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Abstract. The immersed boundary method has attracted growing interest in CFD research community
due to its simplicity in dealing with moving boundaries. In the diffused interface immersed boundary
method, a discrete delta function is introduced to account for the boundary effects on the fluid, which
causes the diffusion of the boundary interface. Therefore, the diffused interface immersed boundary
method requires higher grid resolution in the vicinity of the immersed boundaries to get a better repre-
sentation of the boundary. A strategy for the application of diffused interface immersed boundary-lattice
Boltzmann method is introduced in the simulation of stenosis. The developed numerical method has
been examined in the simulation of stenosis. Results show that the current solver is able to accurately
predict the velocity profile within the stenosis.

1 INTRODUCTION

Computational fluid dynamics become an important tool for improving our understanding the effect of
normal physiological and pathological behaviors in the arterial system [1]. Stenosis, in ideal circum-
stances, is modeled as a straight rigid pipe with a constriction. A range of studies have been conducted
based on this model, including experimental study by Ahmed & Giddens [2], two-dimensional (2D) nu-
merical studies by Tian et al. [3] and Huang et al. [4] and three-dimensional (3D) numerical studies by
Pal et al. [5] and Varghese et al. [6].

In the diffused interface immersed boundary method (IBM), a discrete delta function is introduced to
account for the boundary effects on the fluid, which causes the diffusion of the boundary interface. Thus,
the diffused interface IBM is first order scheme [7] and requires higher grid resolution in the vicinity of
the immersed boundary to get a better representation of the boundary. Liu et al. [8] used the diffused
interface IBM for the simulation of flapping foil. Wang et al. [9, 10] adopted the diffused interface
IBM for the simulation of heat transfer and fluid-structure interaction of a flapping filament. Pal et al.
[5] used a second order IBM in the simulation of turbulent flow in an idealized stenotic blood vessel.
However, there are few studies on the diffused interface IBM in the simulation of blood flow. In this
work, a strategy for the application of diffused interface immersed boundary-lattice Boltzmann method
(IB-LBM) is introduced here for the simulation of stenosis.
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2 GOVERNING EQUATIONS

The unsteady incompressible flow is governed by the continuity and Navier-Stokes equations:

∇ ·uuu = 0,
∂uuu
∂t

+uuu ·∇uuu =−1
ρ

∇p+ν∇
2uuu+ fff , (1)

where uuu is the fluid velocity, ρ is the constant density, and p and ν are respectively the pressure and
kinematic viscosity, and fff is the body force.

3 NUMERICAL METHOD

The D3Q19 lattice Boltzmann method (LBM) with multi-relaxation-time (MRT) model is adopted for
the fluid dynamics. The IBM is used to realize the no slip and no penetration boundary conditions of
the rigid tube wall. In the LBM, the macroscopic dynamics of the fluid are the result of the statistical
behaviour of the particles, which are described by the distribution function gi (xxx, t). The evolution of this
distribution function is according to

gi (xxx+ eeei∆t, t +∆t)−gi (xxx, t) = Ωi (xxx, t)+∆tGi, (2)

where gi(xxx, t) is the distribution function for particles with velocity eeei at position xxx and time t, ∆t is the
time increment, Ωi(xxx, t) is the collision operator, and Gi is the forcing term accounting for the body force
fff . The D3Q19 model [11] is used on a square lattice. The MRT collision model is adopted and is given
by [12]:

Ωi =−(MMM−1SSSMMM)i j[gi(xxx, t)−geq
i (xxx, t)], (3)

where MMM is a q× q transform matrix, and q is the number of particle speed. For D3Q19 model, MMM
is a 19× 19 matrix. SSS = diag(τ0,τ1, . . . ,τq−1)

−1 is a non-negative diagonal 19× 19 relaxation matrix.
The determination of SSS in three-dimensional model can be found in [11]. The equilibrium distribution
function geq

i is defined as

geq
i = ρωi

[
1+

eeeiii ·uuu
c2

s
+

uuuuuu : (eeeieeei− c2
s III)

2c4
s

]
, (4)

where cs = ∆x/(
√

3∆t) is the speed of sound, ∆x is the lattice spacing, III is the unit tensor, and the
weighting factors ωi are given by ω0 = 1/3, ω1−6 = 1/18 and ω7−18 = 1/36. The velocity uuu, mass
density ρ and pressure p can be obtained according to

ρ = ∑
i

gi, p = ρc2
s , uuu = (∑

i
eigi +

1
2

fff ∆t)/ρ, (5)

The force scheme proposed in [14] is adopted to determine Gi

Gi = [MMM−1(III−SSS/2)MMM]i jFi, (6)

