-
tively, see Fig. 2, that added to the reference configurations
X and X provides us with the current positions x and �x

x ¼ Xþ u;

�x ¼ Xþ �u
ð1Þ

magnitudes expressed in the global system.
The motion of the contact frame is described using its

displacements v from its initial configuration Y, providing
a current position

y ¼ Yþ v; ð2Þ

however, this motion will be restricted to permanently
maintain the frame just in the middle between the solids.
To do that, the relative frame–solid distance vectors
k ¼ ðkn; k

1
t ; k

2
t Þ

t and �k ¼ ð�kn; �k1
t ;

�k2
t Þ

t are expressed in the
frame local system by
rcalated frame. Right: Discrete approximation with localized Lagrange



Fig. 2. Kinematic description of the relative motion between two substructures with a contact frame situated between them. The symbol d is used to
describe the motion of a boundary particle from solid X and � for a particle from solid X.
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kn ¼ n � ðx� yÞ; �kn ¼ �n � ð�x� yÞ;
k1

t ¼ a1 � ðx� yÞ; �k1
t ¼ �a1 � ð�x� yÞ;

k2
t ¼ a2 � ðx� yÞ; �k2

t ¼ �a2 � ð�x� yÞ
ð3Þ

or more compactly

k ¼ Btðx� yÞ;
�k ¼ Btð�x� yÞ

ð4Þ

and forced to be the same on each side of the frame, i.e.
k ¼ �k.

With previous definitions the contact frame matches
with the contact zone Cc where kn is equal to zero. Also
kt ¼ ðk1

t ; k
2
t Þ

t will give us the direction of the relative motion
of the solids in the interface, a variable needed to formulate
the frictional behavior.

We choose the reference position of the frame Y to be
the current position of the contact frame. This is done in
order to define kt as the tangential slip increment and
allows to change the geometry of the frame during the con-
tact process.

4. Enforcement of the contact conditions

The behavior at the contact interface is governed by the
non-penetration condition in the normal direction to the
contact zone and the frictional tribological law in the tan-
gential direction. The tribological model used in this work
is the Coulomb friction law, a common engineering
approximation to the frictional process where normal and
tangential tractions are coupled by the normal pressure.
When applying the contact conditions, one difficulty
reside in the fact that contact restrictions are given by a
group of equalities and inequalities resulting in a con-
strained optimization problem. To avoid this complication
we use the augmented Lagrangian formulation of the fric-
tional contact problem proposed by Alart and Curnier [2],
Simó and Laursen [30] and De Saxce and Feng [7]; based
on reformulating the unilateral contact law and the fric-
tional law as a system of equations without inequalities.
This method solves the contact problem exactly in contrast
to other penalty formulations, however, the equation sys-
tem obtained is non-differentiable but B-differentiable as
pointed out by Christensen et al. [5], and therefore, the
classical Newton method for smooth equations fails to be
applicable.

4.1. Normal direction: unilateral contact law

In the normal direction, the contact problem is governed
by the non-penetration condition. This kinematic condition
imposes that the gap between the contacting surfaces must
remain always positive (then we say there is a separation

situation) or zero (corresponding to a contact situation).
Instead of using the gap variable to formulate the normal
contact we will use the normal penetration kn, the same var-
iable but with its sign changed. To quantify the normal
penetration, we calculate the relative vector between two
particles and project it on the contact frame normal

kn ¼ ðx� yÞ � n ð5Þ
magnitude that must remain always negative in separation,
or equal to zero in contact.



Fig. 3. Exploded view with sign criteria used for the Lagrange multipliers
and contact forces in a FEM–FEM contact zone. A relative motion of the
two substructures in the indicated direction will produce represented signs
on contact forces.
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The penetration variable possesses a complementarity
relation with its counterpart, the surface normal force kn.
When there is a separation (kn < 0) the normal force is zero
(kn = 0) and only when there is a contact (kn = 0) we can
have a reaction (kn P 0). This behavior can be mathemat-
ically expressed by the complementarity condition

knkn ¼ 0;

kn P 0; kn 6 0

�
ð6Þ

composed by two inequalities.
Previous inequalities can be eliminated expressing Eq.

(6) using projection functions. Let us define the projection
function on the real positive line PRþð:Þ : R! R in the fol-
lowing way:

PRþðxÞ ¼ maxð0; xÞ ð7Þ

and define the augmented normal variable kn(r) as

knðrÞ ¼ kn þ rkn; ð8Þ
where r > 0 is a penalty parameter. Then conditions (6) can
be expressed using only one equation

PRþðknðrÞÞ ¼ kn ð9Þ
that guaranties by itself the fulfilment of unilateral contact
conditions. However, the price we have to pay for this sim-
plification is that (9) is no longer a strictly differentiable
function because there is one point where only the direc-
tional derivative can be computed, exactly in the frontier
between contact and separation.

4.2. Tangential direction: Coulomb friction law with variable

pressure

The tangential motion of the contact frame is governed
by the frictional behavior; this behavior imposes that when
there is contact between two boundary particles, they will
remain together in stick condition if their tangential stres-
ses do not reach a friction limit g. If that friction limit is
reached, the tangential stress will remain constant during
a slip in the same direction of the surfaces relative motion.

Special care is needed when imposing the frictional con-
tact condition with the sign of the frictional work; this fric-
tional work must be negative in order to represent a
dissipative system, condition satisfied by sign criteria repre-
sented in Fig. 3.

The Coulomb friction law establishes that if we define
the Coulomb disk of radius g as

Cgðx; yÞ ¼ fðx; yÞ 2 R2 : x2 þ y2
6 g2g

the tangential conditions can be written

kt 2 Cg and kt ¼
0 if kktk < g;

ckt with c P 0 if kktk ¼ g

�
ð10Þ

with c 2 Rþ to make sure that the tangential slip increment
kt and the tangential force kt ¼ ðk1

t ; k
2
t Þ

t have the same sign
and our system is dissipative.
Previous conditions can also be reduced to the fulfilment
of only one equation; to do that, we define the Coulomb
disk projection operator PCgð:Þ : R2 ! R2 in the following
way:

PCgðx; yÞ ¼
½x; y�t if x2 þ y2

6 g2;
gffiffiffiffiffiffiffiffiffi

x2þy2
p ½x; y�t otherwise

(
ð11Þ

and introduce the augmented tangential multiplier variable

ktðrÞ ¼ kt þ rkt ð12Þ

so conditions (10) can be expressed projecting this aug-
mented tangential variable on the disk of radius g, i.e.

