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Overtrust and undertrust aremajor issues with partially automated vehicles. Ideally, trust should be calibrated ensuring that drivers’
subjective feelings of safety match the objective reliability of the vehicle. In the present study, we examined if drivers’ trust toward
Level 2 cars changed after on-road experience. Drivers’ self-reported trust was assessed three times: before having experience with
these vehicles, immediately after driving two types of vehicles, and two weeks after the driving experience. Analysis of the results
showed major changes in trust scores after the on-road driving experience. Before experiencing the vehicles, participants tended
to overestimate the vehicle capabilities. Afterwards they had a better understanding of vehicles’ limitations, resulting in better
calibrated trust.

1. Introduction

Advanced driver assistance systems (ADAS) are technolo-
gies that support the human driver in the driving task.
This is done by providing information and warnings, and
automating demanding and repetitive tasks [1–3]. Several
modern vehicles are equipped with a combination of ADAS.
Examples include Volvo’s Adaptive Cruise Control with Steer
Assistance, BMW’s Traffic Jam Assistant, Toyota’s Automated
Driving Highway Assistant, and Tesla’s Autopilot [4]. The
Society of Automotive Engineers has formally classified these
vehicles as “Level 2”, or vehicles equipped with “partial
automation” [5]. With SAE Level 2, or partial automation,
the driver is still responsible for deciding when and whether
to engage the automated system. Furthermore, with these
systems, the driver should always monitor the driving envi-
ronment and be ready to respond to system failures [5].

The benefits of partial automation will not be realized
until Level 2 vehicles are widely accepted and used on the
road [6]. If drivers do not trust the automated system, it is
likely that they will overrule the vehicle’s decisions or not
activate the partially automated system at all.This will reduce
the potential positive safety impact of the technology [7].

In their extension of the Technology Acceptance Model
(TAM), Choi and Ji [8] showed that perceived usefulness and
intention to use the technology were strongly mediated by
trust [8]. A similar conclusion was reached by Ghazizadeh
and colleagues [9]. Through their Automation Acceptance
Model, the authors suggested that trust is, in fact, one of
the main factors affecting users’ acceptance of automation
technology.

In line with these considerations, reports show that
although driver awareness of automation technology is
increasing, usage is still limited [10]: A survey conducted
in 2017 by the news agency AAA showed that while drivers
of the United States look for autonomous technologies in
their next car, only 25% would feel safe actually driving an
autonomous vehicle. Despite these results, it is also possible
for drivers to overestimate the capabilities of the vehicle, rely-
ing excessively on SAE Level 2 functions even under unsafe
conditions or outside of the Operational Design Domain
(ODD). With partially self-driving (i.e., Level 2) cars, as with
other automated systems, the goal of human factors research
shouldNOTbe tomaximize drivers’ trust, but to align drivers’
subjective perceptions of safety with the actual reliability of the
vehicle, thus avoiding over- and underestimation of the car’s
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capabilities (e.g., [11, 12]). This is commonly known as “trust
calibration” (e.g., [11, 13]). Notably, trust calibration cannot
be achieved if drivers are unable to discriminate situations
in which the vehicle will behave reliably from situations
in which it will not [14]. In other words, to align drivers’
subjective feelings of safety with the actual reliability of the
vehicle, drivers need to know how the system behaves in
a variety of situations. The ability to discriminate between
different situations is commonly known as “resolution” [14].

In general, paraphrasing Ghazizadeh and colleagues,
trust affects use, and use affects trust [9]. Importantly, the
relationship between trust and use is not always positive:
Drivers might not trust the technology but still use it, and
vice versa. Furthermore, the relationship between trust and
use ismediated by drivers’ initial trust levels and the objective
reliability of the technology. Thus, calibrating drivers’ trust
in Level 2 vehicles requires a better understanding of their
initial trust toward the vehicles, and how this is influenced
by vehicle experience. Most of what we know about trust
in automation comes from studies of automated aircraft or
production systems [6]. These studies indicate that user trust
in automation is strongly affected by system performance,
unexpected failures of the automated system [15], and pre-
dictability of system behaviour [6, 11].

