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1 Institute for Fluid Dynamics and Ship Theory
Hamburg University of Technology (TUHH)

Am Schwarzenberg-Campus 4, 21073 Hamburg, Germany
e-mail: george.bletsos@tuhh.de, www.tuhh.de/fds

2 Numerical Structural Analysis with Application in Ship Technology
Hamburg University of Technology (TUHH)

Am Schwarzenberg-Campus 4, 21073 Hamburg, Germany
email: lars.radtke@tuhh.de, www2.tuhh.de/skf

Key words: Arterial Bypass-Graft, Hemodynamics, FSI, CFD

Abstract. This paper reports on numerical experiments on arterial bypass-graft anastomoses.
Bypass-grafts are oftentimes used in surgical procedures to divert blood around narrowed or
occluded parts of an artery. The diverted blood flow is crucial to the success of the operation
as it may lead to undesirable peculiarities that can result to a renewed occlusion in the distal
connection of the graft. However, an a priori prediction of detrimental hemodynamic aspects
due to undesirable flow properties is difficult to perform in vitro or in vivo conditions. To this
end, this work targets to enhance our understanding of harming mechanisms through in silico
experiments using computational fluid dynamics (CFD) and fluid-structure interaction (FSI)
simulations. The latter are realized through a partitioned coupled approach which is verified for
a 2D benchmark case against literature-reported results. Finally, we present numerical results
on grafts with different cuff sizes. Wall shear stress (WSS), oscillatory shear index (OSI) and
hemolysis are monitored and compared in the context of either rigid or elastic walls and cuff sizes.
Special interest is given to the prediction of hemolysis induction which is often not considered
in such studies. We show that wall elasticity is the key parameter in terms of WSS prediction
while cuff size mainly affects the estimation of OSI.

1 INTRODUCTION

Cardiovascular diseases (CVDs) are the leading global cause of death. An estimated 17.9 mil-
lion people died from CVDs in 2019, corresponding to 32% of all global deaths [1]. Atherosclerosis
is considered to be the prevailing CVD which leads to artery failure due to the formation of
plaque. An extensive build-up of plaque can lead to occluded vessels, resulting in narrowed re-
gions (stenoses) where blood flow is restricted. While plaque formation and growth is a process
that takes place over time due to systemic risk factors such as smoking, unhealthy diet and
low activity, it is also possible for plaque segments to break off and cause a complete occlusion
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to smaller, distal vessels [2]. If possible, treatment of stenoses is done using minimal invasive
techniques such as prescription medications or, for more severe cases, stent placement. However,
if an artery is impaired to such an extent that the functionality of distal organs can no longer
be ensured, an open surgery may be advised in order to implant a bypass-graft. The success
of the surgery and the implanted graft has been shown to strongly depend on the resulting
hemodynamics [3]. In particular, the wall shear stress (WSS) and oscillatory shear index (OSI)
have been found to play a significant role in the success of the treatment after the implantation
of the prosthetic graft [4].

While the direct success of the operation relies, in large, to the aforementioned factors, the
unnatural flow patterns that might develop can indirectly also damage the blood itself. Such
a phenomenon is called mechanical hemolysis and refers to the damage of red blood cells due
to excessively high stresses. Hemolysis has been the focus of extensive studies in regards to
biomedical machinery [5], however, it is usually not considered in studies of arterial bypass-graft
anastomoses due to its indirect involvement in the success of the post-operation treatment. An
a priori prediction of the aforementioned quantities would thus prove beneficial to the surgical
procedure. Such predictions are inevitably difficult to perform both in vitro, e.g. in the lab-
oratory, and in vivo, i.e. on a living patient, conditions. Therefore, in silico experiments, i.e.
computational simulations, have seen a large appeal in the past years due to the ever-growing
advances in computational science but also due to being able to overcome restrictions arising in
vivo or in vitro experimental conditions [6]. In this paper, we employ computational methods to
numerically investigate different influences on the hemodynamics of idealized bypass grafts. In
specific, we consider a set of simulations that target to investigate the effect of rigid compared
to elastic vessel walls and cuff sizes on the resulting hemodynamics. Our interest is confined to
the aforementioned two factors based on their relevance to the resulting flow patterns, as shown
in [7, 8].