PCgðktðrÞÞ ¼ kt ð13Þ

obtaining again a strictly non-differentiable function at the
stick–slip frontier but with computable directional deriva-
tive at that point.

4.3. Coupled contact conditions

The complete fulfilment of contact conditions comes
from a combination of Eqs. (9) and (13), coupled by the
fact that the friction limit is a function of the normal trac-
tion; in the particular case of the Coulomb friction law
g = lkn where l is the friction coefficient.

To consider that normal Lagrange multiplier kn can only
be positive, we make g = l max(0,kn) and define the cone
projection operator P/ð:Þ : R3 ! R3 applied to the aug-
mented Lagrangian multiplier k(r) = k + rk in the follow-
ing way:

P/ðkðrÞÞ ¼
PRþðknðrÞÞ

PCl maxð0;knÞ
ðktðrÞÞ

" #
: ð14Þ

This definition allows us to express the contact conditions
with the final expression



Fig. 4. The projection operator is applied to the augmented variable
k + rk. If the contact conditions are fulfiled, the projection operation will
return the Lagrangian multipliers back.
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P/ðkðrÞÞ ¼ k: ð15Þ

The idea behind the cone projection operator (14) is repre-
sented in Fig. 4; the contact conditions will be satisfied
when a projection of the augmented Lagrange multipliers
on the friction cone returns the multipliers back.
5. Variational formulation

To derive the equilibrium equations of the constrained
system we use the variational formulation proposed by
Park and Felippa [24,25] where the problem is treated like
if all bodies were entirely free, formulating the virtual work
of the system by summing up the contributions of each
body and adding the interface contribution obtained when
multiplying the constraint equations by the LLMs.

The variational functional that represents the total
energy of the system dP is then composed by the energy
of the two substructures plus the interface constraint func-
tional associated with the contact phenomena

dP ¼ dpbody 1 þ d�pbody 2 þ dpint; ð16Þ

where the contact interface potential dpint groups contribu-
tions from both sides

dpint ¼ dpi þ d�pi ð17Þ

and will be derived in this section.
To do that, let us decompose each one of the two inter-

face functionals into two terms

dpi ¼ dpk þ dpc;

d�pi ¼ d�pk þ d�pc
ð18Þ

the first one is related with the kinematic positioning of the
frame, Eq. (4), that is enforced in a weak sense using the
variational form

dpk ¼
Z Z

Cc

ðdfk � ½Btðx� yÞ � k�gÞdCc ð19Þ
and the second one represents the virtual work of the con-
tact forces, contribution to the weak form that can be ex-
pressed in the following way:

dpc ¼
Z Z

Cc

ðk � dkÞdCc; ð20Þ

where the contact forces k have to satisfy the unilateral
contact law (6) and the frictional law (10). These restric-
tions can be automatically satisfied replacing the Lagrange
multipliers by the projection operator (14) obtaining

dpc ¼
Z Z

Cc

ðP/ðkðrÞÞ � dkÞdCc ð21Þ

equation that added to (19) and substituted back in (18)
provides the expression for the total variation of the inter-
face potential at the non-barred side

dpi ¼
Z Z

Cc

ðk � dfBtðx� yÞg þ dk � fBtðx� yÞ � kg

þ dk � f�kþ P/ðkðrÞÞgÞdCc ð22Þ

and similarly

d�pi ¼
Z Z

Cc

ð�k � dfBtð�x� yÞg þ d�k � fBtð�x� yÞ � kg

þ dk � f��kþ P/ð�kðrÞÞgÞdCc ð23Þ

for the barred side.
To deal with the first term of Eqs. (22) and (23) we

decompose them in the following way:

k � dfBtðx� yÞg ¼ ðdu� dvÞ � fBkg þ kndn � ðx� yÞ
þ ka

t daa � ðx� yÞ; ð24Þ
�k � dfBtð�x� yÞg ¼ ðd�u� dvÞ � fB�kg þ �knd�n � ð�x� yÞ

þ �ka
t d�aa � ð�x� yÞ ð25Þ

and considering that if the base system aa is orthonormal,
the variation of the normal and tangential frame unitary
vectors can be written (see [37])

daa ¼ Qadv;a; d�aa ¼ Qadv;a; ð26Þ

dn ¼ ebaðab � IÞQadv;a; d�n ¼ ebað�ab � IÞQadv;a; ð27Þ

where Qa ¼ 1
jjy;ajj
ðI� aa � aaÞ, Qa ¼ 1

jjy;ajj
ðI� �aa � �aaÞ and

eba represents the permutation symbol, substitution into
(22) and (23) leads to the final expression for the interface
potentials

dpi ¼
Z Z

Cc

ðdk � fBtðx� yÞ � kg þ ðdu� dvÞ � fBkg

þ dv;a � fQaU
aðx� yÞg þ dk � f�kþ P/ðkðrÞÞgÞdCc

ð28Þ

with Ua ¼ ka
t Iþ kneabðab � IÞ and for the barred side
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d�pi ¼
Z Z

Cc

ðd�k � fBtð�x� yÞ � kg þ ðd�u� dvÞ � fB�kg

þ dv;a � fQa
�Uað�x� yÞg þ dk � f��kþ P/ð�kðrÞÞgÞdCc

ð29Þ

with �Ua ¼ �ka
t Iþ �knebað�ab � IÞ.