In the automotive domain, several studies have analysed
drivers’ trust in relation to Adaptive Cruise Control (ACC).
ACC is an Advanced Driving Assistance System that auto-
matically regulates speed and headway distance. Rajaonah
and colleagues [16] used a simulated vehicle equipped with
ACC to analyse driver behaviour when a truck suddenly cut
into the driver’s lane. Trust wasmeasured via self-reports.The
study identified two groups of drivers: One group that started
braking before the truck pulled into their lane—correct antic-
ipatory behaviour—and a second group that started braking
only when the truck was already in their lane. Given that
drivers should not rely on ACC during hazardous situations,
the latter behaviour suggests overtrust in the system [16].The
group that correctly disengaged the ACC before the cut-in
event reported high trust in their interaction with the ACC
system, but not in the system itself. This result suggests that
this group had a clear understanding of theACC’s limitations,
which may allow appropriate trust calibration [16]. A survey
conducted by Dickie and Boyle [17] showed that drivers who
are unaware of the way ACCworks were unsure about how to
use it, tending to overestimate the capabilities of the system.
The authors argue that the inappropriate expectations of
“unaware” and “unsure” drivers lead to poor trust calibration
(see also [13]).

A driving simulator study by Gold and colleagues [6]
suggests that driver experience with SAE Level 3 vehicles can
influence drivers’ trust in the system. In such vehicles the
system, and not the driver, is responsible for monitoring the
driving environment [5].Thus, in Level 3 vehicles drivers can
perform all sorts of activities while the car takes care of the
driving task. In Gold et al.’s [6] study participants had been
briefed that the vehicle could cope with most driving scenar-
ios.Thus, monitoring the system was unnecessary. Neverthe-
less, participantswere also told that the vehicle could not cope
with every driving scenario and that the system would emit a

warning signal when it could not cope. Participants had seven
seconds to take back control of the vehicle. Drivers expe-
rienced three take-over scenarios during a twenty-minute
simulated drive. Interestingly, drivers’ clearer understanding
of the vehicles’ limitations (i.e., take-over scenarios) due to
on-hand experience leads to a decreased perception of safety
advantages, but also to an increase in trust. In line with these
results, a study investigating drivers’ experiencewith Forward
Collision Warnings showed that a learning period helped
drivers to achieve a better understanding of systembehaviour,
ultimately improving their interactions with the system and
increasing their trust [18].

Overall, the literature suggests that trust strongly affects
how drivers interact with SAE Level 2 technology and that
a clear understanding of vehicles’ limitations is important
for trust calibration [6, 13, 16–19]. As pointed out by Muir
[20], trust can be built by giving to the user the chance to
experience the system in a variety of situations. Notably, by
doing so, on-road experience with real Level 2 vehicles can
increase drivers’ resolution [14]. Improving this ability could
play a key role in calibrating drivers’ trust.

Previous work on drivers’ trust in automation has been
mostly carried out in driving simulators and analysed the
effect of specific ADAS (e.g., ACC, Forward Collision Warn-
ing System) or, as in the case of Gold et al. [6], systems that
were not yet available on the market. They thus provide no
information about drivers’ trust after experiencing the sys-
tems on real roads, during a variety of conditions, and when
driving different vehicles equipped with similar automated
functions during the same driving session.

In our study, we explored how on-road experience with
Level 2 vehicles influences drivers’ trust in automation. In
line with Gold et al. [6] and Koustanaı̈ et al.’s [18] results,
we expected that real-life experience would give drivers a
better understanding of system behaviour, thereby improving
trust calibration. In the study, therefore, participants were
asked to fill in a trust questionnaire before, immediately after,
and two weeks after driving two different Level 2 vehicles on
motorway, urban and rural roads. The impact of the driving
experience on participants’ trust was assessed through the
comparison of the pre- and post-trust scores. The “2-week”
measurement was included to measure if changes in trust
would fade after two weeks. Features such as age, gender, and
views of new technology were also taken into account. To
our knowledge, this is the first time trust scores have been
collected before and after on-road experience with real Level
2 vehicles.