Fi =
(

1− 1
2τ

)
ωi

[eeei−uuu
c2

s
+

eee ·uuu
c4

s
eeei

]
· fff , (7)

where τ is the non-dimensional relaxation time.
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In the present study, an diffused interface IBM is adopted to handle the no slip and no penetration of
the rigid tube walls. A comprehensive overview of this method was given by Kang et al. [15]. In this
method, a body force fff is added in the Navier-Stokes equation to mimic a boundary condition according
to,

fff (xxx, t) =−
∫

FFF ib(s, t)δ(xxx−XXX(s, t))dA, (8)

FFF ib(s, t) = 2(UUU ib(s, t)−UUU(s, t)), (9)

UUU ib(s, t) =
∫

uuu(x, t)δ(XXX(s, t)− xxx)dxxx, (10)

where FFF ib(s, t) is the Lagrangian force density, dA is the element surface area of the immersed boundary,
δ(xxx−XXX(s, t)) is Dirac’s delta function, xxx is the coordinate of the fluid lattice nodes, XXX is the coordinate
of the tube wall, UUU ib(s, t) is the immersed boundary velocity obtained by interpolation at the immersed
boundary, and UUU(s, t) = 0 for a rigid tube wall. The 4-point discrete delta function δh(xxx) is used to
approximate the Dirac delta function [13]:

δh(xxx) =
1

∆x∆y∆z
φ(

x
∆x

)φ(
y

∆y
)φ(

z
∆z

), (11)

φ(r) =
1
8

(
3−2|r|+

√
1+4|r|−4r2

)
0≤ |r| ≤ 1, (12)

1
8

(
5−2|r|+

√
−7+12|r|−4r2

)
1≤ |r| ≤ 2, (13)

0 |r|> 2. (14)

3.1 Summary of the IB-LBM algorithm

The implementation of the iterative IB-LBM algorithm is summarized as follows:

1. Initialize the computation parameters;

2. Stream the distribution function to obtain gi;

3. Compute the macroscopic variables: density ρ and the uncorrected velocity uuu using

ρ = ∑
i

gi, uuu =
1
ρ

∑
i

eeeigi; (15)

4. Set iteration counter m to 0;

5. Interpolate the immersed boundary velocity UUUm
ib using equation (10);

6. Compute the Lagrangian force density FFFm
ib(s, t) using equation (9);

7. Spread FFFm
ib(s, t) to the Eulerian lattice to obtain fff m(xxx);

8. Correct Eulerian velocity near to the immersed boundary according to

uuum+1(xxx) = uuum(xxx)+
fff m(xxx)dt
2ρ(xxx)

; (16)
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Figure 1: Side and front views of the stenosis geometry.

9. Update iteration counter m = m+1;

10. Repeat steps 5-9 until the immersed boundary velocity UUUm
ib converges to the velocity of the tube

wall UUU(s, t);

11. Calculate geq
i using equation (4);

12. Perform the collision step with the total Eulerian body force:

fff (x) =
mmax

∑
m=1

fff m(xxx); (17)

13. Go to step 2 for next time-step.

Open Multi-Processing (OpenMP) parallel computing strategy has been incorporated into the code to
accelerate the computation. The computations are performed on a workstation of Intel Xeon CPU E5-
2650 2.3GHz.

4 RESULTS

The fluid flow through a 75% area reduction stenosis is simulated. The stenosed tube is generated by a
cosine function of the axial coordinate x:

S(x) = 1
2 D [1− so (1+ cos(2π(x− xo)/L))] ,

y = S(x)cosθ, z = S(x)sinθ,

}
(18)

where D is the diameter of the non-constricted tube, L = 2D is the length of the stenosis, for a 75% area
reduction stenosis so = 0.25 and xo is the central location of the stenosis. Figure 1 shows the side and
front view of the stenosis. A steady Hagen-Poiseuille velocity profile is imposed at the inlet, and the
initial flow field is initialized as:

u
U0

= 2
(
1− r2) , v

U0
= 0,

w
U0

= 0, (19)

where u, v and w are the velocity in x−, y− and z−directions, respectively, U0 is the averaged velocity at
the inlet and r =

√
y2 + z2 is the radial distance from the tube centreline. The computational domain is

a rectangular parallelopiped (x ∈ [−3D,17D], y ∈ [−0.6D,0.6D] and z ∈ [−0.6D,0.6D]). The grid size
of the fluid and the tube are 0.02D and 0.01D, respectively. The Reynolds number Re = 500 is defined
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Figure 2: Axial velocity profiles at five axial locations (x= 1D, x= 2.5D, x= 4D, x= 5D, and x= 6D) downstream
of the stenosis. Red solid: present IB-LBM; black circle: direct numerical simulation by Varghese et al. [6]. The
tube wall is extended outwards by one grid point to compensate the diffusion of the boundaries caused by the
diffused interface IBM.

based on the diameter D and the averaged velocity U0 at the inlet. The tube wall is rigid with the no-slip
boundary condition and a constant pressure is specified at the outlet. The tube wall is extended outwards
by one grid point to compensate the diffusion of the boundaries caused by the diffused interface IBM.