It is important to mention that the preceding interface
constraint functional will not lead to a standard minimiza-
tion problem; the reason is that the Coulomb disk Cg inside
the cone projection operator P/ is a function of the normal
contact through the friction limit g which depends on the
solution u. To overcome this difficulty and following to
Alart and Curnier [2] we have obtained a particular form
of quasi-Lagrangian by substituting g by the convex set l
max(0,kn); for this reason, the minimization problem asso-
ciated with (16) is considered as a quasi-variational
problem.

Also note that in Eq. (28) the following terms can be
identified:

Gcuðk; duÞ ¼
Z Z

Cc

ðdu � fBkgÞdCc;

Gckðx; y; k; dkÞ ¼
Z Z

Cc

ðdk � fBtðx� yÞ � kgÞdCc;

Gcvðx; y; k; dvÞ ¼
Z Z

Cc

ð�dv � fBkg

þ dv;a � fQaU
aðx� yÞgÞdCc;

Gckðk; k; dkÞ ¼
Z Z

Cc

ðdk � f�kþ P/ðkðrÞÞgÞdCc

ð30Þ

obtaining similar expressions for the barred side (29);
where Gcu(k;du) represents the virtual work of contact
forces acting on the solid X, Gck(x,y,k;dk) constitutes the
kinematic constraint between the solid and the frame,
Gcv(x,y,k;dv) evaluates the virtual work done by the con-
tact forces on the frame and Gck(k,k;dk) is responsible
for the fulfilment of the contact conditions. Once combined
these terms with their counterparts from the barred side,
the final conditions that will have to be satisfied in the
frame are

Gcvðx; y; k; dvÞ þ Gcvð�x; y; �k; dvÞ ¼ 0 ð31Þ

or frame equilibrium due to forces coming from both sides
and

Gckðk; k; dkÞ þ Gckð�k; k; dkÞ ¼ 0 ð32Þ

to ensure that those forces, together with the frame dis-
placements, will satisfy the contact conditions.

Special consideration must be taken to the fact that
Gck(k,k;dk) and Gckð �k; k; dkÞ terms are both non-F-differ-
entiable functions.1 The reason is that there are certain
points where a conventional derivative can not be
1 The concept of B-differentiability is related with the non-linearity of
the directional derivative. Only if a function F(z) is F-differentiable, its
derivative at z in an arbitrary direction d is linear and satisfies the equation
oF(z;d) = $F(z)d, where $F(z) is the Jacobian matrix.
computed; exactly at the change of contact state frontiers.
However, in those points the directional derivative can be
computed because (32) is a B-differentiable function.

6. Discrete equations

The discrete contact problem will be defined in terms of
contact pairs, i.e. couples formed by a boundary node and
its associated frame element. Those contact pairs are estab-
lished before starting each time step, calculating for every
potentially contacting boundary node its nearest frame ele-
ment and projecting geometrically on it, see Fig. 5.

The frame displacements v(n1,n2) and its average dis-
tance to the solids k(n1,n2) are interpolated using isopara-
metric finite elements in the following form:

vðn1; n2Þ ¼ Nðn1; n2Þ

v1

..

.

vnf

2
664

3
775; kðn1; n2Þ ¼ Nðn1; n2Þ

k1

..

.

knf

2
664

3
775;
ð33Þ

where nf is the number of nodes in the frame element, and

Nðn1; n2Þ ¼
N 1 0 0 . . . N nf 0 0

0 N 1 0 . . . 0 Nnf 0

0 0 N 1 . . . 0 0 Nnf

2
64

3
75 ð34Þ

is the shape functions approximation matrix.
The choice for multiplier discretization is to model them

as concentrated forces, that is, support functions are Dir-
ac’s delta functions

kðn1; n2Þ ¼ kp � dðn� npÞ ð35Þ

with n = (n1,n2) and np the frame coordinates of the node
projection, Fig. 5. This definition of contact forces will re-
duce integrations over the contact zone to summations
over the contact pairs, i.e.Z Z

Cc

kðn1; n2Þ � fðn1; n2ÞdCc ¼
Xnp

p¼1

kp � fðnpÞ ð36Þ

with np the total number of contact pairs. Expression (36) is
useful in order to maintain the contact interface generic,
leading to modular coupling software since the frame needs
to know very little information about the contacting solids.

To manage the discrete variables we have to introduce
the substructural interface nodal indicator L, the well
known boolean finite element assembling operator defined
in the following way:

up ¼ Lupu; kp ¼ Fxkpk;

vp ¼ Lvpv; kp ¼ Lkpk;
ð37Þ

where Lhp is used to extract the variable associated with a
boundary node p from the global vector of unknowns h

with h = u,v,k,k.
Due to the incremental nature of the frictional contact

process, the nodal value of the contact variables at the



Fig. 5. Each contact pair is constituted by a hitting boundary node p and its closest frame element.
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previous time step (t) has to be stored in memory in order
to solve for the next time step (t + Dt). This is done for the
frame displacements v(t), the average distance of the frame
to the solids k(t), the structural displacements u(t) and the
localized Lagrange multipliers k(t), variables that are
arranged in a vector zðtÞ ¼ ðuðtÞ; �uðtÞ; kðtÞ; �kðtÞ; vðtÞ; kðtÞÞ.