2. Method

2.1. Participants. Participants in the study were all employees
of Rijkswaterstaat, the Dutch Ministry of Infrastructure and
Water Management. None of the participants had driven
or been driven (as a passenger) in a Level 2 vehicle before
joining the study. Drivers were asked to fill in the same
questionnaire three times (see “Procedure” section). Only
participants who completed all three questionnaires (i.e.,
measurement 0, measurement 1, and measurement 2) were
included in the analysis. This resulted in a sample of 106
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Figure 1: Picture following description of scenario 1.

Figure 2: Picture following description of scenario 2.

participants of which 77.4% (N = 82) were male. This group
had a mean age of 43.77 years (SD = 10.14). The youngest
participant was 24 years old and the oldest 62.

2.2. Questionnaire. The questionnaire was composed of 34
items. Of these, 4 concerned participants’ age, gender, travel-
ling profile, and attitudes toward new technology. A subsec-
tion of the questionnaire, composed of 12 items, investigated
drivers’ trust toward Level 2 cars in twelve different scenarios.
This was the focus of the current study.

In this section of the questionnaire, participants were
first asked to indicate which driving scenarios they thought
partially automated cars could or could not handle. Then,
after experiencing the vehicles, participants were asked to
imagine driving a Level 2 car in these different scenarios.
More specifically, drivers were asked to indicate to what
extent they trusted the system (i.e., the Level 2 car) to cope
with each scenario. This was done through the statement
“I trust that the system can handle the situation, thus, I
do not need to take over control”. Drivers were asked to
indicate, through a 5-point Likert scale (i.e., 1 indicating “I
fully disagree” and 5 indicating “I fully agree”), how much
they agreed with the statement. Each of the 12 items was
accompanied by an image illustrating the scenario (e.g.,
Figures 1 and 2). Scenarios were presented in Dutch and
translated into English for this manuscript. The 12 scenarios
were as follows.

(1) You are driving on a highway with an average amount
of traffic. The system is set to automatically keep
distance from the vehicle in front, and to keep within
the lane (see Figure 1).

(2) You drive on the highway and the vehicle in front
brakes hard (see Figure 2).

(3) A car overtakes you in the right lane.
(4) You drive on the highway with a lot of rain, so the

visibility is poor.

(5) You drive in a work area with yellow road marking in
addition to the normal white road marking.

(6) A car merges in from the right lane and has a much
lower speed than yours.

(7) A deer suddenly crosses the highway – a situation in
which normally you would brake.

(8) The lane where you drive ends, you need to move to
the lane to your right.

(9) You are approaching a curve on the highway.
(10) You are driving on the highway behind a motorcycle

instead of behind a car.
(11) You are driving on the highway and the speed limit

decreases. Your speed should adapt to the new speed
limit.

(12) You are driving at night on the highway.

2.3. Vehicles. The following Level 2 vehicles, all 2016 models,
were selected for the study: Two Teslas (a Model S and a
Model X), two Mercedes (an E-200 and an E-350-E), and
two Volvos (a XC90 and a V90). All the vehicles were
equipped with similar SAE Level 2 functions. More detailed
information on the vehicle features described in this section
can be retrieved from Tesla, Mercedes, and Volvo official
websites.

2.3.1. Tesla Model S and Model X. Tesla’s combination of
Advanced Driving Assistance Systems (ADAS) falls under
the name of Autopilot. Tesla’s Autopilot features Automatic
Emergency Braking (AEB), Lane Keeping capabilities (i.e.,
“Autosteer”), and ACC. Autopilot also allows the vehicle to
automatically change lanes when prompted by the driver’s tap
on the turn signal lever. The 2016 version of Tesla’s Autopilot
could already detect pedestrians, a feature later significantly
improved through the v8.0 software update.

