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SUMMARY

This paper deals with a thermodynamically consistent numerical formulation for coupled
thermoplastic problems including phase-change phenomena and frictional contact. The final
goal is to get an accurate, efficient and robust numerical model, able for the numerical simu-
lation of industrial solidification processes. Some of the current issues addressed in the paper
are the following. A fractional step method arising from an operator split of the governing
differential equations has been used to solve the nonlinear coupled system of equations, leading
to a staggered product formula solution algorithm. Nonlinear stability issues are discussed and
isentropic and isothermal operator splits are formulated. Within the isentropic split, a strong
operator split design constraint is introduced, by requiring that the elastic and plastic entropy,
as well as the phase-change induced elastic entropy due to the latent heat, remain fixed in
the mechanical problem. The formulation of the model has been consistently derived within a
thermodynamic framework. All the material properties have been considered to be tempera-
ture dependent. The constitutive behavior has been defined by a thermoviscous/elastoplastic
free energy function, including a thermal multiphase change contribution. Plastic response has
been modeled by a J2 temperature dependent model, including plastic hardening and ther-
mal softening. The constitutive model proposed accounts for a continuous transition between
the initial liquid state, the intermediate mushy state and the final solid state taking place in
a solidification process. In particular, a pure viscous deviatoric model has been used at the
initial fluid-like state. A thermomecanical contact model, including a frictional hardening and
temperature dependent coupled potential, is derived within a fully consistent thermodinamical
theory. The numerical model has been implemented into the computational Finite Element
code COMET developed by the authors. Numerical simulations of solidification processes show
the good performance of the computational model developed.

1. INTRODUCTION

Numerical solution of coupled problems using staggered algorithms, is an efficient
procedure in which the original problem is partitioned into several smaller sub-problems
which are solved sequentially. For thermomechanical problems the standard approach ex-
ploits a natural partitioning of the problem in a mechanical phase, with the temperature
held constant, followed by a thermal phase at fixed configuration. As noted in StmMo &
MIEHE [1991] this class of staggered algorithms falls within the class of product formula
algorithms arising from an operator split of the governing evolution equations into an
isothermal step followed by a heat-conduction step at fixed configuration. A recent anal-
ysis in ARMERO & SIMO [19924,1992B,1993] shows that this isothermal split does not
preserve the contractivity property of the coupled problem of (nonlinear) thermoelasticity,
leading to staggered schemes that are at best only conditionally stable. ARMERO & SIMO
[19924,1992B,1993] proposed an alternative operator split, henceforth referred to as the
isentropic split, whereby the problem is partitioned into an isentropic mechanical phase,
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with total entropy held constant, followed by a thermal phase at fixed configuration. It
was shown by ARMERO & Simo [19924,1992B,1993] that such operator split leads to an
unconditionally stable staggered algorithm, which preserves the crucial properties of the
coupled problem. The aim of the paper is to extend the formulation given by ARMERO
& SmMo [19924,19928,1993] and SmMO [1994] to coupled thermoplastic problems with
phase-change, to get an accurate, efficient and robust numerical model, able for the nu-
merical simulation of solidification processes in the metal casting industry.

The remaining of the paper is as follows. Section 2 deals with the formulation of the lo-
cal governing equations of the coupled thermoplastic problem, consistently derived within a
thermodynamic framework. An additive split of the strain tensor and the entropy has been
assumed. The constitutive behavior has been defined by a thermoviscous-elastoplastic free
energy function, with temperature dependent material properties. Latent heat associated
to the phase-change phenomena has been incorporated to the thermal contribution of the
free energy function. Plastic response has been modeled by a J2 temperature dependent
model, including nonlinear hardening due to plastic deformation and thermal linear soften-
ing. A thermofrictional contact model is derived within a fully consistent thermodinamical
framework. Following LAURSEN [1998], contact temperature and entropy variables at the
contact surface are introduced, and the energy balance equation at the contact surface
is formulated. A particular thermofrictional contact model including frictional hardening
and temperature coupling is outlined. Following an analogy with the bulk continua, an
additive split of the tangential gap and the contact entropy, into elastic and inelastic parts,
has been assumed. A pressure and contact temperature dependent thermal contact model
has been used. Additionally, a gap dependent thermal model has been used to take into ac-
count surface heat transfer phenomena when the two bodies lose contact. Heat generation
due to frictional dissipation is implicitly included. This Section ends with the variational
formulation of the coupled problem.

In Section 3, fractional step methods arising from an operator split of the governing
differential equations are considered. Isentropic and isothermal splits are introduced and
nonlinear stability issues linked to the splits are adressed. A key point of the formulation of
the isentropic split is the set up of the additional design constraints to define the mechanical
problem. Here, a strong operator split design constraint is introduced, by requiring that
the elastic and plastic entropy, as well as the phase-change induced elastic entropy due
to the latent heat, remain fixed in the mechanical problem. These additional constraints
motivate the definition of the sets of variables and nonlinear operators introduced in the
present formulation. Within the time discrete setting, the additive operator splits lead to
a product formula algorithm and to a staggered solution scheme of the coupled problem.
Finally, the time discrete variational formulation of the coupled problem, using isentropic
and isothermal splits, is introduced.

Section 4 deals with numerical simulations of solidification processes. Some concluding
remarks are drawn in Section 5. Finally, a step-by-step formulation of the thermoplastic
and thermofrictional return mapping algorithms within the mechanical and thermal prob-

lems arising from an isentropic split of their governing equations is given in Appendices I
and II.
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2. FORMULATION OF THE COUPLED THERMOPLASTIC PROBLEM

We describe below the system of quasi-linear partial differential equations governing
the evolution of the coupled thermomechanical initial boundary value problem, including
thermal multiphase change and thermofrictional contact.

2.1. Local Governing Equations

Let 2 < ngim < 3 be the space dimension and I := [0,7] C Ry the tim_e interval of
interest. Let the open sets 2 C R"4™ with smooth boundary 942 and closure 2 := Q2U0J2,
be the reference placement of a continuum body B5.

Denote by ¢ : £2 x I — R™™ the orientation preserving deformation map of the body
B, with material velocity V' := 0y = ¢, deformation gradient F := D¢ and absolute
temperature © : 2 x I — R. For each time ¢ € I, the mapping t € I — p; = (-, t)
represents a one-parameter family of configurations indexed by time #, which maps the
reference placement of body B onto its current placement S, : ¢,(B) C R™m,

The local system of partial differential equations governing the coupled thermome-
chanical initial boundary value problem is defined by the momentum and energy balance
equations, restricted by the inequalities arising from the second law of the thermodynam-
ics. This system must be supplemented by suitable constitutive equations. Additionaly,
one must supply suitable prescribed boundary and initial conditions, and consider the
equilibrium equations at the contact interfaces.

(A) Local form of momentum and energy balance equations. The local form of the
momentum and energy balance equations can be written in a first order system form as,
see, e.g., TRUESDELL & NOLL [1965],

p=V
poV = DIV[o]+ B in 2xI (1)
©H = —DIV[Q] + R + Din:

where pg : £2 — Ry is the reference density, B are the (prescribed) body forces per unit
reference volume, DIV[-] the reference divergence operator, o the Cauchy stress tensor, H
the entropy per unit reference volume, @ the (nominal) heat flux, R the (prescribed) heat
source and D;y; the internal dissipation per unit reference volume. Formally, the governing
equations for a quasi-static case, may be obtained just by setting py = 0 in (1).