It should be noted that making the variables associated
with the contact problem k(t) and v(t) to reside in the frame,
the contact problem is encapsulated making it easier a sub-
stitution of the numerical method used to model the
substructures.
6.1. FEM–FEM contact

When the contacting solids are modeled using the FEM,
the energy variation of each completely free subsystem can
be written in the following general form:

dpbody ¼ dut � ffint � fextg; ð38Þ

where f = fint � fext represents the force unbalance or differ-
ence between the internal an external forces; expression
that when particularized to the linear elastic case is given
by f = Ku � fext.
Using previous definitions, the discrete form of the total
FEM–FEM energy functional variation dPFF can be
finally written

dPFF ¼ dut � f þ d�ut � �f þ dkt � gþ d�kt � �g� dvt � ðqþ �qÞ
þ dkt � ðpþ �pÞ; ð39Þ

where

f ¼
Xnp

p¼1

Lt
upfp; g ¼

Xnp

p¼1

Lt
kpgp;

q ¼
Xnp

p¼1

Lt
vpqp; p ¼

Xnp

p¼1

Lt
kppp

ð40Þ

with equivalent definitions for the barred quantities.
For each contact pair, following equations hold

fp ¼ ffint � fext þ Bkgp;
�fp ¼ f�fint � �fext þ B�kgp; ð41Þ

gp ¼ fBtðx� yÞ �Nkgp; �gp ¼ fBtð�x� yÞ �Nkgp; ð42Þ
qp ¼ f�NtBkþNt

;aQaU
aðx� yÞgp;

�qp ¼ f�NtB�kþNt
;aQa

�Uað�x� yÞgp; ð43Þ
pp ¼ fNtð�kþ P/ðkðrÞÞÞgp; �pp ¼ fNtð��kþ P/ð�kðrÞÞÞgp;

ð44Þ
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where Eq. (41) represents the equilibrium equation of each
substructure (term �Bk are the contact forces expressed in
the global system), Eq. (42) governs the relative motion be-
tween the frame and the substructures, Eq. (43) evaluates
the forces acting on the frame and Eq. (44) imposes the
fulfilment of the contact conditions.

The stationary of the above FEM–FEM variational
equation, viz., dPFF = 0 is obtained by solving for the
group of unknowns z ¼ ðu; �u; k; �k; v; kÞ the following non-
linear and B-differentiable system:

FFFðzðtþDtÞÞ ¼

f

�f

g

�g

�q� �q

pþ �p

2
666666664

3
777777775

ðtþDtÞ

¼ 0; ð45Þ

where non-F-differentiability occurs because equation
pþ �p can present a non-linear directional derivative.

The partitioned equations of motion for the frame-
based FEM–FEM contact problem are obtained from the
Jacobian of system (45), that can be expressed as

K 0 B 0 �Lv 0

0 K 0 B �Lv 0

Bt 0 0 0 �Lb �Nk

0 Bt 0 0 �Lb �Nk

�Lt
v �Lt

v �Lt
b �Lt

b �Dv �Dv 0

0 0 Pk Pk 0 Pk þ Pk

2
666666664

3
777777775

DuðtÞ

D�uðtÞ

DkðtÞ

D�kðtÞ

DvðtÞ

DkðtÞ

2
666666664

3
777777775

¼

�f

��f

�g

��g

qþ �q

�p� �p

2
666666664

3
777777775

ðtÞ

; ð46Þ

where only the non-differentiable terms Pk, Pk, Pk and Pk

need a special treatment.
Components of the previous system for non-barred

quantities are obtained assembling contributions of each
contact pair p

B ¼
Xnp

p¼1

Lt
upBpLkp; Lv ¼

Xnp

p¼1

Lt
upLvpLvp;

Lb ¼
Xnp

p¼1

Lt
kpLbpLvp; Nk ¼

Xnp

p¼1

Lt
kpNkpLkp;

Dv ¼
Xnp

p¼1

Lt
vpDvpLvp; Pk ¼

Xnp

p¼1

Lt
kpPkpLkp;

Pk ¼
Xnp

p¼1

Lt
kpPkpLkp ð47Þ
with sums extended to the np contact pairs from that side
and where each term comes from differentiation of Eqs.
(41)–(44)

Lvp ¼ �ðUaÞtQaN;a

� �
p
; ð48Þ

Lbp ¼ BtN�
�ðx� yÞtða2 � IÞ

ðx� yÞt

0

2
64

3
75Q1N;1

8><
>:
�
ðx� yÞtða1 � IÞ

0

ðx� yÞt

2
64

3
75Q2N;2

9>=
>;

p

; ð49Þ

Nkp ¼ fNgp; ð50Þ

Dvp ¼ Nt½ðUaÞtQa�N;a þNt
;a½QaU

a�N
n
þNt

;a

1

jjy;ajj
fQaU

aðx� yÞ � aa þ aa

�QaU
aðx� yÞ þ ½Uaðx� yÞ� � aaQagN;aggp ð51Þ

obtaining similar expressions for the barred side.
On the other hand, terms Pkp and Pkp are decomposed

into their normal and tangential parts

Pkp ¼ Pknp þ Pktp and Pkp ¼ Pknp þ Pktp ð52Þ
with following definition for the normal part:

(1) Case kn(r) < 0
Pknp ¼ Nt

�1 0 0

0 0 0

0 0 0

2
64

3
75

8><
>:

9>=
>;

p

:

(2) Case kn(r) P 0

Pknp ¼ Nt

r 0 0

0 0 0

0 0 0

2
64

3
75N

8><
>:

9>=
>;

p

;

where we can see that instead of calculating a complicated
non-linear directional derivative for the non-differentiable
case kn(r) = 0, it has been replaced by a more simple linear
derivative coming from the right side. A similar technique
is used for non-differentiable points of the tangential
contribution:

(1) Case kn 6 0
Pktp ¼ Nt

0 0 0

0 �1 0

0 0 �1

2
64

3
75

8><
>:

9>=
>;

p

:

(2) Case kn > 0
(a) When kkt(r)k 6 lkn

Pktp ¼ Nt

0 0 0

0 r 0

0 0 r

2
64

3
75N

8><
>:

9>=
>;

p

;
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(b) otherwise, if kkt(r)k > lkn

Pktp ¼ Nt

0 0 0

â k1
t ðrÞ
kn

W11 W12

â k2
t ðrÞ
kn

W21 W22

2
664

3
775

8>><
>>:

9>>=
>>;

p

;

Pktp ¼ Nt

0 0 0

0 rH11 rH12

0 rH21 rH22

2
64

3
75N

8><
>:

9>=
>;

p

with â ¼ lkn
jjktðrÞjj, b̂ ¼ lkn

½k1
t ðrÞ

2þk2
t ðrÞ

2�
3
2
, W ¼ ðâ� 1ÞI� b̂R, H ¼

âI� b̂R and R = kt(r) � kt(r).