2.3.2. Mercedes E-200 and E-350-E. Mercedes’s combination
of ADAS is known as Drive Pilot. Drive Pilot features Active
Break Assist, ACC (i.e., “Distronic Cruise Control”), and
Lane Keeping functions (i.e., “Active Lane Keeping Assist”).
Other ADAS include Speed Limit Pilot. This is a subfunction
ofDrive Pilot that detects speed limits and adjusts the vehicle’s
speed accordingly. Like the Tesla, theMercedes E class comes
withActive LaneChangeAssist, allowing the driver to initiate
an automatic lane change by lightly touching the turn control.
Drive Pilot does not provide pedestrian detection. Pedestrian
and animal recognition was implemented in the 2017 models
through the Intelligent Drive software update. However, the
study reported here only used 2016 models.

2.3.3. Volvo XC90 and V90. Pilot Assist is the name chosen
by Volvo to describe the combination of ADAS in their XC90
and V90 2016 models. Pilot Assist features ACC, AEB, and
Lane Keeping functions. Volvo vehicle user manuals clearly
specify that Pilot Assist is not a collision warning system:
Even if Pilot Assist can clearly detect leading vehicles, it
cannot detect pedestrians, cyclists, animals, andmotorcycles.
Pilot Assist II, implemented in the Volvo XC90 2017 model
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(thus, not available for this study), features pedestrian, cyclist,
and LargeAnimalDetection functions. Unlike Tesla’s Autopi-
lot and Mercedes’s Drive Pilot, Volvo’s Pilot Assist does not
support lane changing.

2.4. Procedure. Five separate driving sessions were organ-
ised. Each participant joined only one of the five sessions.
Participants were asked to fill in the same questionnaire
(see “Questionnaire” section) three times: before the session
(“measurement 0”); immediately after the session (“measure-
ment 1”); and two weeks after the session (“measurement 2”).
In each session, participants drove and were also passengers
in two of the Level 2 vehicles described earlier (see “Vehicles”
section). Each vehicle carried a driver, two passengers in
the back seats (also participants in the study), and a PRO
DRIVE expert or car dealer expert in the front passenger seat.
The expert explained the functionalities of the vehicle and
made sure that overreliance in automation would not lead to
dangerous situations. The expert also prompted participants
to use the vehicle’s Level 2 functions. In each driving session,
participants drove for ∼ 20 minutes on a predefined route
including a motorway, an urban road, and a rural road.

2.5. Analysis. A Bonferroni correction was applied to reduce
the likelihood of Type I Errors. The corrected p value was
calculated by dividing the alpha-value (𝛼original = .05) by the
number of scenarios (12): (𝛼altered = .05/12) =.004 for each sce-
nario. A Friedman test was used to assess differences between
measurement 0 (m0),measurement 1 (m1), andmeasurement
2 (m2). If differences between the three measurements were
found, a Wilcoxon Signed Ranks test was used to assess
differences between m0 and m1, m0 and m2, and m1 and m2.
If the Friedman test showed differences between the three
measurements, a Mann–Whitney U test was performed to
analyse the effect of gender. A Kruskal-Wallis test was used
to analyse innovation and age effects.

2.6. Exclusions. Participants who did not fill in the question-
naire at all three time points (i.e., m0, m1, and m2) were
excluded from the analysis. 60 participants were excluded on
these grounds. Missing values for any of the 12 items were
replaced by the mean of the other participants’ responses.
Missing values were only present at m1. In no case were there
more than four missing values for a single scenario.

3. Results

3.1. Participants. None of the participants selected for this
study had ever experienced a Level 2 car, as a driver or a
passenger. Of the final sample of 106 participants, 46.7%
of the drivers reported that they used their car more often
than public transport, 37.1% reported that they used public
transport more than the car, and 16.2% reported equal use.
None of the respondents reported exclusive use of public
transport or the car. Questioned about their attitudes to new
technology, 1.90% viewed themselves as innovators, 20.8%
as early adopters, 48.10% as early majority, 28.30% as late
majority, and 0.9% as laggards. For the purposes of the
subsequent analysis, these categories were condensed into

three innovation profiles: “innovators/early adopters”, “early
majority”, and “late majority/laggards”. A Mann–Whitney
test showed a significant main effect of gender on innovation
profile, with men considering themselves more innovative
than women (U = 736.50; p = .043). Ages were categorized
into three groups: <35, 35-50, 50+. Questionnaire responses
showed no significant effect of age, gender, or innovation
profile (data not shown).