(B) Dissipation inequalities. The specific entropy H and the Cauchy stress tensor o
are defined via constitutive relations, typically formulated in terms of the internal energy F,
and subjected to the following restriction on the internal dissipation, see, e.g., TRUESDELL
& NoLL [1965],

Dint=0:6+OH—E>0 in 2xI (2)

where € := SYMM[F — I] is the infinitesimal strain tensor. Here symm[-] denotes the
symmetric operator and I is the second order identity tensor.
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The heat flux @ is defined via constitutive equations, say Fourier’s law, subjected to
the restriction on the dissipation by conduction given by

Do = —éGRAD[@] Q>0 in 2xI (3)

(C) Thermoplastic/viscous constitutive equations. Micromechanically based phe-
nomenological models of infinitesimal strain plasticity adopt a local additive decompo-
sition of the strain tensor into elastic and plastic parts. Hardening mechanisms in the
material taking place at a microstructural level are characterized by an additional set of
phenomenological internal variables collectively denoted here by &,. A viscoelastic be-
haviour is characterized by an additional strain variable denoted as «. The aims behind
the introduction of this viscous behaviour are to adopt a pure deviatoric viscous model
at very high temperature, i.e. at the liquid state, and to introduce viscous effects at the
mushy/solid state. In the coupled thermomechanical theory, an additive split of the local
entropy into elastic and plastic parts is adopted, where the plastic entropy is viewed as
an additional internal variable arising as a result of dislocation and lattice defect motion.
This additive split of the local entropy was adopted by ARMERO & SIMO [1993]. The
above considerations, motivate the following additive split of the infinitesimal strain tensor
€ := €° + € and local entropy H := H® 4+ H? and the following set of microstructural
plastic/viscous internal variables G := {e?, H?, ¢, a}.

The internal energy function F depends on the elastic part of the strain tensor €®,
the hardening internal variables ,, the configurational entropy H¢ and the viscous strain
tensor « taking the functional form F = E (e, H® &y, ). Introducing the functional
form of the internal energy into the expression of the internal dissipation, taking the
time derivative, applying the chain rule and using the additive split of the infinitesimal
strain tensor and total entropy, a straightforward argument yields the following constitutive
equations and reduced internal dissipation inequality

o .= 866E(66,He,€aaa)a
e = 8H6E(66,Hea§aaa)a

(64 7 (3 e (4)

ﬁ = —agaE(E 7H 7504504)7

/6 = —BQE(667Hea€a’a)a
Dint := Dmech + Diper 2 0, with ( )
)

Dmech =0: € +/Ba éa +,3 e >0 and Dther = @Hp

Using the Legendre transformation ¥ = E — O H®, the free energy function takes the
functional form ¥ = ¥ (e?, O, &,, a). Taking the time derivative of the free energy function
and applying the chain rule, a straightforward argument yields the following alternative
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expressions for the constitutive equations

o= aee@(ee,@,ﬁa,a),
H® := —8¥(e%, 0, &4, @),
B = —0; V(€% 0,&,, ),
B = 0,0 (€% 0, &4, ),

Assuming a yield function of the form @ := Gf’(a, 3%, 0), the evolution laws of the
plastic internal variables, assuming associated flow, take the form
& =y 0gP(a, 5%, O),
éa =" aﬁaé(a', ﬁav @)a (7)
HP .=~ 9o%(0, 5%, 0),

and the following Kuhn-Tucker v > 0, < 0,7® = 0 and consistency ’y@ = 0 conditions
must be satisfied for a rate-independent plastic model.

The evolution law for the viscous strain a takes the form
1
a:=—F 8
” (8)

where 7, is the effective elastic viscosity material property.

Additionally, the heat flux is related to the absolute temperature through the Fourier’s
law, which for the isotropic case takes the form Q = —K(©) GRAD[O], where K(0O) is
the temperature dependent thermal conductivity.

REMARK 1. Equivalent forms of the energy balance equation.  Using the additive split
of the total entropy into elastic and plastic parts and the additive split of the internal
dissipation into mechanical and thermal, the reduced energy equation can be expressed as

OH® = —DIV[Q] + R+ Dpeer, in 2 x1L (9)

Alternatively, using the constitutive equation of the elastic entropy, taking its time
derivative and applying the chain rule, the temperature-form of the reduced energy equa-
tion can be written as

COQ = _DIV[Q] + R+ Drech — HE in 2 x I, (1())
with
Co ‘= _@aéeﬁ(ee, @a £a7 a)’

HP = 002 F(€°,0, Ea, ) 1 €+ 0p W (€%, 0,64, 00) - Ea + 0¥ (€°,0, 60, 0x) : 61,
(11)
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where cg is the reference heat capacity and H the structural elastoplastic heating. Us-
ing the constitutive equations (6) the reference heat capacity and structural elastoplastic
heating, take the compact form

Co 1= @8@ﬁe(ee, 0, ),

(12)
HP ;= —O0g[o : € — Dpecn)- [

REMARK 2. Thermal phase-change contributions. — The free energy function for a cou-
pled thermomechanical model including phase change can be splitted into thermoelastic
Y., thermoplastic ¥,, thermal (except phase change) ¥; and thermal phase change Wy,
contributions, taking the functional form, ¥ = @te(ee, O, a) +@tp(9, £l +@t(@) +@tpc(9).

Collecting into a thermoelastoplastic part @tep(ee, 0,4, a) all the terms appearing
into the free energy function, except the thermal phase change contribution, and setting
He = Hg, + Hf, with H,, = —0oWep(€®, 0,8, @) and Hf,, = —0oWypc(6), the
reduced energy balance equation in entropy form, can be written as

OH;., = —DIV[Q] + R + Dmech — HP®  with

) ) . ) (13)
H*g=L=0Hs, = ~0036¥1p.(0) - O,

where HP¢ := [ is the phase-change heating given by the rate of latent heat L per unit
reference volume.

Similarly, the reference heat capacity can be splitted into co = cotep + Cogpe Where

Cotep = —@Béeitep(ee, 0,&a, ) and coppe = —@6%@1/3@6(@), and the temperature form
of the energy balance equation takes the form

Cotepé = _DIV[Q] + R + Dmech - %EP - r}_[pc With

; . " y 14
HP® i = L = cpipe® = —00%0¥1c(0) - 6. O (1)

REMARK 3. Mechanical modeling of the liquid phase. = The constitutive model presented
above accounts for thermoviscous, themoelastic and thermoplastic behaviour. In particu-
lar, a pure thermoviscous constitutive model may be used at the initial liquid state and
a thermoelastoplastic, with or without viscous effects, at the final solid state of a solidi-
fication process, while a continuous transition model between the initial liquid state, the
intermediate mushy state and the final solid state may be defined in terms of the differ-
ent phase fractions involved, i.e. the liquid fraction f;(©@) € [0,1] and the solid fraction
[s(©) € [0,1], such that f;(©) = 1—fs(©). A simple continuous model, able to characterize
from a pure viscous (deviatoric) behaviour at the liquid state to a pure elastic behaviour
at the solid state, can be obtained dividing by f(©) the shear deformation modulus and
dividing by f;(©) the elastic viscous material properties. []
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2.2. A J2-Thermoplastic constitutive model

Here the following J2-thermoplastic constitutive model described in Box 1, Box 2
and Box 3 is considered. Uncoupled thermoelastic and hardening contributions to the free
energy function given in Box 1 are considered, as suggested by experimental results in
7ZBEDEL & LEHMANN [1987]. All thermomechanical material properties are considered to
be temperature dependent. A particular interest has been placed in considering the case
in which the specific heat is temperature dependent and the latent heat is non-zero. Note
that in this case the functional related to the pure thermal contribution is obtained through
an integral expression. Phase-change straining due to shrinkage is considered within the
thermoelastic coupling contribution to the free energy function. Mechanical behaviour
within the transition between the initial liquid-like state and the final solid state has been
accounted for dividing by the solid volume fraction fs(©) the given shear modulus fi(©)
and dividing by the liquid volume fraction f;(©) the given elatic viscosity 7, (©).