In the previous expressions we are using a linearized
substitute for the non-linear directional derivative appear-
ing when any of these equalities hold kn = 0, kn(r) = 0 or
kkt(r)k = lkn, although the function can be expected to
be normally differentiable in the large majority of practical
cases.

6.2. BEM–FEM contact

Modularity of the preceding formulation becomes clear
when it is extended to make possible a combination of con-
tacting solids modelled using either the FEM or the BEM.
For simplicity and without any loss of generality, we focus
on the case where the elastic equations of the first solid in
contact are obtained using the BEM and the second solid is
modeled using the FEM. In a previous work by the authors
[14] it was demonstrated that in coupled elastostatic prob-
lems without contact conditions, the variational functional
of a BE solid dpbody to be combined with a variational form
like (16) can be expressed by adding two terms: the comple-
mentary virtual work associated with the BE elastic
equations dpBEM and an extra term to transform the
boundary tractions into forces dplump, i.e. dpbody = dpBEM +
dplump. The first term, associated with the BEM elastic equa-
tions, can be written

dpBEM ¼ dtt � fHu�Gt� bg; ð53Þ

where vectors t and u contain the solid boundary tractions
and displacements, respectively, H and G are the BEM sys-
tem matrices obtained when assembling elemental contri-
butions and vector b is a known function of the
boundary conditions, see [14] for more details. Those
boundary tractions are in equilibrium with the Lagrange
multipliers localized in the contact zone applying an energy
equivalence principle that produces the following term:

dplump ¼ dut � fMtþ Ekg ð54Þ

with a lumping matrix used to transform tractions into
equivalent forces given by

M ¼
Xne

e¼1

Lt
teMeLte; ð55Þ

where ne is the number of boundary elements situated at
the interface, Lte is the boolean assembling operator used
to extract the variables associated with a boundary element
e from the global vector of unknowns and

Me ¼
Z

Ce

NTNdCe ð56Þ

is the elemental lumping matrix for an element e with
boundary Ce. Finally and because not all the boundary
nodes belong to the contact zone, a boolean matrix E is
used to associate the LLMs with their corresponding global
nodes.

Substituting these two new terms into the variational
Eq. (39) a different form of the functional variation is
obtained for the BEM–FEM coupling case

dPBF ¼ dtt � ðHu�Gt� bÞ þ dut � ðMtþ EkÞ
þ d�ut � �f þ dkt � gþ d�kt � �g� dvt � ðqþ �qÞ
þ dkt � ðpþ �pÞ; ð57Þ

where it should be noted that this new expression does not
represent the variation of a potential energy functional.

The stationary of the BEM–FEM variational equation
dPBF = 0 is obtained when solving for a new group of
unknowns z ¼ ðu; �u; t; k; �k; v; kÞ the following B-differentia-
ble system:

FBF ðzðtþDtÞÞ ¼

h
�f

m

g

�g

�q� �q

pþ �p

2
66666666664

3
77777777775

ðtþDtÞ

¼ 0 ð58Þ

with definitions for the first and third equations given by

h ¼ fHu�Gt� bg; m ¼ fMtþ Ekg; ð59Þ
where h represents the BE elastic equations and m the
lumping procedure from tractions to forces.

So carrying out the stationary conditions of (58) we find
the following equilibrium equation set:

H 0 �G 0 0 0 0

0 �K 0 0 B �Lv 0

0 0 M E 0 �Lv 0

Bt 0 0 0 0 �Lb �Nk

0 Bt 0 0 0 �Lb �Nk

�Lt
v �Lt

v 0 �Lt
b �Lt

b �Dv �Dv 0

0 0 0 Pk Pk 0 Pk þ Pk

2
666666666664

3
777777777775

�

DuðtÞ

D�uðtÞ

DtðtÞ

DkðtÞ

D�kðtÞ

DvðtÞ

DkðtÞ

2
666666666664

3
777777777775
¼

�h

��f

�m

�g

��g

qþ �q

�p� �p

2
666666666664

3
777777777775

ðtÞ

ð60Þ
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a non-symmetrical and strictly non-differentiable system
representing the partitioned equations of motion for the
frame-based BEM–FEM contact problem.

Note that the BEM–BEM contact case is straightfor-
ward using the same approach.

6.3. Generalization to multi-contacts

One of the advantages of using this partitioned formula-
tion, is that the matrix assembling process of systems (46)
and (60) can be easily automatized and extended to the case
on n contacting bodies with m frames using a general
expression written in the following form when all bodies
are modelled using the FEM

K B �Lv 0

Bt 0 �Lb �Nk

�Lt
v �Lt

b �Dv 0

0 Pk 0 Pk

2
6664

3
7775

DuðtÞ

DkðtÞ

DvðtÞ

DkðtÞ

2
6664

3
7775 ¼

�f

�g

q

�p

2
6664

3
7775
ðtÞ

; ð61Þ

where K = diag(K1,K2, . . . ,Kn), B = diag(B1,B2, . . . ,Bn), Dv =
diag(Dv1,Dv2, . . . ,Dvm) and Pk = diag(Pk1,Pk2, . . . ,Pkm) are
diagonal block matrices and Lv, Lb and Nk are n · m block
matrices with sub-block (i, j) different from zero if solid i

is connected with frame j. A slightly more complicated
multi-block matrix is obtained when mixing the FEM
and the BEM.

It is also interesting to note that systems (46) and (61)
will be only symmetric when all contact points are sepa-
rated or in a non-contact condition, this makes
Pk ¼ �Nt

k. In contrast to other formulations, mortar-like
methods for example, non-symmetry of Eq. (61) comes
from the contact conditions but not from the interface
treatment.
7. Solving the non-linear system

To solve systems (45) and (58) the Generalized Newton’s
Method with Line Search (GNMLS) has been used.
GNMLS is an effective extension of the Newton’s Method
for B-differentiable functions proposed by Pang [22] in a
general context and particularized by Alart [1] and Chris-
tensen [5] for the contact case. This method is based on
the computation of the non-linear directional derivative
of the objective function; however, it is well known that
in contact problems this non-linear directional derivative
rarely needs to be computed and can be substituted by a
linearized version without affecting the algorithm conver-
gence; this is the approach adopted obtaining (52).