3.2. Responses to Questionnaire. For seven of the twelve
scenarios, Wilcoxon Signed Ranks tests showed significant
differences (i.e., p <= .004) between m0 and m1 (see Figure 3
and Table 1). In scenarios 1 and 2 (see Table 1), trust increased
after vehicle experience. All the Level 2 vehicles included in
this study could cope with scenarios 1 and 2. In scenario 1
(ACC and Lane Keeping), the high scores reported at m0
(M = 4.21) showed relatively high trust for the ACC and
Lane Keeping functions of the systems. The increase in trust
reported at m1 (M= 4.62) suggests that the vehicles’ ACC and
Lane Keeping functions exceeded participants’ expectations.
Drivers’ responses to scenario 2 (brake preceding vehicle)
suggest that experiencing this scenario also had a positive
impact on participants’ trust ratings.

In scenarios 4, 7, 8, 9, and 12, Wilcoxon Signed Ranks
tests showed significant decreases in drivers’ trust after vehicle
experience (see Figure 3 and Table 1). In scenario 4 (rain),
drivers’ trust decreased after they had driven the vehicles,
suggesting an initial overestimation of the vehicles’ capa-
bilities. Bad weather still represents a challenge for Level 2
technology, for instance, because it makes it more difficult
to detect road markings. Even though participants did not
directly experience this scenario, the drop in trust from m0
(M = 2.96) to m1 (M = 2.57) can probably be explained by
a clearer understanding of vehicles’ limitations. Scenario 7
(crossing deer) implies that the vehicle should automatically
brake in response to a crossing deer. Animal detection
currently represents a big challenge for automakers, and none
of the 2016 vehicles selected for the study were equipped with
this feature. Even though none of the drivers experienced the
scenario on the road, the reported decrease in trust from m0
(M = 2.69) to m1 (M = 2.20) suggests a better understanding
of the systems’ limitations after the driving experience. None
of the Level 2 vehicles were capable of handling scenario 8
(merging from left lane). As with scenario 7, drivers’ decrease
in trust from the pre- to the postmeasurements suggests
an initial overestimation of the vehicles’ capabilities, but
also a clearer understanding of the systems’ limitations after
on-road experience with the vehicles. In scenario 9 (curve
on motorway), even when Lane Keeping functions were
activated, the selected Level 2 vehicles would occasionally
stray out of lane when facing tight curves. Most drivers expe-
rienced this limitation, and their trust decreased fromm0 (M
= 3.63) to m1 (M = 2.81). Drivers did not have the chance to
experience scenario 12 (driving at night). Here, drivers’ trust
decreased from the pre- (M = 3.61) to the post- (M = 3.28)
measurement. In scenario 10 (driving behind a motorbike),
no significant difference was found between m0 and m1.
However, the Wilcoxon Signed Ranks test showed a signifi-
cant difference between m0 (M = 3.5) and m2 (M = 3.15).
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Figure 3: Questionnaire results. Scenarios (S) one to twelve are displayed from left to right, respectively. For scenarios 1 and 2, drivers’
trust significantly increased after experiencing the vehicles. Conversely, for scenarios 4, 7, 8, 9, and 12, drivers’ trust significantly decreased
after experiencing the vehicles. No significant trust changes between pre- and postmeasurements were found for scenarios 3, 5, 6, and 11. For
scenario 10, significant differences were found between the pre- and the “2-week” measurement (i.e., m2), but not between m0 and m1. 𝛼 =
.004. Error bars were calculated based on the standard error of the mean.