Box 3. J2-Thermoplastic constitutive model. Thermoplastic response.

m Thermoplastic response

i. Von Mises vield function with flow stress oy (@) := 30(©),

$(c,q,0) = ||devo]|| - \/%[W(Q) —q]-

ii. Hardening variable ¢ conjugate to &,

g = —0c) = —[h(O)€ — (%0(O) — Yoo (O))(1 — exp(—3¢))].

iii. Linear thermal softening,

Y0(©) = 50(O0)[1 — wo(© — )],
Yoo (O0)[1 — weo (O — O0)],
h(6) = h(©y)[1 — wa(© — B0)].

iv. Plastic evolution laws,

& i=9n with n := dev|[o]/||dev[o]]|,

o =7 V/2/3,

HP .= —y \/2/3 04 (O).




On the Constitutive Modeling of Thermomechanical Phase-change Problems

Box 1. J2-Thermoplastic constitutive model. Free energy function.

m Free energy function

B(e,€,0,a) = W(e°,0,a) + M(e*,0,0) + T(0) + K(€,0)

i. Linear hyperelastic response (1(©) > 0, k(@) > 0),

A

W (e, 0,a) = W(dev[e® — ], ©) + Ultrle® — ], O)
I/i—/(dev[e6 —al,0) = p0) dev?[e® — a,
Ul(tr[e® — o], 0) = %K,(@) tr?[e® — al,

with 11(©) = fi(8)/f+(©) where fs(6) € [0,1].

ii. Thermoelastic coupling,

M(e,0,a) = —k(O)[e(0) — &(O0)] tr[e® — o,

where

&(0) :=3a(0)(0 — BOref) +e7%(0),

iii. Thermal contribution (cs(©) > 0),

IF (cs(©)=constant AND L(©) = 0) THEN

T(0) = pocs[(© — Og) — Olog(0/O0)],

ELSE
R e R _ _ R e _ _ dé
7(6) = / T(0)dD, To(6)=— / [ocs (D) + I'(B)) %,
[Ch) ®9 @
END IF

iv. Hardening potential,

R(€,6) = h(O)E ~ [10(6) — yeo (O (E).

where ﬁ(&) = {g_ [1 — exp(—6£)]/6. ﬁ g i 8,
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Box 2. J2-Thermoplastic constitutive model. Thermoelastic /viscous response.

m Thermoelastic response

i. Cauchy stresses,

o =pls + s,
p = K(6) trle® — o] — K(O)[2(O) — &(0)];
s =2u(O) devle® — al.

ii. Elastic entropy,

IF (cs(@)=constant AND L(©) = 0) THEN

H® = pocs log(©/00) + K(O)[3a(O) + el (0)] tr[e® — o — Ko(¢)
+ 36(0) (0)(O — Orep)tr[e® — a] + k' (©)[6(O) — é(Oy)]tr[e® — ]
- W@(eea @7 a)a
ELSE

. _
He = [ (@) + LO) G +R(O)Ba(O) + 5 (O)) ule’ ~ o] = Kol©)
1 35(0)d (O)(O — Opep)ti[e® — a] + K'(O)[E(O) — é(0o)]tr[e® — a]

- W@(ee, @a a)5

END IF

m Thermoviscous response

i. Viscous stresses,

B=o

ii. Evolution equations (77,(©) > 0, f1(©) € [0,1]),

: 1 fi(©)
dev|c| = s = s,
& nge 7 (O)

tr[&] = 3
TA] — p.
My

2.3. Thermomechanical contact model

(A) Contact kinematics. Let 2 < ngim < 3 be the space dimension and I := [0,T] C
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R, the time interval of interest. Let the open sets 2(1) c R™im and Q) c R™im
with smooth boundaries 82 and 82 and closures 2 := 21 U 9D and 23 .=
2@ U 9023 be the reference placement of two continuum bodies B and B, with
material particles labeled X € 2() and Y € 2 respectively.

Denote by ¢ : 200 x T — R™im the orientation preserving deformation map of the
body B®, with material velocities V'(®) := 9,4 and deformation gradients F'(*) := D¢ ().
For each time ¢ € I, the mapping ¢t € I — cpii) 1= cp(i)(-,t) represents a one-parameter
family of configurations indexed by time ¢, which maps the reference placement of body
B onto its current placement St(i) : cp,gi)(B(i)) C R™im,

We will denote as the contact surface I'® C 902 the part of the boundary of the
body B® such that all material points where contact will occur at any time ¢ € I are
included. The current placement of the contact surface I'® is given by v := c,o,(;'i)(F (@),

Attention will be focussed to material points on these surfaces denoted as X € I'})
and Y € I'®. Current placement of these particles is given by « = cp%”(X ) € v and
y =@ (Y) €.

Using a standard notation in contact mechanics we will assign to each pair of contact
surfaces involved in the problem, the roles of slave and master surface. In particular, let
I'M be the slave surface and I'® be the master surface. Additionally, we will denote
slave particles and master particles to the material points of the slave and master surfaces,
respectively. With this notation in hand, we will require that any slave particle may not
penetrate the master surface, at any time ¢ € I. Although in the continuum setting the
slave-master notation plays no role, in the discrete setting this choice becomes important.

Contact surfaces parametrization. Let A® C R™im~! be a parent domain for the
contact surface of body B(®). A parametrization of the contact surface for each body B(®)
is 1nt10duced by a family of (orientation preserving) one-parameter mappings indexed by
time, 9{? : A® ¢ R™im~1 _ R™im such that I'(®) = g’ )(A(”) and F @ = D (A0,
Using the mapping composition rule, it also follows that 1,bt = got zpo . It will be

assumed in what follows that these parametrizations have the required smoothness condi-
tions.

Within the slave-master surface role, focuss will be placed on the parametrization of
the master surface. Using the parametrization of the contact surfaces introduced above
we consider a point & := (£1,£2) € AP of the parent domain, such that

Y =92,  yi=v2)

15)
2 2 (
Eo:=9§E),  eai=piae)

where Y and y are, respectively, the reference and current placement of a master particle
and E, and ey, oo = 1,2 are the convected surface basis attached to the master particle
Y € I'®, on the reference and current configuration, respectively. Here (-) , denotes
partial derivative with respect to £%.

Closest-point-projection map and normal gap. Let Y . '™ 5 1M be the closest-
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point-projection map defined as

V(X,t) = arg_min {[lo{"(X) - ot (V)]I}, (16)
Yer®
and set ~ . o
v =V(X,t), gi=¢(Y) (17)

where ¥ € 7(2) is the closest-point projection of the current position of the slave point X
onto the current placement of the master surface I’ (), Let gn := gn (X, t) be the normal
gap function defined for any slave particle X € I' (1) and for any time t € I as

gn = gn(X,t) =[] - v (18)
where [¢] = cpgl)(X ) — <p§2) (Y) gives the jump of the deformation map at the contact
surface and v : 7 — S2 is the unit outward normal field to the current placement of the
master surface particularized at the closest-point projection § € v,

Convected basis, metric and curvature tensors at the closest-point pro jection. Asso-
ciated to the closest-point projection given by (16), for some point £ := (€1,€2) € A®) of
the parent domain we will have

v =92, g=v"@ (19)

Attached to the master particle Y € I" (2) we define the convected surface basis on the
reference and current configurations, respectively, as

T(;ef = Ea(g—) ) Ty = ea(g) (20)

Additionaly, the unit outward normals yref € 82 and v € S? at the master particle
¥ on the reference and current configurations, respectively, can be defined as

Fof T{ef X 'r;ef L TIX T 01
v T ref ref| M= H % “ ( )
|71 x | Ty X Ty

The vectors 77/ € Ty S? and 7, € T,,8?, o = 1,2 span the tangent spaces T,rerS? and
T, 52 to the S? unit sphere at ©"¢/ and v, respectively. Here the tangent space to the 54
(it sphere at v € S is defined as

T,5% .= {v ¢ R™™ : dv-v =0} (22)

The convected surface basis vectors 'r;ef and 7, o = 1,2, augmented with the unit
outward normals v7¢ and v, provides local spatial frames at the master particle Y (X,t)
on the reference and current configurations, respectively.