If we define the scalars b 2 (0, 1), r 2 (0,1/2), and e > 0
but small, the application of GNMLS algorithm to solve
the non-linear equations F(z) = 0, can be summarized in
the following steps:

(1) Time integration (t), solve for z(t+Dt) known z(t).

(a) Inner GNMLS iterations, loop k.
(b) Use GMRES to solve for Dz
ðtÞ
k in the system

oFðzðtÞk ; Dz
ðtÞ
k Þ ¼ �FðzðtÞk Þ given by (46), (60) or (61).

(c) Obtain first integer m = 1,2,. . . that fulfils
HðzðtÞk þ bmDz

ðtÞ
k Þ 6 ð1� 2rbmÞHðzðtÞk Þ with HðzÞ ¼

1
2
FtðzÞFðzÞ.

(d) Actualize solution z
ðtÞ
kþ1 ¼ z

ðtÞ
k þ skDz

ðtÞ
k with

sk = bm.
(e) If HðzðtÞkþ1Þ 6 � continue, else compute new
GNMLS iteration k k + 1.

(2) Make zðtþDtÞ ¼ z
ðtÞ
kþ1 and solve for next time step

(t) (t + Dt).

The algorithm uses two nested loops, the external one
cares for time marching and the internal loop performs
the Newton subiterations. On each one of these subitera-
tions a linear system has to be solved to compute the search
direction, where we use a sparse matrix storage scheme
combined with the GMRES solver. When a new direction
Dz
ðtÞ
k is obtained, it is scaled by a factor of sk obtained from

the decreasing error condition given by step (c).

8. Regularization technique

When constitutive characteristics of the contacting sol-
ids are very different, the linear system representing equa-
tions of motion (61) can become ill-conditioned affecting
the overall GNMLS algorithm convergence. To palliate
this effect, present in any contact formulation, improving
and accelerating the convergence in those extreme cases,
a normalization scheme is proposed based on the scaling
of displacements and/or Lagrange multipliers.

8.1. Scaling displacements

If we scale the displacements using the following two lin-
ear relations:

u	 ¼ Suu;

�u	 ¼ S�u�u
ð62Þ

once substituted this regularization in (39), the new expres-
sion for the FEM–FEM equations of motion is

St
uKSu 0 St

uB 0 �St
uLv 0

0 St
�u
�KS�u 0 St

�uB �St
�uLv 0

BtSu 0 0 0 �Lb �N

0 BtS�u 0 0 �Lb �N

�Lt
vSu �Lt

vS�u �Lt
b �Lt

b �Dv �Dv 0

0 0 Pk Pk 0 Pk þ Pk

2
666666664

3
777777775

�

Du	ðtÞ
D�u	ðtÞ
DkðtÞ

D�kðtÞ

DvðtÞ

DkðtÞ

2
666666664

3
777777775
¼

�St
uf

�St
�u
�f

�g

��g

qþ �q

�p� �p

2
666666664

3
777777775

ðtÞ

; ð63Þ
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where it is clear that among many possible matrix choices
for Su and S�u, a diagonal matrix that modifies the first
two diagonal entries of (63) making them of the same order
would be a simple normalization option. Our choice is then
to make Su ¼ diagðKÞ�

1
2 for each substructure and to solve

for the scaled displacements u* instead of the real ones u.
8.2. Scaling displacements and multipliers

Considering that the localized method of Lagrange mul-
tipliers utilizes independent Lagrange multipliers for each
substructure, that fact will allow us to introduce two inde-
pendent normalization factors for each group of Lagrange
multipliers

k	 ¼ Skk;
�k	 ¼ S�k

�k;
ð64Þ

where Sk and S�k are linear transformations to define. Ob-
serve that by taking appropriate values of these matrices
we can independently scale the unknown Lagrange multi-
pliers k and �k, and that no such scaling possibility exists
when using the classical Lagrange multipliers method.

Substitution of (62) and (64) in (39) gives

St
uKSu 0 St

uBSk 0 �St
uLv 0

0 St
�u

�KS�u 0 St
�uBS�k �St

�uLv 0

St
kBtSu 0 0 0 �St

kLb �St
kN

0 St
�kBtS�u 0 0 �St

�kLb �St
�kN

�Lt
vSu �Lt

vS�u �Lt
bSk �Lt

bS�k �Dv �Dv 0

0 0 PkSk PkS�k 0 Pk þ Pk

2
666666664

3
777777775

�

Du	ðtÞ
D�u	ðtÞ
Dk	ðtÞ
D�k	ðtÞ
DvðtÞ

DkðtÞ

2
666666664

3
777777775
¼

�St
uf

�St
�u
�f

�St
kg

�St
�k�g

qþ �q

�p� �p

2
666666664

3
777777775

ðtÞ

ð65Þ

and to make terms St
uBSk 
 1 our choice is to define

Sk ¼ diagðKÞ
1
2 for each group of Lagrange multipliers.

The effect of this regularization technique is also studied
by Park, Felippa and Gumaste in [26,15] for heterogeneous
structural systems, where an important acceleration of the
iterative solution algorithm was observed.
9. Applications

In this section, four numerical examples are solved to
demonstrate the possibilities of the proposed methodology.
The first test is classical benchmark in contact problems,
the 3D Hertz’s contact problem. The second application
is a three solids example using the FEM–FEM coupling
approach where the material dissimilarity influence on
the iterative solution convergence is discussed. The third
one is an industrial application; a simplified tire-road con-
tact problem treated using the proposed BEM–FEM cou-
pling technique. The final example is a BEM–BEM
contact case where the indentation of a block into a half-
space is considered.