A Friedman test showed no significant differences across
measurements for scenarios 3, 5, 6, and 11 (see Figure 3 and
Table 1).The relatively high trust scores observed for scenario
3 (car overtakes in right lane) indicate that drivers trusted
the vehicles to cope with this scenario and that this did
not change after their experience with the vehicles. A car
overtaking in the right lane represents a dangerous situation.
Nevertheless, Autopilot, Drive Pilot, and Pilot Assist would
be able to detect the oncoming vehicle. Even if drivers did not
directly experience scenario 5 (work area), the selected Level
2 vehicles do not perform well with mixed white and yellow
road markings.

In scenario 6 (car merging from right), the absence
of an effect across measurements suggests that participants
are unsure of how the systems can handle the scenario.
In scenario 11 (adapting to speed limit), the absence of
any significant difference between the three measurements
is probably due to the fact that most participants did not
have the chance to experience the scenario. In reality, of the
vehicles used in the study, only the Mercedes E class was
capable of adapting to speed limits.

4. Discussion

While engineering developments are moving fast, there is
still little understanding of how drivers interact with auto-
mated driving technology [7]. The study of drivers’ trust in
automation represents a fundamental challenge for current
and future human factors research. Importantly, the goal
should not be tomaximize users’ trust toward the technology,
but to align drivers’ subjective feelings of safety with the
actual reliability of the vehicle. In this respect, a decrease in
trust is not a negative outcome per se: If, for example, vehicles
are incapable of handling a specific driving scenario (e.g., deer
crossing the road), decreases in trust suggest an improvement
in trust calibration. More generally, if drivers overestimate
the capabilities of the system, a better understanding of
vehicles’ limitations after vehicle experience can lead to a
decrease in trust. Conversely, if drivers underestimate the
capabilities of the system, a better understanding of the
vehicles’ functionalities can lead to increased trust [11].

Bearing these considerations in mind, determining the
“correct” level of trust for particular driving scenarios is a
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challenging task, particularly in realistic driving conditions
where road conditions change continuously and unexpected
issues can compromise the safety of the driver at anymoment.
Nonetheless, observed changes in drivers’ trust after vehicle
experience were in the direction we would expect if drivers
had improved their understanding of vehicles’ limitations and
capabilities.

More specifically, the results of our study suggest an
improvement in trust calibration in 7/12 scenarios. In two
scenarios (i.e., car overtakes in right lane; work area)
drivers already showed correct trust calibration and this was
maintained after the driving experience. In four scenarios,
including the two in which trust was already well calibrated,
the changes observed were not significant.

Notably, improved trust calibration involved both
increases and decreases in trust.This is a key finding, showing
that on-road driving experience positively influenced drivers’
trust by increasing participants’ ability to discriminate
between different driving situations. Importantly, this was
also true for scenarios (e.g., crossing deer) that were not
directly experienced by any of the participants. Thus, vehicle
experience leads to more reliable inferences concerning both
experienced and unexperienced scenarios.

More in detail, after vehicle experience, drivers showed
increased trust in vehicles’ ACC and Lane Keeping capa-
bilities, which are normally considered to be reliable. In
the other five scenarios where we observed a change in
trust, we observed a reduction in trust, again reflecting a
better understanding of the vehicles’ capabilities. Specifically,
drivers seem to have understood that weather conditions can
have a major impact on the reliability of the system, that they
cannot rely on the emergency braking system when a deer
suddenly crosses the highway, that current Level 2 vehicles
do not have the capability to merge autonomously, that
partially automated vehicles with Lane Keeping functionality
can stray out of lanewhen facing tight curves, and that drivers
should not blindly rely on automation in low visibility condi-
tions.

When asked if the system could work optimally when
driving behind amotorcycle (instead of behind a car), drivers’
trust did not change immediately after experiencing the
vehicles. However, in the “2-week” measurement, drivers’
reported trust was significantly lower. In a recent study
by Lenkeit [21], motorcycles were inadequately detected in
more than 40% of cases (against a ∼4% failure rate for
detection of cars). In sum, vehicle detection systems are
still far from perfect. Even if this scenario was not directly
experienced by our participants, drivers’ trust was better
aligned to the actual reliability of the systems after their on-
road driving experience. The fact that participants’ decrease
in trust occurred only two weeks after experiencing the
vehicles could indicate that they neededmore time to process
this specific scenario. Nevertheless, since trust did not change
immediately after vehicle experience, we cannot decisively
conclude that the driving session was the main factor leading
to improved trust calibration.