The convected surface basis vectors 77¢/ and 7,, @ = 1,2, induces a surface metric or

first fundamental form on the reference and current configurations, defined respectively as

Map = rref 'Tgef , Mg = Ty " Tg (23)
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Inverse surface metrics M*P and m®P are defined in the usual manner. Additionally,
dual surface basis on the reference and current configurations are straightforward defined
respectively as

7‘6f - Maﬂ Te'f 5 Ta = maﬂTﬁ (24)

The variation of the convected surface ba31s along the convected coordinates, together with
the unit normal, induces the second fundamental form or surface curvature defined, on the
reference and current configurations, as

kg = Eap€) v, kepi=eap) v (25)

(B) Local form of energy balance equation. The local form of the energy balance
equation at the contact surface take the form, see LAURSEN [1998],

OcH, = QWM + QP + D¢ iy on I'MxI (26)

where @, > 0 is the absolute contact temperature, H. the contact entropy per unit ref-

erence surface I'(Y), an), a = 1,2 are the outward normal nominal heat fluxes on the
contact surface of bodies B, a = 1,2, per unit reference surface I'¥) and D int is the
contact internal dissipation per unit reference surface IV,

(C) Dissipation inequalities. The contact specific entropy H. is defined via constitutive
relations, typically formulated in terms of the contact internal energy FE., and subjected
to the following restriction on the contact internal dissipation, see LAURSEN [1998],

Dejing i= —tW - [V]+ O H. —E. >0 on I'VxI (27)
where [V] := V() — V() denotes the jump in the material velocities field accross the

contact surface and (1) is the nominal contact traction on I'%),

Introducing the nominal contact pressure ¢, as the projection of the nominal traction
t( onto the unit normal v, and nominal frictional tangent traction components tr, ON
the convected dual basis 7%, @ = 1,2, as (minus) the projection of the nominal traction
t( onto the convected basis T4,

. N = t(l) U, tTa = —tb 1) *Ta (28)
and using the expressions
gn = —[[V]] "V, g%|g1\r=0 = IIV]] T (29)
and the following relation holds
—tW . [V] = tngn + tradf (30)
the contact internal dissipation given by (27) takes the form
Deint ‘= tNIN +trais+OcH, —E. >0 on I'MxI (31)

The outward normal nominal heat fluxes an), a = 1,2, are subjected to the following
restriction on the dissipation by conduction

QM

5
Dc,con = @(1) (@(1) -6 ) (@(2) @c) Z 0 on F(l) x I (32)

e2)
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(D) Thermofrictional contact constitutive equations. Phenomenological frictional
models adopt a local additive decomposition of the tangential gap into elastic and plastic
parts. Frictional hardening mechanisms taking place at a microstructural level are charac-
terized by an additional set of phenomenological internal variables collectively denoted here
by (. Furthermore, an additive split of the local contact entropy into elastic and plastic
has been adopted, following a parallel approach to the bulk continua case. The above con-
siderations, motivate the following additive split of the tangential gap gr, = g%* + g4,
a = 1,2, and contact local entropy per unit reference surface H, := HS + H? and the
following set of frictional internal variables G% := {g7.,, H?, Ccp}

The internal contact energy function Ec per unit contact surface I'") depends on the
normal gap, the elastic part of the tangential slip g7%, the frictional hardening internal
variables (.4 and the configurational contact entropy H¢, taking the functional form £, =
E (95> HE ch) Introducing the functional form of the contact internal energy into the
expression of the contact internal dissipation, taking the time derivative, applying the
chain rule and using the additive split of the tangential gap and total contact entropy, a

straightforward argument yields the following contact constitutive equations and reduced
internal dissipation inequality

tn = 0y E (gN,g%aaHgaCCﬂ)a
13 a — ag%"Ec(gN7g§“ache)Ccﬂ)7

& ca pe (33)
Oc = On: E (QN>QT , H, Ccﬁ)
qC ‘:—aCc,@ (gN,gT chaCCﬁ)
Dc,int = Dc,mech + Dc,ther >0, with
(34)

Dc,mech = tTagg“a + QEéCﬁ >0 and Dc,ther = @ch

Using the Legendre transformation ¥, = E. — ©.H¢, the contact free energy function
takes the functional form ¥, = @C(gN, g%",@c,g‘cﬁ). Taking the time derivative of the
contact free energy function and applying the chain rule, a straightforward argument yields
the following alternative expressions for the contact constitutive equations

)

tn = OgyPe(gn, 95, Oc, Cep),
o = Ogzathe(gn, 95%,0c, Cep),

HE = — 0o,%c(9n, 95, Oc, Cep)s

qc = acc,ﬂ/}c(gN,gT 7607Ccﬂ)

Constitutive equations for the (nominal) normal heat conduction fluxes per unit ref-
erence contact surface I (1) are given by

Qg,lgond = hgo)nd(tNa @c) gg) with g(@l) = @(1) _ @m

(36)
Qg,zc)ond h’go)nd( @c> g((.;) with 9(92) = @(2) _ @c,
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where ihzﬁz?ld(tN,@c) > 0, a = 1,2, is the heat transfer coefficient of the surface )
a = 1,2, assumed to be a function of the contact pressure and the contact temperature.
Note that (36) allows that the contact dissipation by heat conduction restriction given by

(32) is unconditionally satisfied.

Assuming a slip function of the form &, = @C(t Ny tT o Oc, ¢2), the evolution laws of
the plastic internal variables take the form

gg’a =% 8tTa@C(tN’ tTav @Ca CI?),
ﬁg =Ye a@céc(t-’v: tTaa Qca qg)a (37)
C.cﬁ = Ye 8qcﬁéc(tNa tTou @ca Qg):

and the following Kuhn-Tucker v, > 0,9, < 0,7.P. = 0 and consistency 764.5(; = (0 condi-
tions must be satisfied for a rate-independent frictional model.

REMARK 4. Equivalent forms of the energy balance equation.  Using the additive split of
the total contact entropy into elastic and plastic parts and the additive split of the contact
internal dissipation into mechanical and thermal, the reduced contact energy equation can

be expressed as )
OHE = QP + QP + Demecn  on I'D <1 (38)

Alternatively, using the constitutive equation of the contact elastic entropy, taking its
time derivative and applying the chain rule, the temperature-form of the reduced contact
energy equation can be written as

ceo Oc = QW + QP + D pmeen — HF® on 'MW x1 (39)

where the reference contact heat capacity cqo and the frictional contact heating H7/¢ take
the form

Cep = _@caczaceciﬁc(gNa g%a’ Oc, Ccﬁ)a (40)
ch = _@c [ aéc gN’J;C(gNa g%a, @ca CCﬁ) ’ g'n
+ag)cg%a¢c(gN,g%a,@chﬁ) g%a (41)

+ 03, ¢, Vel9n, 95, Oy Cop) - Lo 1,
or, alternatively, using the constitutive equations (35),
CCO — @C a@CHg,

o | - (42)
HIC = -0, a@c (tngn +trodr — Dc,meciL)- O

2.4. A Thermofrictional constitutive model

Here the following thermofrictional constitutive model described in Box 4 and Box 5
is considered. Coupled thermofrictional behaviour is considered within the thermofrictional
hardening potential.
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Box 4. Thermofrictional constitutive model. Free energy function

m Free energy function

Q;C(QN, g%a’ Oc, Cc) = Wc(gNa g%a) + Tc(@c) + KC(CC) @c)

i. Linear hyperelastic response (ey > 0, ex > 0),

A

" 1 1 e .
Wc(gNag% ) = §5N<QN>2 + §€TQT MaﬁgTﬁ«

ii. Thermal contribution (c. > 0),

T.(0c) == ce[(Bc — Op) — Oclog(O:/O0)].