9.1. FEM–FEM contact: The Hertz’s problem

The problem considered is the Hertzian contact of two
geometrically identical elastic spheres of radius
R1 = R2 = 8 indented applying an external load P = 1 nor-
mal to the contact zone. The material properties for the
first sphere are E1 = 100, m1 = 0.2 and E2 = 100, m2 = 0.4
for the second. This difference in the Poisson’s ratio,
together with a friction coefficient l = 0.25 will produce a
distribution of tangential stresses in the contact zone that
will not affect considerably the normal pressure, which will
be very close to the Hertz solution that predicts a contact
zone size aHertz = 0.756 and a maximum contact pressure
pHertz = 3.342.

The mesh of the lower sphere is generated using 1280
hexahedral elements and 1569 nodes, refining the potential
contact zone (a square with side length 1) with 100 hexahe-
drical elements and 121 contact nodes, see Fig. 6. The sec-
ond sphere is discretized using a similar but coarse mesh of
896 hexahedral elements with only 64 located in the poten-
tial contact area. The contact frame is a plane of 1 mm2

that uses the same discretization as the potential contact
zone of the upper sphere.

The normal pressure distribution obtained is presented
in Fig. 6 (right-up) where the Hertz solution is well recog-
nized. It is known that the coupling between the normal
and tangential stresses for this problem is very low, mean-
ing that normal tractions are not considerably affected by
the frictional phenomena. It was also observed that the
number of steps used to apply the normal load did not
modify the normal solution but affected the tangential trac-
tions inside the central stick zone. Four steps were used to
apply the normal load in this case.

Finally, the contact zone tangential stresses in the y

direction can be observed in Fig. 6 (right-down) obtaining
the same solution but rotated 90� for the orthogonal direc-
tion x. It represents a complex slip–stick–slip shape that
has to satisfy the slip condition in an external annular
region combined with the adhesion state inside.

9.2. FEM–FEM contact: Layer between two blocks

For this test we consider a very soft elastic layer trapped
between two elastic blocks and compressed by the effect of
a normal constant pressure applied on the top of one of
them, see Fig. 7. These two blocks share the same elastic
constants Eb and mb = 0.3, and the constitutive parameters
for the layer are El = 1 and ml = 0.3 together with a friction
coefficient l = 0.25 between both materials. Our interest is
to investigate the effect of the stiffness ratio Eb/El on the
contact forces and the solution algorithm efficiency.



Fig. 6. Three-quarters and section of the mesh used for the Hertzian problem (left), distribution of normal pressure and tangential stresses at the contact
zone (right).

Fig. 7. Mesh of the layer problem and its exploded view with three substructures and two contact frames.
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The system is modeled by three substructures and two
contact frames between their interfaces. The base block,
with dimensions 7 · 7 · 3, is discretized using a regular
hexahedrical mesh with 1350 brick elements and connected
to the first frame, a plane with 49 quadrilateral linear ele-
ments. The layer has a constant thickness e = 0.1 and pre-
sents a more refined mesh with 1458 brick elements,
connected to a second frame with the same discretization
than the first one. Finally, the upper block has dimensions
3 · 3 · 2 with a regular hexahedrical mesh of 245 elements
and a constant pressure q on the top. This uniform pressure
is linearly increased with time and applies a net normal
load P = 0.49 after ten time steps.
9.2.1. Case Eb/El = 10

When the relative stiffness between the solids remains
small, a distribution of Lagrange multipliers is obtained
under the layer that reduces adhesion to the center of the
contact area where the normal pressure is lower, Fig. 8.
Fig. 8. Normal multipliers (left) and tangential multipl

Fig. 9. Normal multipliers (left) and tangential multiplie
It is well known that normal stresses for the block indenta-
tion problem are singular in the border of the contact zone,
this effect, however, is not well represented in Fig. 8
because Lagrange multipliers are nodal forces and contrib-
utive areas are different for borders and corners than for
interior nodes.

For this case, convergence history of the GNMLS algo-
rithm is unproblematic and quite uniform, reaching for the
first load step a relative error of 10�7 with ten iterations
and up to 10�13 with forty iterations without using any reg-
ularization technique.
9.2.2. Case Eb/El = 1000

The distribution of contact forces for this case is quite
different from the previous one, see Fig. 9, the normal
and tangential multipliers become uniform except for a
narrow strip around the border of the contact area where
the tangential stresses are concentrated. Material dissimi-
larity causes this strong discontinuity, affecting the
iers (right) under the layer for the case Eb/El = 10.

rs (right) under the layer for the case Eb/El = 1000.



Fig. 10. Effect of the regularization technique on the solution algorithm
convergence when Eb/El = 1000.
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GNMLS algorithm convergence. From a mathematical
point of view, convergence problems appear due to an ill-
condition of the system representing equations of motion
and can be reduced using any of the regularization tech-
niques proposed in Section 8.

Observe from Fig. 10 that without using regularizations,
almost forty iterations of the GNMLS algorithm are not
Fig. 11. Perspective with an exploded view of the tire modeled using the FEM,
of the tire (down).
enough to decrease the relative residual below 10�3. How-
ever, if the displacement scaling given by Eq. (63) is used,
the algorithm converges to 10�6 but needs an important
number of iterations. Note that the better convergence
results are obtained when combining the displacement
and multiplier regularization proposed in Eq. (65), where
the same grade of convergence than using the displacement
scaling is obtained but much more quickly.

The same behavior was observed by Park et al. [26] for
structural systems with both material and geometric heter-
ogeneities, concluding that multipliers regularization accel-
erates substantially the convergence of iterative solution
schemes for partitioned structural systems connected using
LLMs.
9.3. BEM–FEM contact: Tire-road contact modelling

Modeling contact phenomena in the tire footprint is a
formidable task, partly because of the difficulty of model-
ing the tire behavior and partly due to the non-linear con-
tact process. Moreover, the complex mechanisms of rolling
contact [17,11,12] and dynamic friction which allow the tire
to develop the necessary steering and braking forces makes
this problem to occupy a position of special interest in
engineering mechanics. But our intention here is only to
the frame and the BE half-space representing the road (up) and dimensions



Fig. 12. Displacement fields on the road and the tire when a vertical rigid body displacement is imposed on the wheel.
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demonstrate the possibilities of the proposed methodology
when applied to this kind of problems by using a simplified
example.