As shown in figure 2, the axial velocity profiles at five axial locations downstream of the stenosis shows
good agreement with the direct numerical simulation results by Varghese et al. [6]. The predicted
pressure, streamwise velocity and vorticity contours are shown in figure 3. The flow is laminar and
symmetric with a jet formed downstream of the stenosis. Figure 3(a) shows that the velocity increase
significantly due to the constriction of the tube wall, which results in a low pressure area is observed at
the most constricted part of the stenosis shown in figure 3(b). The vorticity contours in figure 3(c) show
that the flow is symmetric and there is no vortex shedding downstream of the stenosis.

5 CONCLUSIONS

A strategy for the application of diffused interface IB-LBM is firstly introduced in the simulation of
stenosis. The diffused interface IB-LBM solver is able to accurately predict the velocity profile within
the stenosis.
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(a) Pressure contours.

(b) Streamwise velocity contours.

(c) Streamwise vorticity contours.

Figure 3: Pressure, streamwise velocity and vorticity contours in the Z-X symmetry plane of the 75% area reduc-
tion stenosis. The velocity is non-dimensionalized by the inlet averaged velocity U0. The pressure here is a relative
pressure to the outlet pressure and is non-dimensionalized by ρU2

0 . The vorticity is non-dimensionalized by U0/D.

6



Huang Q., Wang L., Tian F.-B., Young J. and Lai J. C. S.

stenoses at moderate Reynolds numbers. Journal of Biomechanics, 16(7): 505–516.

[3] Tian, F.-B., Zhu, L., Fok, P. W., et al. (2013). Simulation of a pulsatile non-Newtonian flow past a
stenosed 2D artery with atherosclerosis. Computers in Biology and Medicine, 43(9): 1098–1113.

[4] Huang, Q., Tian, F.-B., Young, J. and Lai, J. C. S. A diffused interface immersed boundary–lattice
Boltzmann method for simulation of channel flow. 22nd Australasian Fluid Mechanics Conference
AFMC2020, Brisbane, Australia, 7-10 December 2020. Brisbane, Australia

[5] Pal, A., Anupindi, K., Delorme, Y., et al. (2014). Large eddy simulation of transitional flow in
an idealized stenotic blood vessel: evaluation of subgrid scale models. Journal of Biomechanical
Engineering, 136(7).

[6] Varghese, S. S., Frankel, S. H., Fischer, P. F. (2014).Direct numerical simulation of stenotic flows.
Part 1. Steady flow. Journal of Fluid Mechanics, 582(1): 253–280.

[7] Huang, W.-X, Tian, F.-B. (2019). Recent trends and progresses in the immersed boundary method.
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering
Science, 233: 7617–7636.

[8] Liu, Z., Tian, F.-B., Young, J., and Lai, J. C. (2017). Flapping foil power generator performance
enhanced with a spring-connected tail. Physics of Fluids, 29(12): 123601.

[9] Wang, L., Tian, F.-B. (2018). Heat transfer in non-Newtonian flows by a hybrid immersed
boundary-lattice Boltzmann and finite difference method. Applied Sciences, 8(4): 559.

[10] Wang, L., Tian, F.-B. (2019). Numerical simulation of flow over a parallel cantilevered flag in the
vicinity of a rigid wall. Physical Review E, 99(5): 053111.

[11] d’Humieres, D. (2002). Multiple–relaxation–time lattice Boltzmann models in three dimensions.
Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and
Engineering Sciences, 360: 437–451

[12] Lallemand, P., Luo, L. S. (2000). Theory of the lattice Boltzmann method: Dispersion, dissipation,
isotropy, Galilean invariance, and stability. Physical Review E, 61(6): 6546.

[13] Peskin, C. S.. (2002). The immersed boundary method. Acta numerica, 11: 479–517.

[14] Guo, Z. L., Zheng, C. G., Shi, B. C. (2002). Non-equilibrium extrapolation method for velocity and
pressure boundary conditions in the lattice Boltzmann method. Chinese Physics, 11(4): 366.

[15] Kang, S. K., Hassan, Y. A. (2011). A comparative study of direct-forcing immersed boundary
lattice Boltzmann methods for stationary complex boundaries. International Journal for Numerical
Methods in Fluids, 66(9): 1132–1158.

7