The remainder of this paper is organized as follows: Section 2 outlines the methodological
aspects employed to produce the computational simulations and results. In Section 3 we verify
the coupling between the fluid and structural solver on a 2D benchmark case. Subsequently, the
investigated idealized bypass graft cases are presented and results of our numerical experiments
are shown in Section 4. The paper closes with conclusions and outlines further research in
Section 5.

Within this publication, Einstein’s summation convention is used for repeated lower-case
Latin subscripts. Vectors and tensors are defined with reference to Cartesian coordinates.

2 METHODOLOGY

This section outlines the overall numerical methodology. We briefly summarize the formu-
lation of the fluid flow problem, including hemolysis prediction modeling. The formulation is
distinguished based on whether rigid walls are considered, thus computational fluid dynamics
(CFD) simulations are employed, or compliant walls, which are modeled through coupled fluid-
structure interaction (FSI) simulations. To this end, the structural problem is also recapitulated.
Numerical aspects for the solution of each subproblem are discussed and a brief overview of the
coupling approach is presented. The section closes with a presentation of the hemodynamic
quantities of interest.
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2.1 Fluid problem

Blood is modeled as an incompressible, Newtonian fluid. All investigated flow scenarios are
assumed to be transient and laminar, with a maximum estimated Reynolds number of Re=600.
If the surrounding walls of the graft and the impaired vessel are considered to be rigid then the
domain occupied by the fluid is time independent and we denote it by Ωf . The flow follows from
the incompressible Navier-Stokes (NS) equations for the conservation of volume and momentum,
viz.

Rp =
∂uj
∂xj

= 0 in Ωf (1)

Ru
i =

∂ui
∂t

+ uj
∂ui
∂xj

− ∂

∂xj

[
2νfSij − p̄δij

]
= 0 in Ωf . (2)

In the case of compliant walls, the fluid domain changes in time and we refer to it as Ωτ
f . In

this case, the continuity equation (1) holds the same in Ωτ
f while the momentum equations are

reformulated so that the domain or grid velocity is considered in the convective term

R̄u
i =

∂ui
∂t

+ (u− um)j
∂ui
∂xj

− ∂

∂xj

[
2νfSij − p̄δij

]
= 0 in Ωτ

f . (3)

In the above, ui, u
m
i and p̄ = p

ρf
refer to the fluid velocity, domain velocity and specific pressure,

respectively. The fluid kinematic viscosity is denoted by νf , and density by ρf . The components
of the strain-rate tensor are denoted by Sij = 0.5(∂ui/∂xj+∂uj/∂xi) and δij refers to Kronecker
delta components.

In the scope of this work, hemolysis estimation is of interest. To this extent, we employ
a typical hemolysis prediction model which is one-way coupled to the CFD solver [5, 9]. The
one-way coupling implies that the model receives information from the NS equations with no
retro-action to them. In a CFD simulation we, thus, additionally target at the solution of

RH =
∂HL

∂t
+ uj

∂HL

∂xj
− C

1
β τ̄

α
β (1−HL) = 0 in Ωf , (4)

while for an FSI, one obtains

R̄H =
∂HL

∂t
+ (u− um)j

∂HL

∂xj
− C

1
β τ̄

α
β (1−HL) = 0 in Ωτ

f . (5)

Here, HL = H
1
β where H denotes a measure for the released hemoglobin to the total hemoglobin

within the red blood cell. The phenomenon is governed by shear stresses and τ̄ is used as a scalar
stress representation, which is based on the second invariant of the stress tensor τij = 2µfSij ,
where µf is the fluid dynamic viscosity. Specifically, τ̄ is computed as

τ =
√

−Iτ2 with Iτ2 =
1

2

[(
tr(τij)

)2 − tr(τ2ij)
]
. (6)

The parameters (C,α, β) employed in Eqns. (4, 5), are introduced to fit experimental data.
While the choice of this set of parameters has been extensively discussed in the literature, see f.e
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[10, 11, 12], we limit our investigations to (C,α, β) = (3.6 ·10−7, 2.416, 0.785) as proposed in [10].
Nevertheless, we acknowledge the fact that a different set of employed constants might lead to
predictions that differ by almost an order of magnitude, as shown in [9]. An accurate prediction
of hemolysis induction is, to a certain extent, beyond the scope of this paper which is confined
to an assessment of the relative changes experienced for different experimental configurations.