iii. Hardening potential,

m

A 1 . -
Kc((ey Oc) = Z - 1,un(90) CeFs

n=1

2.5. Variational formulation

Using standard procedures, the weak form of the momentum balance (we will assume
the quasi-static case for simplicity) and reduced energy balance equations in {2 x I take
the following expressions:

(o, GRAD[mo]) — (B, m0) — (Emo)r, — (¢, 05"} rw = (¢, 16”) peey = 0
(OH®, Co) — (Q, GRAD[Co]) — (R + Dmech o) + (@ Co} (43)

+(@ N®,¢pay +(@- N®,¢”) peny =0
which must hold for any admissible di§placement and temperature variations 1o and (o,
respectively. Here (-, -) denotes the Lo(f2)~inner product and with a slight abuse in notation
(-1, {-,*)rg and (,-)pw@ denote the La(Iy), Lo(I'g) and Lo(I'®))—inner products on
the boundaries I, I'g and I’ (@) respectively. For the sake of notation compactness, it is

implicitly asssumed that 2 := U2_,2(®), I}, := Uizlﬂga) and I'g = Uizlféf).
Using the equilibrium of forces at the contact interface and introducing the (nominal)

contact heat fluxes le) and ng) per unit reference surface I' (1) the following expressions
hold

ED 08 ray + ¢, 0 pe =0
(@ N ¢y — (@D, ¢y pay =0 (44)
(Q-N®, Cé2))p(2) —(QY, Céz))r(l) =1
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Box 5. Thermofrictional constitutive model. Thermofrictional response

m Thermoelastic response

i. Contact pressure and frictional traction,

tn = en(gn),

ITq = GTMaﬂgile’B~

ii. Elastic entropy,

3

Hce = Cc 1Og c/@O <—n+1.

m Thermoplastic response

i. Slip function,

éc(tNa 1%/ P 907 QC) = “tg“”ref - (ﬂO(@c) - QC) tn,
where ||t%]|ef = (tTaM"ﬂtTﬁ)l/2.

ii. Hardening variable ¢. conjugate to (.,
m

@ i= O b=~ hn(©
n=1

iii. Linear thermal softening,

fin(0c) = in(©0)[1 — wp(Oc — )], n=1,m.

iv. Frictional mechanical dissipation,

Dc,mech = Ye ﬂO(@c) In.

Using (44) the weak form of the balance equations (43) take the form:
(o, GRAD[no]) = (B, m0) = (Emo)r, — (¢, 5" = 16”)rew =0

(OH®, (o) — (Q, GRAD[Co]) — (R + Dimech, o) + (@ Co)rQ (45)
+4Q0, ) re + (@, 66" pw = 0

where it is pointed out that all contact contributions are parametrized in terms of the
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contact surface IV,

Similarly, the weak form of the reduced energy balance equation on I'") x I take the
form:
<@Cﬁ§7 CCO)F(U - <Qg1) + Q((:2)’ CCO>1"(1) - <Dc,mecha CcO)F“) =0 (46)
which must hold for any admissible contact temperature variation (.

Adding the weak form of the energy balance on I’ (1) x T given by (46), to the weak
form of the energy balance in 2 x I given by (45)2, the following alternative expressions
are obtained

(o, GRAD[no]) — (B, m0) — (£, mo)r, — (tV, 7) >F =
<@H6,<o>—<Q,GRAD[<01>—<R+Dmech,co> < Co)rg
Ceo)
)

(47)
+ (Q(l) C(l) Ceo) v + (Q?) (2) _ c0) (L)

<@cH§a Cco)]“(l) - <Dc mech Cco L) = =0

3. TIME INTEGRATION OF THE
COUPLED THERMOPLASTIC PROBLEM

The numerical solution of the coupled thermomechanical IBVP involves the transfor-
mation of an infinite dimensional dynamical system, governed by a system of quasi-linear
partial differential equations into a sequence of discrete nonlinear algebraic problems by
means of a Galerkin finite element projection and a time marching scheme for the advance-
ment of the primary nodal variables, i.e. displacements and temperatures, together with
a return mapping algorithm for the advancement of the internal variables.

Here, attention will be placed to the time integration schemes of the governing equa-
tions of the coupled thermoplastic problem. In particular, we are interested in a class of
unconditionally stable staggered solution schemes, based on a product formula algorithm
arising from an operator split of the governing evolution equations. These methods fall
within the classical fractional step methods.

3.1. Local evolution problem

Consider the following (homogeneous) first order dissipative local problems of evolu-
tion, see SIMO [1994], AGELET DE SARACIBAR et al. [1997], LAURSEN [1998],

i. Evolution problem in {2 x I. Consider the local dissipative problem of evolution for
the (homogeneous) thermoplastic problem, written as

d

—Z=A[Z,T] in 2x]I,
dt ~ (48)
Z|t:0 = ZO in Q,
along with
drp—pr[Z I'l in 2x1 Ly G'[Z,I'] in 2x1
dt " and  dt ’ ’ (49)

I'?|;_o=0 in {2, I'’|;—o =0 in {2,
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where Z, lying in a suitable Sobolev space Z, is a set of primary independent variables,
I' := {I'’, '} is a set of internal variables, A[Z, I'| and G[Z, I'] are nonlinear operators
and vy > 0 is a plastic multiplier.

ii. Evolution problem on I'™ x I. Consider the dissipative local problem of evolution
for the frictional contact problem, written as

jz AJ[Z,T] on I'Mx1, (50)
Zclt=0 = Zeg on F(l),
along with
%FG =9 Go[Z,T] on T'® x1, (51)
Iy =0 on 'MW,

where Z, lying in a suitable Sobolev space Z., is a set of primary independent variables,
I is a set of internal variables, A.[Z, I'| and G.[Z, I'] are nonlinear operators and v, > 0
is a frictional multiplier. Additionally, collecting variables and using a compact notation,
we introduce the following set of variables, Z := {Z, Z.} and I := {I", I.}, and nonlinear
operators, A[Z, I'] := {A[Z, T, A.[Z, F]} and G[Z,T') :={G[Z,I',G.[Z,T]}.

In the formulation of the fractional step method described below, it is essential to
regard the set of internal variables I' as implicitly defined in terms of the variables Z via
the evolution equations. Therefore Z are the only independent variables and their choice
becomes a crucial aspect in the formulation of the fractional step method. We refer to

SIMO [1994], AGELET DE SARACIBAR et al. [1997] and LAURSEN [1998] for further
details.

Motivated by the structure and the design constraints of the isentropic split described
below, we consider the following set of conservation/entropy/latent heat variables Z

Z:={Z,2.}, (52)

where

Z :={p,p,H*, H?,L} in 2 x1I,
Z.:={H H?} on I'™M T,

along with the set of plastic strain/hardening/viscous and frictional slip/hardening vari-
ables I' defined as

I':={r,I.} with I':={I? 1"}, (54)

where

I'? .= {€f, &y} and I'Y := {dev[a], tr[a]} in 2 x I,

95
I = {97",{cp} on I'M xT. (55)

Here ¢ is the deformation map, p := pyV denotes the material linear momentum, H¢
and H? are the elastic entropy (including phase change contributions) and plastic entropy
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per unit reference volume, respectively, L is the latent heat per unit reference volume,
€P the plastic strain, &, the strain-like hardening variables and « the viscous strains.
Additionaly, H¢ and H? are the elastic and plastic contact entropy per unit reference
surface, g the plastic slip and Ccg the frictional hardening variables.