Participants’ initial trust scores (i.e., before their driving
experience) suggest a general overestimation of vehicles’
capabilities. Drivers had no experience with the selected

systems and their expectations of system behaviour were
probably influenced by the media. “Self-driving cars” are
currently a hot topic, leading to increased awareness of the
presence and promises of the technology [10, 22]. News
agencies, dealers, and manufacturers often suggest that
fully autonomous vehicles will soon be cruising our roads
(e.g., Tesla’s website opens with the statement “Full Self-
Driving Hardware on All Cars”). In reality, many analysts
believe that full automation is still decades away (e.g., [23–
25]). Thus, the initial overestimation of vehicles’ capabilities
seen in our participants might be the result of erroneous
beliefs concerning the status of available driving technol-
ogy.

In the scenarios where we found differences between
the pre- and postmeasurement, no differences were found
between the post- and the “2-week” measurement (see
Table 1). This suggests that the impact of the driving expe-
rience on drivers’ trust was relatively stable. No differences
between the pre- and the “2-week” measurement were found
when drivers were questioned about the ACC and Lane
Keeping functions of the Level 2 vehicle (i.e., scenario 1), or
when they were asked if the system could function optimally
in low visibility conditions due to heavy rain (i.e., scenario
4). In these two scenarios, the driving experience had a direct
positive impact on drivers’ trust, but the effect did not seem
to last. In the other scenarios, where differences between
the pre- and postmeasurements were found, we also found
differences between the pre- and the “2-week” measure-
ment.

Our study presents several limitations that should be
acknowledged. Participants drove two different vehicles
before completing the post questionnaires (i.e., immediately
after the driving session and two weeks after the driving
session). These vehicles were all categorized as Level 2 and
presented comparable Level 2 functions. Nevertheless, we
cannot assess from the questionnaire data if one vehicle
influenced trust scores more than the other. The event
started with a presentation, in which the concept of partial
automation was introduced to the participants for the first
time. Furthermore, during every drive, a vehicle expert
explained the Level 2 functions available in the vehicle and
prompted the drivers to use them. We cannot assess if trust
scores were mainly influenced by the participants’ on-hand
driving experience, by the initial presentation, by the experts’
feedback, or by a combination of these factors. Finally, data
was collected during five separate driving sessions. Vary-
ing weather conditions between sessions may have affected
drivers’ trust scores.

To our knowledge, this study represents the first attempt
to measure changes in trust after drivers’ experience with
real Level 2 cars. Overall, our results suggest that hands-
on experience with Level 2 vehicles helps trust calibration.
Drivers interested in purchasing a Level 2 vehicle should be
given the chance to drive the car along with someone (e.g.,
car dealer) who is fully aware of its functionalities. Such a
procedure is likely to improve driver’s understanding of the
vehicles’ capabilities and contribute to trust calibration even
in situations they did not encounter during their on-road
experience.
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5. Conclusions

In this study we analysed, for the first time, participants’
trust before (i.e., premeasurement), immediately after (i.e.,
postmeasurement), and two weeks after (i.e., “2-week” mea-
surement) on-road driving experience with SAE Level 2
semiautomated vehicles. The results showed that the real-life
driving experience led to improvements in trust calibration.
Drivers’ ability to more precisely differentiate, after experi-
ence, between situations where the automation performed
well from situations where it did not, played a key role
in calibrating participants’ trust. These improvements were
experienced by all drivers, independent of age, gender, and
innovation profile. We conclude that carefully organised
instruction and on-road experience can make crucial con-
tributions to safe driving, while simultaneously improving
sales, encouraging uptake, and helping to realize the potential
benefits of self-driving technology for drivers and society as
a whole.
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