

WP3: « Design and Engineering for Vessel Production Improvement »

WP4: « Smart manufacturing approach for developing shipyard 4.0 strategy »

First Information Day - 01/07/2021

Daniel Sá, CompassIS.

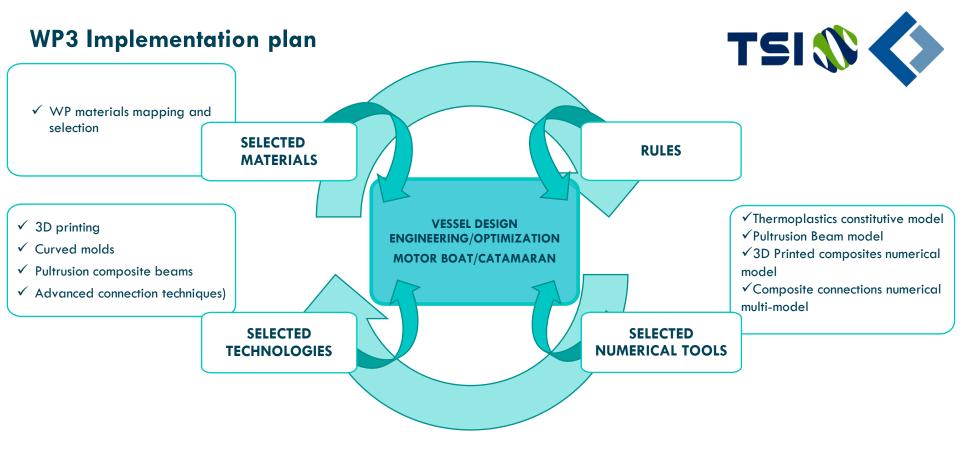
F4Ys Technical Coordinator. WP3 Leader Santiago Álvarez-Buylla, TSI SL.

WP4 Leader

Content

- WP3 objectives and tasks
- WP3 implementation plan
- WP3 expected impacts
- WP4 objectives and tasks
- WP4 implementation plan
- WP4 expected impacts

WP3 objectives and tasks

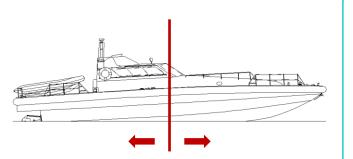


Develop specific numerical models in order to simulate composites with the developed technologies: Constitutive model for thermoplastics. Beam model for pultruded profiles. Numerical model for **3D printed composites**. Numerical multi-model for composite connections. Implement such numerical models in already existing CAE/FEM tools (TdynRamSeries), so that they can be incorporated among the vessels' design and engineering tools. Engineer and develop two modular vessel designs: patrol motorboat and passenger catamaran. Re-design and optimize both vessel designs, in order to adapt their manufacturing to the advanced production methods presented in the project. Enable both designs for Industry/Shipyard4.0 standards. Thoroughly study and account for the mechanical performance of the connections between the different vessels' modules.

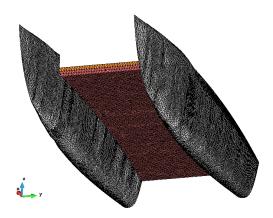
Gather adapted guidelines for the re-design and the production with advanced technologies, so that

they comply with standard and Rules.

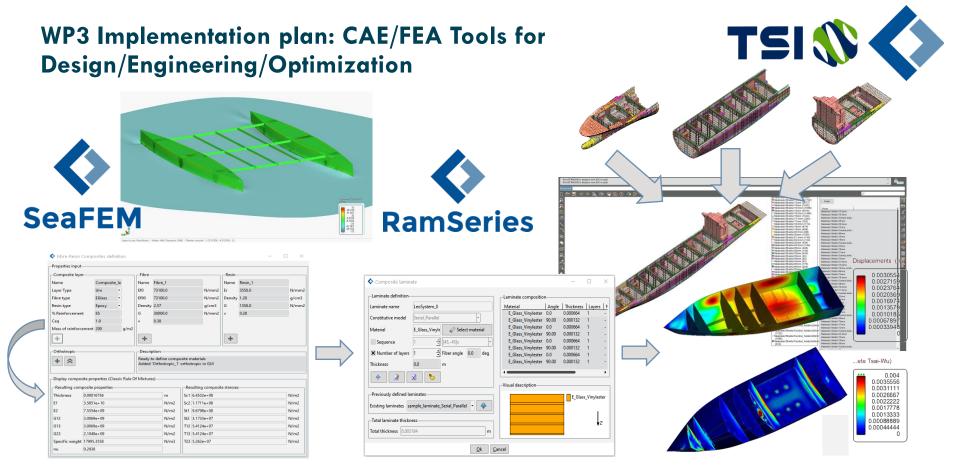
WP3 Implementation plan: Design/Engineering/Optimization



MOTOR BOAT


- Two 3D printed halves.
- Modules connection techniques.
- Internal structure layout redefinition.
- Verification of resultant design: Naval architecture and structure FEA.
- · Verify compliance with rules.