The fluid problem is closed by a set of boundary conditions applied to the inlet (Γin), outlet
(Γout) and wall (Γτ

w) patches. Here, we make the distinction between elastic (Γτ
if ) and rigid

(Γrw) parts of the wall such that Γτ
w = Γτ

if ∪ Γrw. The set of boundary conditions employed
for all cases considered in this paper is presented in Table 1. The numerical procedure for

Table 1: Boundary conditions for closing the fluid problem. Here, nj denotes the normal vector to the

surface and ḋi the structural velocity. The third row thus solely refers to FSI considerations. Notations
uin
i and p̄out refer to prescribed values for inlet velocity and outlet pressure, respectively.

Boundary Patch ui p̄ HL

Γin ui = uini nj
∂p̄
∂xj

= 0 HL = 0

Γout nj
∂ui
∂xj

= 0 p̄ = p̄out nj
∂HL
∂xj

= 0

Γτ
if ui = ḋi nj

∂p̄
∂xj

= 0 nj
∂HL
∂xj

= 0

Γrw ui = 0 nj
∂p̄
∂xj

= 0 nj
∂HL
∂xj

= 0

the solution of the fluid problem is based upon the finite volume method (FVM) employed by
FreSCo+ [13]. The segregated algorithm uses a cell-centered, collocated storage arrangement
for all transport properties. The implicit numerical approximation is second order accurate in
space and first order accurate in time. The pressure–velocity coupling is based on the SIMPLE
method and possible parallelization is realized by means of a domain decomposition approach.

2.2 Structural problem

The structural mechanics equations of state follow from the balance of linear momentum
described in terms of a reference, undeformed configuration of the structure, that we denote Ωo

s.
Due to the consideration of a reference and a current configuration (Ωτ

s), in what follows we
subscript quantities that refer to the reference configuration with upper-case indices and ones
that refer to the current configuration with lower-case. Formally, the equations are

Rd
i = ρs

∂2di
∂t2

− ∂(FiK S̄KJ)

∂XJ
− ρsbi = 0 in Ωo

s, (7)

where di denotes the structural displacement vector components. The density of the undeformed
structure is defined by ρs and bi denotes the vector of body loads. The deformation gradient is
defined as FiK = ∂xi

∂XK
= δiK + ∂di

∂XK
and S̄KJ denotes the second Piola-Kirchhoff stress tensor.

The St. Venant-Kirchhoff material model is used such that S̄KJ = λδKJEII + 2µEKJ . Here,
the notation δKJ , EKJ is used to represent Kronecker delta and Green–Lagrange strain tensor

4



Georgios Bletsos, Lars Radtke, Alexander Düster and Thomas Rung

components, respectively. The Green-Lagrange strain tensor is defined as EKJ = 1
2(FiKFiJ −

δKJ) and the Lamé constants λ and µ are related to Young’s modulus (E) and Poisson’s ratio
(νs) based on λ = Eνs

(1+νs)(1−2νs) and µ = E
2(1+νs) . We also note that the balance of mass is

fulfilled by construction and yields ρsτ = Jρs for the density of the current configuration with
J = det(FiK).

The structural problem is closed by a set of boundary conditions. At ends (Γend) we set
di = 0 and at the inner wall (Γif ) we prescribe the fluid loads as a traction boundary condition.
The outer wall is traction free.

We solve the structural problem using high-order finite elements with integrated Legendre
shape functions, see e.g. [14]. The curved element geometry is defined using the blending
function method and interpolating the continuous geometry at optimal interpolation points.
The discretization in time is done using the Newmark method. For details about the method
implemented in the in-house code AdhoC, the reader is referred to [15].