All the remaining variables in the problem can be defined in terms of Z and T by
kinematic and constitutive equations. In particular,

i. The elastic strain €® := € — €P.

ii. The Cauchy stress tensor o := O E (e, H®, &y, o) and stress-like hardening variables
g = —8§QE(66,H5,£a,a).

iii. The temperature © := dge E(e, H, &4, o) and nominal heat flux Q@ = —K GRADIO].

iv. The normal gap gn := —[¢] - v and tangential gap g7 given by the time integration
of §¢ :=[V] 1%

v. The nominal contact pressure ty = 04 NE'C(g Ny 9% HE, Ce ﬁ), nominal frictional trac-
tion tr, = ngfaEC(gN, 95%, HS,Ccp) and conjugate of the frictional hardening vari-
able qc ‘— —8Cc Ec(gN) g’%aa Hgv Ccﬁ)

vi. The contact temperature ©, = One E.(gn,95% HE, Cep)-

(A) Thermoplastic/viscous nonlinear operators in 2 x 1. With these definitions in
hand, and assuming zero body forces and zero heat sources, the governing evolution equa-
tions of the thermoplastic/viscous problem can be written in the form given by (48)
and (49) where the thermoplastic/viscous nonlinear operators A[Z, T and G[Z,I'] =
{GP[Z,I'),G"[Z, I']} take the form

P
DIV[e]
A[Z7 F] = _%DIV[Q] + épmech

1
’@_Dther (56)
HPe

[ 0:%(5,¢%,0) . | gdev(B]
GPlZ,I): = {aqaé(a,qa,@) } G'(Z,T):= { e i [

nvol
v

where the phase-change heating H?° is given by
HP 1= —002 o WU1pe(O) - O, (57)
and the mechanical dissipation Dyecn, and thermal dissipation Diper are given by
Drech i= 7P : GP[Z,T) + X : G*[Z,T] >0,  Diper :=1000%(c,*,0), (58)

where, using a compact notation, we have denoted as »rT .= [oT, %] and 2T
[dev[B]T, 3tr[3]] the generalized plastic and viscous stress tensors, respectively.
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(B) Thermofrictional nonlinear operators on I'™ x I. With the above definitions in
hand the governing evolution equations of the thermofrictional problem can be written in
the form given by (50) and (51) where the thermofrictional nonlinear operators A.[Z, I'|
and G[Z, I'] take the form

A ] { QW+ ?9) + 5 Pmch } |
A @_ch,ther (59)
G [Z 1_"] — { atTa?c(tNatTou@caqg) }
T 0,08t tra, O df) [

where the contact mechanical dissipation D, mecn, and thermal dissipation D ¢pe, are given
by

Dc,mech = tTagg"a + qgécﬂ 2 07 Dc,ther = Ye @c a@cgic(tN7 tTaa @ca qcﬁ) (60)

3.2. A-priori stability estimate

For nonlinear dissipative problems of evolution nonlinear stability can be phrased in
terms of an a-prior: estimate on the dynamics of the form

%a(z,m <0 for tel0,T] (61)

where L(-) is a non-negative Lyapunov-like function.

For nonlinear thermoplasticity featuring frictional contact behavior, see ARMERO &
SiMO [1993] and LAURSEN [1998], consider an extended canonical free energy functional
L(-) defined as

2
L(Z, f) = / [ﬂ + E(e®, H® €q, ) — OgH®)d2 + Voyi ()

2
4 [ Bulow, 95 HE, Cop) — G0 ] dr
r
and assume that the following conditions hold,
" 1. Zero heat sources, i.e., R =0,
ii. Conservative mechanical loading with potential Vez: (), i.€., DVegt-mo := —(B, mo) —

<£’ T’O>Fa )

iii. Dirichlet boundary conditions for the temperature field with prescribed constant tem-
perature @y > 0, i.e., @ = Og on I'g x [ and g = O, or Von-Neuman boundary
conditions for the heat flux with zero heat flux, i.e., @ =0 on I'g x [ and I'o = O, or
in general mixed boundary conditions satisfying (@ — @) =0 on I'o Uy x L
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Then, L(-) is a non-increasing Lyapunov-like function along the flow generated by
the thermoplastic problem and a straightforward computation shows that the following
a-priori stability estimate holds in I:

d .5 7 )
—E(Z, F) == —O_[Dm,ech + Dcon] dQ
dt )
O (63)
- / —[DC,mECh —|— DC,COTL] dF S O
rm O

This condition is regarded, see ARMERO & SIMO [1993], LAURSEN [1998], as a
fundamental a-priori stability estimate for the thermoplastic problem of evolution which
must be preserved by the time-stepping algorithm.

3.3. Operator splits

Consider the dissipative problem of evolution given by (48)-(51) with the associated
non-increasing Lyapunov-like function L(+) given by (62). Consider an additive operator
split of the vector field A = AD4L A with A = {A®), A} leading to the following
two sub-problems

Problem 1 Problem 2
Z =AWz, T, Z=A®|Z,T), ,_
I» =+ G?[2,T), I =~ G?(Z,T), (64)
Ire = G’v[z__wlja I = GW[Z_aIZL
I.=v. G.|Z,1), I.=~.G.JZ,TI).

The critical restriction on the design of the operator split is that each one of the
sub-problems must preserve the underlying dissipative structure of the original problem,
ie.,

%c(zm), r@y<o, a=1,2 (65)

where ¢ — (Z(®), I'®) denotes the flow generated by the vector field A(®) o =1,2.

Two different operator splits will be considered here. First, following ARMERO &
SiMo [19924,1992B,1993], see also LAURSEN [1998] for frictional contact problems, an
isentropic operator split, which satisfies the critical design restriction mentioned above, is
considered. This split is compared next with an isothermal operator split, which does not
satisfy the design restriction.

- (A) The isentropic operator _split._ Consider the following additive isentropic-based
operator split of the vector field A[Z, I

Az, F) =AYz, M+ A% Z, T, (66)

18€
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where we define the vector fields A = {Agl) AW

ise ise’) “c,ise

}and A?) .= (AP AP 1 as

ise ise’ “Tc,ise

poP 0
0 DLVie] @) . L
Aise[z’ F] = 0 ’ Aise[z’ F] = —éDIV[Q] + §Dmech ) (67)
0 éDther
0 HPe J

- oML o0 L L
ARz p= {0} Az E = {5 “L?CD”@CDC’M”}?\ (63)
o, c,ther

and consider the following two problems of evolution:

Problem 1 Problem 2
Z:AEZ:[Z’F]’ ZZAEQ[Z’FL
I'* =~ G*[Z,T), "=~ G?(Z,T), (69)
Y= G“[Z_, F_], F” — G“[Z_, F_],
I, =v.G.[Z,TI], I. =~.G.[Z,TI).

Within this operator split, Problem 1 defines a mechanical phase at fixed entropy and
Problem 2 defines a thermal phase at fixed configuration. Note that a strong condition
has been placed in the Problem 1, by the additional requirement that not only the total
specific entropy must remain fixed, but also the elastic and plastic entropy, as well as the
latent heat. Note also that the evolution of the plastic internal variables I" is imposed in
both problems.