In this example we study the case of a stopped tire
connected to an infinitely rigid wheel that presents a con-
trolled vertical displacement, imposed on its center axis,
making the tire to interact with the ground surface. This
problem is usually solved considering the road as an infi-
nitely rigid surface, a good approximation when the stiff-
ness ratio between the tire and the road is small and that
liberates the analyst from the necessity of modeling a com-
plete half-space domain with its associated computational
cost.

The analysis of the solids is taken under the hypotheses
of small deformations and linear elastic behavior of the
materials, with constitutive parameters for the tire
Et = 10, mt = 0.3 and for the soil Es = 1, ms = 0.3. A compa-
rable stiffness of the materials makes unacceptable substi-
tuting the soil by a rigid plane and this is the reason why
the BE method is used to approximate the half-space while
the tire is modelled using the FEM. In the contact region a
static friction coefficient of l = 0.25 is supposed to simulate
the frictional contact conditions.

The dimensions and discretizations used for the solids
and the contact frame are presented in Fig. 11; the tire with
an external diameter of 10 is discretized using a mesh of
560 hexahedrical finite elements with only one element
along the thickness and 1200 nodes with a refined cluster-
ing in the vicinity of the contact zone, the frame is modeled
using a regular mesh of 32 quadrilateral elements and the
elastic half-space with dimensions 14 · 16 is approximated
using a truncated mesh of 80 quadrilateral boundary ele-
ments. To capture the stress gradients near the contact
zone, a higher density of elements was chosen for specific
regions of interest: in the half-space center, the potential
contact zone has dimensions 3 · 3.4 and is discretized using
a regular mesh with 32 elements that is almost coincident
with the frame mesh, and the tire presents a more refined
mesh in the estimated contact zone situated in the region
where �45� 6 h 6 45� with a concentration of 280 bricks.

Fig. 12 shows the displacement contours obtained in the
boundary of the solids when a vertical displacement of 0.2
is imposed on the wheel. It is also represented the relative
error of the solution obtained by the GNMLS algorithm
with the iteration number, presenting a quadratical conver-
gence rate to the solution and reaching a relative error
H(zk)/H(z1) of 10�9 after only six iterations of the GNLMS
algorithm.

9.4. BEM–BEM contact: Indentation with lateral

displacement

Indentation with lateral displacement of a block into a
half-space is the final elementary test used to highlight



Fig. 13. Mesh used for the indentation problem and interface tractions obtained for different time steps.
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the application of the proposed formulation to BEM–
BEM contact problems. The block is a cube with side
length 0.5 that is discretized using a regular mesh of 96
quadrilateral boundary elements and 98 nodes, see
Fig. 13. The frame is composed by four quadrilateral ele-
ments and the elastic half-space, discretized using a square
truncated mesh with side length 1.5, is approximated using
20 quadrilateral boundary elements and 25 nodes. The
material coefficients chosen for this simulation are
E1 = 100, m1 = 0.3 for the block and E2 = 1000, m2 = 0.4
for the half-space, together with a friction coefficient
l = 0.25 between them.

Displacement boundary conditions are imposed on the
top face of the block. First, a constant vertical displace-
ment uz = �0.01 produces the indentation and later an
increasing lateral displacement on the y direction
uy = 0.005(1 � t) is applied for t P 1.

Normal and tangential tractions under the block for dif-
ferent time steps are also represented in Fig. 13. In the solu-
tion for t = 1, when no lateral displacement exists, the
outside corners of the block experience nearly singular
stresses that are damped by the coarse mesh used. When
the lateral displacement begins t = 2,3,4 the block starts
to slip across the half-space with the normal tractions
increasing under the leading edge of the contact zone and
decreasing through the trailing edge. It is at time t = 4 that
all the contact zone is under the slip condition, with nega-
tive values of the tangential tractions opposed to the direc-
tion of motion.
10. Conclusions

A unified formulation combining the BEM and FEM in
3D frictional contact problems using LLMs to connect the
different substructures to an adaptative contact frame is
presented. The contact conditions are imposed mathemat-
ically using projection functions and the contact frame is
allowed to move freely between the substructures maintain-
ing the contact zone as an unknown. The GNMLS is
applied to solve the non-smooth system of equations repre-
senting the equations of motion and different regulariza-
tion techniques to improve convergence are proposed and
tested.

Small displacements are considered when introducing
the equations of motion of the FEM or BEM solids but
this assumption is relaxed to obtain the equations of
motion of the contact frame. Large displacements or an
extension of the formulation to large slip contact problems
would require an algorithm to update the contact frame
geometry [27] and to redefine the group of contacting pairs
every time that new nodes of the solids come inside or leave
the contact frame. However, these added complexities do
not affect the contact treatment that will remain completely
valid.

Although other alternatives exist, like the mortar
method where continuity conditions are transmitted
through an optimal approximation space, the support
functions used to approximate the LLMs combined with
a contact frame endowed with the contact variables affects
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considerably the modularity of the final formulation. This
combination allows to isolate the contact problem from
the substructures becoming independent of the numerical
method used to model them. In our opinion, any nodal
based numerical scheme used to simulate the behavior of
the substructures could be easily connected with the con-
tact frame as well.

The algorithm and introduced formulations prove to be
very robust and efficient when solving 3D non-matching
contact problems with small displacements, even when pre-
senting strong material heterogeneities and BEM–FEM
transitions trough the contact zone. Suggested methodol-
ogy greatly simplifies the procedure to solve this kind of
problems, minimizing the geometrical knowledge of the
contacting substructures needed to formulate the contact
interface behavior.
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[11] J.A. González, R. Abascal, An algorithm to solve coupled 2d rolling
contact problems, Int. J. Numer. Methods Engrg 49 (2000) 1143–
1167.
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