2.3 Coupling

In the cases that FSI simulations are considered, we follow a partitioned solution approach, in
which each subproblem and its respective numerical solver are considered as black boxes. This
is schematically sketched by consideration of the operator formulation, in which

dn+1
i = S(tn+1

i ) (8)

denotes the solution of one time step (n + 1) of the structural subproblem, which yields dis-
placements dn+1

i given tractions tn+1
i . It is noted, that the aforementioned vectors refer solely

to points on the coupling interface Γτ
if . In a similar manner, the fluid subproblem can be

abbreviated as

tn+1
i = F(dn+1

i ). (9)

In a coupled problem dn+1
i = S(F(dn+1

i )) and tn+1
i = F(S(tn+1

i )) must hold. To this extent, the
solution of the aforementioned fixed-point equations is realized through accelerated fixed-point
iterations for each time step. The complete coupling process is realized through comana [16].
In the cases studied herein, we accelerated the convergence of the coupling iterations using the
quasi-Newton least-squares method introduced in [17] resulting to no more than 10 coupling
iterations per time step. Convergence of the coupling was monitored based on metrics of the
residuals of displacement and traction. A detailed explanation of the coupling procedure applied
to cardiovascular FSI can be found in [18].

2.4 Quantities of interest

As discussed in Section 1, this work targets to predict WSS and OSI due to their direct
relevance to potential post-operation restenosis as well as hemolysis induction (HI) that might
be caused due to unnatural flow patterns. All quantities are computed in the fluid subproblem.
Formally, for the estimation of WSS, we compute the vector

τwk = 2µf
(
Skjnj − (Sijninj)nk

)
. (10)
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We then extract an indicator field in time

τmax
k = max

t∈[t∗,t∗+T ]
τwk , (11)

from which we can then extract two scalar quantities for each simulation, referring to the spatial
minimum or maximum of the temporal maximum (Eqn. (11)) WSS, as

τmax,min = min
x∈Γτ

w

∥τmax
k ∥ and τmax,max = max

x∈Γτ
w

∥τmax
k ∥. (12)

The quantities computed from Eqns. (12) serve as indicators since both very high and low WSSs
are classified as problematic to the desired post-operation recovery. Another crucial indicator,
that has been shown to predict the initiation of intimal hyperplasia and thus the offset of a
renewed stenosis, is OSI. The computation of OSI follows from

OSI =
1

2

(
1−

∥
∫ t∗+T
t∗ τwk dt∥∫ t∗+T

t∗ ∥τwk ∥dt

)
. (13)

As can be easily seen, the value of OSI is bounded in [0, 0.5], where 0.5 indicate the most
potentially problematic regions. Equation (13) results in a spatial distribution of OSI for each
investigated simulation. In order to enable direct comparisons, we assume a critical region in
which we extract the spatial average OSIcave.

In order to quantify HI, we first compute the mass-flow-average of hemolysis on the outlet of
the computational domain

HI =

∫
Γout

HρfujnjdΓ∫
Γout

ρfujnjdΓ
. (14)

This index is, frequently, employed to quantify HI [9, 5]. However, since all simulations con-
sidered herein refer to unsteady flows, we further consider the time averaged HI, computed
as

TAHI =
1

T

∫ t∗+T

t∗
HIdt. (15)

In the above, t∗ refers to the start time of the last simulated heartbeat while T = 0.8s to
approximately one heartbeat.

3 VERIFICATION

This section serves to verify the coupling between the fluid solver (FreSCo+) and the struc-
tural solver (AdhoC) through comana. The benchmark problem refers to the well-known 2D
lid-driven cavity flow, which is sketched in Fig. 1(a). The employed computational grid for
the fluid subproblem consists of 1521 control volumes (CVs). A linear pulsating velocity profile
is prescribed on the inlet patch, as shown in Fig. 1(a), with a period of T = 5s. The top
wall is moving with the maximum velocity of the inlet while the vertical walls are modelled as
rigid. The bottom wall is assumed to be deformable. Density and viscosity of the fluid are set
to ρf = 1 kg

m3 and µf = 0.01Pa.s, respectively, resulting to an average (in time) Re = 12.5.
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Figure 1: (a) Sketch of the 2D verification case. (b) Deformed fluid computational mesh at t = 27.5s
coloured by magnitude of the fluid velocity vector.
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Figure 2: Vertical displacement of deformable’s wall
midpoint. Mok (2001), Valdes (2007) and Radtke
(2019) correspond to results reported in [19, 20, 21],
respectively.