Denoting by ¢ — (Z(®), I'(®)) the flow generated by the vector field A(ae), a=1,2,a

s
straightforward computation shows that the following stability estimates hold:

%ﬁ(Zu),f(l)):_/QDSZcth
/P . DI T <0, 7
%E(Z(z) rey= - /Q %[Dﬂcwpﬁi%]d(z 70)
- /m %[Dfﬁmw @), Jdr <0

where Dgr? e)ch’ Déﬁ% and ©@ are the mechanical dissipation, thermal heat conduction

dissipation and absolute temperature, respectively, and Dia%ecm D((;ac)on and @ﬁa) are the

contact frictional mechanical dissipation, contact heat conduction dissipation and contact
temperature, respectively, in Problem o, o = 1,2.
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Thus, the isentropic split preserves the underlying dissipative structure of the original

problem.
(B) The isothermal operator split. Consider the following additive isothermal-based

operator split of the vector field AlZ, T
AlZ,T):= AQ)(Z, T+ A)(Z, 1),

150

(71)

where we define the vector fields AE;Z) = {Agz), Agi)so} and Ag()) = {Agl, A(C?i)so} as

P 0
DIV[o] 0
ADZ, 1= SHe v, ADIZI)i= § ~3DIVIQ)+ & (Dmech = H) ¢
0 %Dther
0 H{Pe
(72)
1) 7 T L’ch (2) 7 T L( 511) + QEZ)) + 'L(Dc rech — erc)
Aciso[Z’F]::{@c }, Acis [Z,F]::{@c O, R0 }’
) 0 180 L’D
o, c,ther
(73)
and consider the following two problems of evolution:
Problem 1 Problem 2
Z = A4z, T, A Nl
I =y G2,1), PP —~ GYZ, 1), (74)
= G'[z,7T], "= G[z,T),
I. =v.G.Z, 1), I, =, Go|Z, T

Within this operator split, Problem 1 defines a mechanical phase at fixed temperature
and Problem 2 defines a thermal phase at fixed configuration. Note also, that the evolution
of the plastic internal variables I" is imposed in both problems.

Denoting by ¢ — (Z(®), I'(®) the flow generated by the vector field Ag?g, a=1,2,a
straightforward computation shows that the following stability estimates hold:

4z, FW) = - / PO 40+ / (1= 20 yergg
@ mec 0 PoYeN)

dt
©o

_ p) dF+/ 1- 20 yyreWgr 0,
/1*(1) F(l)( le)) £

c,mech
d . = - e e

il 2) @)= _— 20 1p(2) (2) _ — =0 ep(2)
L(Z®, T®) /9 =3 Disen + D12 /Q (1 - g HTPae

dt
e e
_/ - [DEQ) ech +D£230n]df - / (1 - (2) )HfC(Z)dF ﬁ 0,
r ’ r o

, M

(¢ @9)
(75
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where Dq(s 2 ch Dgg%, 24eP(®) and ©(®) are the mechanical dissipation, thermal heat conduc-

tion dissipation, structural elastoplastic heating and absolute temperature, respectively,

and ’Dgo;)wch, Dgﬂm, Hf @ and (9&"‘) are the contact frictional mechanical dissipation,
contact heat conduction dissipation, frictional hardening heating and contact tempera-

ture, respectively, in Problem o, o =1, 2.

The contribution of the structural elastoplastic heating and frictional hardening heating
to the evolution equations of each one of the problems arising from the isothermal operator
split, breaks the underlying dissipative structure of the original problem.

3.4. Product formula algorithms

The additive operator split of the governing evolution equations leads to a product
formula algorithm and to a staggered solution scheme of the coupled problem, in which
each one of the subproblems is solved sequentially. Remember that the set of internal
variables I is viewed as implicitly defined in terms of the set of variables Z, which are
considered to be the only independent variables. Therefore, our interest here is placed on
the time discrete version of the evolution equations (48) and (50), and the update in time
of the variables Z using a time-stepping algorithm.

Consider algorithms K(Aat)[-] being consistent with the flows ¢ — (Z, Iy, o = 1,2,
and dissipative stable, i.e. which inherit the a-priori stability estimate on the dynamics
given by (63). Then the algorithm defined by the product formula:

Kael] = (K& o KR))[] (76)

is also consistent and dissipative stable. For dissipative dynamical systems if each of the
algorithms is unconditionally dissipative stable, then the product formula algorithm is
also unconditionally dissipative stable. This product formula algorithm is only first order
accurate. A second order accurate product formula algorithm can be defined through a
double pass technique given by, see STRANG [1969],

1 2 i)
Kae[]= (KU, o K& o KL, )11 (77)

Note that, according to (75), algorithms based on the isothermal operator split will re-
sult in staggered schemes at best only conditionally stables and only an isentropic operator
split leads to unconditionally (dissipative) stable product formula algorithms.

3.5. Time discrete variational formulation

The use of an operator split, applied to the coupled system of nonlinear ordinary
differential equations, and a product formula algorithm, leads to a staggered algorithm in
which each one of the subproblems defined by the partition is solved sequentially, within
the framework of classical fractional step methods. We note that contrary to common
practice, the evolution equations for the microstructural internal variables are enforced in
both phases of the operator split, as in ARMERO & SIMO [1992B,1993] and SO [1994].
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A Backward-Euler (BE) time stepping algorithm has been used and two different operator
splits have been considered:

(A) Isentropic split. In the isentropic split, first introduced by ARMERO & SIMO
[1992A,19928B,1993], the coupled problem is partitioned into a mechanical phase at con-
stant entropy, followed by a thermal phase at fixed configuration, leading to an uncon-
ditionally stable staggered scheme. Additional design constraints of constant elastic and
plastic entropy and latent heat in 2 and constant elastic and plastic contact entropy on
I'M) have been introduced in the isentropic mechanical phase. An efficient implementation
of the split can be done using the temperature as primary variable. See ARMERO & SIMO
[19924,1992B,1993] and SiMo [1994] for further details.

i. Mechanical phase. The mechanical problem is solved at constant entropy. For the
sake of simplicity, only the quasi-static case will be considered here. According to the
definition of Z given by (52)-(53) and the operator split given by (66)-(69), the additional
design constraints of constant elastic and plastic entropy and latent heat in 2 and constant
contact elastic and plastic entropy on I'!)| have been introduced. The evolution of the
temperature and contact temperature can be computed locally. The time discrete weak
form of the momentum balance, local updates of elastic and plastic entropy, latent heat
and internal variables in {2 and elastic and plastic contact entropy and internal variables
on I'V, take the form:

(Gn+1, GRAD[10]) — (B, m0) — (Fnt1,m0)r, — E1, 18 =08y oy =0,

H€+1 — He
HP_ | = HP, _

it in 2 (78a)
Ln+1 = Lna

va+1 = I + Ynt1 éft-}-lv
771,)+1 - Iw + At Gn-i—la

Hcen+1 = Hcen’
cn+1 = HZ,, on ') (78b)

Fcn+1 =Ten + 70n+1 Gcn+1’

and the tempelatme and contact temperature are locally updated according to @77+1 =
One B(E 11, HE, €y yrr @ingr) and O, = Ope E (TNwyrr 5% HE s Conss ), Tespectively.

ii. Thermal phase. Using a BE scheme the time discrete weak form of the energy
balance equation, updated elastic and plastic entropy, latent heat and internal variables
in {2 and elastic and plastic contact entropy and contact internal variables on '), in the
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thermal phase, take the form:

$<8n+1(H5+1 - Hfz)a <O> - <Qn+1a GRAD[CO]) - (R + Dmechn-{—la C0>

+ <Qn+1,C0>FQ + (Qgi)ﬂ, (U — Ceo)rw + <Q§i)+17432) — Ceo) r(v)

1
+ Kt<@cn+1(Hsn+1 Hs ),CCO)I‘(U - <Dc,mechn+la Cco>[‘(1) = O-,

Hﬁ_{.l — (‘-)@Q/( n+1a@n+1a§an+la an—i-l)a in Q
At

H£+1 = H,,IZ + o +1Dthe1‘n+1a
n

Ln+1 = L(@n+1)
Fp +1 — = I+ Ynt1 Gn+1’
n—|—1 - Iw + At Gn-i—la

(79a)
e e At 1 2 At )
ch+1 = ch + 96n+1 (Qf(ln)+1 an)_,_l) an+1Dc,mechn+1,
At on I'W 79b
HEppq = Hep + @cn+1Dc’th”n+1’ (796)
Fcn—l—l - Fcn oy 'ch-}-l Gcn—i—la

where O¢y 41 = Oe Ec(gnpy1, 97031 HE s o

(B) Isothermal split. In the isothermal split the coupled system of equations is parti-
tioned into a mechanical phase at constant temperature in {2 and constant contact tem-
perature on I'M, followed by a thermal phase at fixed configuration. Note that, within the
context of the product formula algorithm, using the entropy form of the energy equation,
the elastic entropy and elastic contact entropy computed at the end of the mechanical
partition is used as initial condition for the solution of the thermal partition.