CATAMARAN (TSI)


- Superstructure with curved panels.
- Use of pultruded reinforcements.
- Connection techniques.
- Verification of resultant design: Naval architecture and structure FEA
- Verify compliance with rules.

- Modular production optimization
- Assembly/connection of modules optimization
- Attachment of reinforcements optimization
- Production/assembly compliance with rules verification
- Optimize production of curved panels
- Optimize production with pultruded reinforcements
- Optimize assembly/connection of S/E with hull
- Optimize S/E aerodynamics

WP3 Expected Impacts within the FIBRE4YARDS impact axis

- 1. Impact axis 1 Competitiveness and Growth for Small and Medium shipyards.
 - > Advanced engineering and production automation integration for FRP composites will:
 - ✓ **Shorten production lead times by 50%:** Automation (VS manual and artisanal labor) will improve production speed and quality consistency.
 - ✓ Save 20-30% weight in produced structures: High strength VS weight ratio of the materials. Integrated parts. Reduction of joints and fasteners.
 - ✓ **Lower corrosion issues:** Lower maintenance costs.
- 2. Impact axis 2 Employment and Skills of European Workforce.
 - Existing FRP labor, IT, design and engineering work force will **shift towards higher skilled tasks** through specific training, while new posts will also be created.
- 3. Impact axis 3 Improved Environmental Performance.
 - > As a result of re-engineered designs for optimized and low energy-consuming FRP manufacturing processes.
- 4. Impact axis 6 Regulations and Standards.
 - New designs, and new specific numerical methodologies and tools for structural verification will require standards to be adapted.

WP4 objectives and tasks

FIBRE4YARDS aims to define an **strategy** for the **development of a new generation of shipyards enabled** with industry **4.0 technologies**. WP4 main tasks for such purposes are:

- Definition of a **monitoring system** based on IoT technologies for the control of the different production processes involved in the project, both in terms of factory maintenance and quality control.
- Development a physics-based and data-based **Digital Twin Model** (DTM) of the different production assets of the shipyard that can be fed by the data collected by the monitoring system, allowing for real-time control and maintenance of the different assets.
- Definition of the **cybersecurity** protocols and strategies to follow in order to guarantee data privacy and secure data flow through the network.
- **Definition** of IoT based smart applications and technologies that can be directly applied to shipbuilding in order to achieve the **shipyard 4.0** concept and consequently improve production and maintenance processes.

WP4 Implementation plan

Connectivity

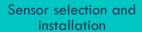
Predictive maintenance

Accessibility

Quality & production control

KPIs driven decisions

SHIPYARD 4.0


- DTM of every relevant asset.
- ML algorithms for predictive maintenance.

- Cybersecurity and data privacy.
- APIs to interact with the platform.

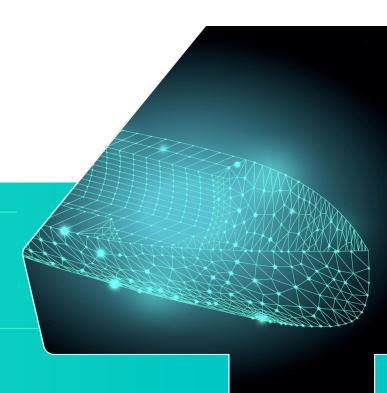
SOFTWARE LAYER

Asset analysis and KPI definition

HARDWARE LAYER

WP4 Expected Impacts within the FIBRE4YARDS impact axis

- 1. Impact axis 1 Competitiveness and Growth for Small and Medium shipyards.
 - ✓ Shipyard 4.0 will favor production facility sharing and both improved efficiency and safety at work.
- 2. Impact axis 2 Employment and Skills of European Workforce.
 - ✓ Favoring a shift towards higher skilled jobs while maintaining a net positive job count.
- 3. Impact axis 3 Improved Environmental Performance.
 - ✓ Through the optimization of energy-consuming manufacturing processes as well as minimizing rejected parts.
- 4. Impact axis 5 Maximize EU added value by minimizing technology leakage.
 - ✓ Addressing cybersecurity as a highly relevant aspect throughout the whole work package.



Thank you!

WWW.FIBRE4YARDS.EU