For the elastic wall, density and Young’s mod-
ulus are set to ρs = 500ρf and E = 500Pa, re-
spectively, while Poisson’s ratio is set to zero.
For its discretization, 16 isoparametric finite
elements with quadratic shape functions are
used. In Fig. 1(b), we show the deformed
fluid mesh at t = 5.5T which sustains a satis-
factory level of grid quality. The deformation
of the internal nodes of the mesh is realized
by means of a Laplacian with a diffusivity in-
versely proportional to nearest wall distance.
We simulate this case for a total of 10T and
employ a time step ∆t = 0.002T . For verifi-
cation purposes, we monitor the vertical dis-
placement of the midpoint of the deformable
wall and compare it with previously literature-
reported results, as shown in Fig. 2. The significant deviations between results shown herein
and those in [19] are attributed to a difference in boundary conditions while those with [20]
might be caused due to a different time-integration scheme employed in the latter. Nevertheless,
the excellent agreement with results in [21] serves to verify the coupling between the fluid and
structural solver employed within this work.

4 NUMERICAL EXPERIMENTS

In this section we study 3D idealized arterial bypass-grafts of different cuff sizes consider-
ing either rigid or elastic walls. A generalized geometry of the investigated cases is shown in
Fig. 3. We consider the top leftmost patch of the geometry to be the exclusive flow inlet.
The impaired vessel, on which the graft is implanted to, is modeled as a straight pipe and
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considered to be fully occluded, thus the bottom leftmost patch is modeled as a rigid wall.

Γrw [Γτ
if ]

Γrw

Γin

Γout

Figure 3: Idealized 3D bypass-graft anastomosis.

The rightmost patch of the impaired vessel
corresponds to the flow outlet. The remaining
part of the fluid boundary is modeled as rigid
for CFD simulations or elastic for FSI ones.
The boundary conditions of the fluid flow are
prescribed based on Table 1. In specific, at
the inlet we prescribe a Womersley velocity
profile based on the periodic volumetric flux
shown in Fig. 4. At the outlet, while the pre-
scribed value of pressure is irrelevant for CFD
simulations, due to the incompressible nature
of the fluid, this is not the case for FSI simula-
tions in which traction is communicated from
the fluid solver to the structural one. To this
extent, an implicit boundary condition that computes the pressure in terms of the fluid flow, is
prescribed at the outlet. This is done through the use of a three-component windkessel model,
which can be classified as a zero-dimensional model, viz.(

1 +
R2

R1

)
Qo + CR2

dQo

dt
=

po

R1
+ C

dpo

dt
. (16)
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Figure 4: Periodic volumetric flux at the inlet of
the idealized bypass-graft anastomosis.

Here, po and Qo denote the desired pres-
sure and flux at the outlet, respectively. Pa-
rameters R1, R2 and C are selected so that
the resulting periodic pressure pulsates be-
tween 10 − 34 mmHg. The temporal deriva-
tives of flux and pressure are discretized using
first-order accurate backward differences and
Eqn. (16) is solved for each SIMPLE itera-
tion. Fluid properties are set as such to model
blood, with density equal to ρf = 103 kg

m3

and viscosity µf = 4 · 10−3Pa.s. The struc-
ture is assumed to be a nearly incompress-
ible, hyperelastic solid with density ρs = ρf ,
Young’s modulus E = 106Pa and Poisson’s
ratio νs = 0.49.

For the numerical solution, we employ a structured hexahedral mesh of approximately 100k
CVs for the fluid and a structured hexahedral mesh of 172 elements for the structure.

4.1 Classification of cases

This work considers 3 idealized bypass-graft anastomoses that differ exclusively in the size
of the cuff, i.e. connection between the graft and the impaired vessel, as shown in Fig. 5. The
circumferential area of the connection changes based on its length on the longitudinal direction
with no difference on the in-plane direction (as shown in Fig. 5). For all geometries, CFD and
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14

9

90

23 28 33

Figure 5: Sketch of the investigated idealized bypass-graft anastomoses. All dimensions shown in [mm].
We refer to each one of them as (left) Small, (middle) Medium and (right) Large.

FSI simulations are realized, resulting to a total of 6 simulations. We refer to each simulation
based on the initial letter of the simulation approach and the size of the geometry, e.g. we refer
to the case in which a CFD simulation is realized on the medium-sized geometry as CM.

4.2 Results

Results of WSS, OSI and HI are collected for all 6 investigated cases. In specific, for each
simulation we extract 2 scalar values to characterize WSS, as computed from Eqns. (12), a
scalar value for OSIcave, based on Eqn. (13) and the time averaged HI as computed from Eqn.
(15). As regards the critical region in which OSIcave is averaged in, this corresponds to a close
neighbourhood of the cuff. For computations herein, we exclude the occluded and distal part of
the impaired vessel as well as part of the inlet section of the graft, since values of OSI were found
to be trivial in these regions. Heel, toe and bed regions of the anastomoses are included in the
computations - the reader is referred to Fig. 3.10 of [21] for specification of the aforementioned
terminology. Figure 6 shows the collected results of the investigated cases. As can be seen, the
influence of considering compliant walls -which also represent the real world more faithfully- is
most significant on the prediction of WSS metrics as well as TAHI. In specific, it is shown that
considering rigid instead of elastic walls can lead to a prediction of τmax,max increased by 51%.
Concurrently, τmax,min is under-predicted by up to 47% in the case of a medium-sized cuffed
anastomosis. As for HI, due to the direct relation between the offset of the phenomenon and
fluid shear stresses (cf. Eqns. (4,5)) the trend of predictions follow that of τmax,max with rigid
walls simulations over-predicting the investigated quantity to a significant extent. Lastly, our
simulations show a negligible influence of wall elasticity on the estimation of OSIcave. Overall
and in large, we show that neglecting wall elasticity can lead to a higher risk assessment for the
post-operation period than what might be realistic.

On the other hand, the investigated OSI metric is found to be most sensitive to different
sizes of the cuff. We show that increasing the longitudinal length of the connection between
the graft and the impaired vessel by 44% leads to an increase of OSIcave by 58%. At the same
time, however, we also notice that the aforementioned change in cuff size reduces TAHI by 25%.
The contradicting trends of OSI and HI with respect to cuff size is of interest since we would
optimally target at the minimization of both. Finally, as regards WSS metrics, the influence of
cuff size is shown to be of less importance.

We would also like to note, that the values shown herein should be regarded qualitatively
rather than quantitatively. For example, our estimations of TAHI are significantly lower than
those in flow scenarios and geometries in which hemolysis is the prime problem, (see i.e. [5, 9]).
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Figure 6: Results for WSS, OSI and HI for the three idealized bypass-graft anastomoses considering
rigid or elastic walls. Results obtained from CFD and FSI simulations are presented in blue and red,
respectively, while (S,M,L) denote small-,medium- and large-cuffed geometries.

While this might be partially attributed to the selection of hemolysis-related parameters, it is
also inherently related to the inflow flux of blood. Due to the stochastic and complicated nature
of a physiological blood flow in vivo conditions, it is the authors’ belief that in the course of
a reasonable time span, the aforementioned values can significantly change. Nevertheless, we
believe that the trends presented herein hold under a vast range of physiological conditions.
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5 CONCLUSIONS

This paper discusses the influence of rigid compared to elastic vessels as well as cuff sizes
on hemodynamic quantities of interest in arterial bypass-graft anastomoses. Rigid wall simula-
tions are realized through the numerical solution of the NS equations augmented by a hemolysis
prediction model. To account for compliant walls, the fluid subproblem is coupled to a struc-
tural problem through a partitioned scheme. The coupling of the fluid and structural solver is
verified on a 2D benchmark. Finally, we apply our methodology in 3 idealized 3D bypass-graft
anastomoses of different cuff sizes. It is demonstrated that the wall elasticity can significantly
change the prediction of WSS as well as HI, while the shape of the cuff impacts mainly OSI and
to a smaller extent HI. The contradicting trends of OSI and HI in terms of cuff size highlight
the potential of a formal shape optimization study, in which the two quantities could be casted
on a single objective as a weighted sum. Finally, we would like to acknowledge the possibility
of considering CFD simulations on geometries which are pre-pressurized, thus displaced to a
mean configuration with respect to an FSI one. Future work will target to augment the cur-
rent study by consideration of different inlet paths, resulting to different inlet velocity profiles,
non-Newtonian properties of blood, exercise conditions as well as uncertainties of material prop-
erties. Finally, work is currently conducted by the group of authors for the development of an
adjoint-based shape optimization method for the minimization of OSI.
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