i. Mechanical phase. Noting that under isothermal conditions the plastic entropy,
latent heat and plastic contact entropy remain constant, the time discrete weak form
of the momentum balance equation, updated elastic and plastic entropy, latent heat and
internal variables in {2 and updated elastic and plastic contact entropy and contact internal
variables on I'") take the form:

| (Gnt1, GRAD[nq]) — (B, m0) — (tnt1,M0)1, — <t(l17n(()1) - "7((J )> w =0,

FI’I?L—i—l = _a@@(gfl—}-l’ @Tba £Qn+1; an+1)a
HP = = i, _

i in 2 (80a)
Ln+1 — Ln;

fvfﬂ =I7+ ’~Yn+1 éﬁﬂ,
17{+1 =TI, + At

n+17
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Hce n+1 - _8@ !pc(gNy1+1’§%?+1)@CnaCCn+1))
HP = HP

Cn+1 cn?

on I'M) (80D)
Fcn+1 - Fcn =+ 7Cn+1 écn+1'

It is pointed out that the design conditions én+]_ = O, and O
introduced in (80a)2 and (80b)1, respectively.

eny1 = Ocpn have been

ii. Thermal phase. Using a BE scheme the time discrete weak form of the energy
balance equation, updated elastic and plastic entropy, latent heat and internal variables in
2 and updated elastic and plastic contact entropy and contact internal variables on I"(})
take the form:

1
E <@n+1 (HS.{_l n+1) CO) <Qn—|—la GRAD[COD - <R + Dmechn+1a CO)
+ <Qn+1,<0>1_'q + (Q&)ﬂ,gm CCO>F(1) + <Q§i)+1,<(2) Cc0>F<1>
1 e
+ Kt<@cn+l(ﬂcn+1 cn+1) Cco) <DC,ﬂzechn+1aCc0>F<1) =0,
Hfl,—}—l 89@( €nt1s @n-i-la fan+17 an—{—l)a n .(_2
At
HP, = H? + D
n+l — @n—f-l thern41;

Ln+1 = L(@n—}-l)u
FTIL)+1 = IV + Ynt1 GIT)L+1’

n+1_Fv+At n+1’ 7/
(81a)
hard e At 1 (2) At fC
Hcen+1 ch+1 + @Cn+1 (an)+1 an+1) @Cn+l (Dc,mechn+1 - Hn+1)7
At on "M

Hc n+l — H + @C o Dc,thern+17

Iepy1 =TIy + Yen+1 Gcn+1' )
(81b)

Whel‘e @CTL+1 = aHgEC(gN’n,—}—l’ gT;il, HCeTL-I-l’ CCn+1)'

4. NUMERICAL SIMULATIONS

The formulation presented in the previous Sections is illustrated here in a number of
representative numerical simulations. The goals are to provide a practical accuracy as-
sessment of the thermomechanical model and to demonstrate the robustness of the overall
coupled thermomechanical formulation in a number of solidification examples, including in-
dustrial processes. The computations are performed with the finite element code COMET
developed by the authors. The Newton-Raphson method, combined with a line search
optimization procedure, is used to solve the nonlinear system of equations arising from
the spatial and temporal discretization of the weak form of the momentum and reduced
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dissipation balance equations. Convergence of the incremental iterative solution procedure
was monitored by requiring a tolerance of 0.1% in the residual based error norm.

4.1. Solidification of an aluminium ring into an steel mould

This example deals with the numerical simulation of the solidification of an aluminium
ring into an steel mould. FIGURE 1 shows the initial geometry of the part and the mould.
Assumed starting conditions in the numerical simulation of the casting process are given
by a completely filled mould with aluminium in liquid state at uniform temperature. The
initial temperatures of the aluminium part and the steel mould were 700°C and 200°C,
respectively. Only gravitational forces have been assumed. The aluminium used for the
part presents a sharp liquid-solid phase change between 659°C and 660°C.

FIGURE 1. Solidification of an aluminium ring into an steel mould. Initial
geometry of the part and the mould.

FIGURE 2A shows the four-noded axisymmetric finite element meshes, for both the
part and the mould, used in the analysis. FIGURE 2B shows the deformed configuration
at 90 s. of the analysis. A detail of the deformed mesh at the corner areas is shown in
FIGURE 3.

FIGURES 4, 5 and 6 show the distribution of temperature, solid volume fraction and
Von Mises effective stress, at different time steps. FIGURE 7 shows the location of different
selected points of the part and the mould, where the time evolution of different variables
has been monitored. FIGURES 8 and 9 show the time evolution of the temperature and
radial and vertical displacements, respectively, at the selected points shown in FIGURE 7.
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FIGURE 2. Solidification of an aluminium ring into an steel mould. (A)
Four-noded axisymmteric finite element meshes for the part and the mould at
the initial configuration; (B) Deformed finite element mesh at 90 s.

FIGURE 3. Solidification of an aluminium ring into an steel mould. Finite
element mesh at a deformed configuration of t=90 s. Detail of the deformed

mesh at the corner areas.
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FIGURE 4. Solidification of an aluminium ring into an steel mould. Temper-
ature distribution at different time steps.
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FIGURE 9. Solidification of an aluminium ring into an steel mould. Time
evolution of the radial and vertical displacement at some selected points of
the part and the mould.
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4.2. Solidification of an Al-3Mg Si alloy driving wheel into a green sand mould

This example deals with the numerical simulation of the solidification of an Al-3Mg
Si alloy driving wheel into a green sand mould. FIGURE 10 shows the geometry of the
part. Assumed starting conditions in the numerical simulation of the casting process are
given by a completely filled mould with an Al-3Mg Si alloy in liquid state at uniform
temperature. The initial temperatures of the alloy part and the green sand mould were
700°C and 20°C, respectively. Only gravitational forces have been assumed. The Al-3Mg
Si alloy used for the part presents a liquid-solid phase change between 590°C and 640°C.
Due to the geometry of the weel, only a 1 /5 section of the part and the mould has been
discretized, using around 25000 tetrahedral elements and 6400 nodes. FIGURE 11 shows a
view of the finite element mesh used in the analysis. The analysis has been carried out in
56 time steps of 15 s. each.

FicURE 10. Solidification of an Al-3Mg Si alloy driving wheel into a green
sand mould. Geometry of the solidified part.

Two different solidification positions, shown in FIGURE 12, have been analysed. FIG-
URES 13 and 14 show the distribution of the temperature and Von Mises equivalent stress
in the part at 840 s., respectively, for the solidification process on positions 1 and 2. As it
is shown in these figures, a faster solidification process is obtained using position 1, giving
a lower temperature distribution and higher Von Mises stresses. It is pointed out that the
actual manufacturing process corresponds to position 2 and the remaining of the results
will be presented only for this position.

FIGURE 15 shows the temperature evolution at selected points of the part and the
mould. A typical temperature plateau due to the release of latent heat during solidification
can be observed in these figures. Tt can also be shown that the points located at the core
(points D, E and F), take more time to solidify, up to 225 s. approximately, than the
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FicUuRE 11. Solidification of an Al-3Mg Si alloy driving wheel into a green
sand mould. Different views of the finite element mesh used in the discretiza-
tion of the part.

FIGURE 12. Solidification of an Al-3Mg Si alloy driving wheel into a green
sand mould. Solidification positions 1 and 2.

at the core (points D, E and F), take more time to solidify, up to 225 s. approximately,
than the points located at the rim and at the external part (points A, B, J and K), which
take up to 125 s. approximately.

FIGURE 17 shows the location of the sections AA’ and BB’ selected to show the plot
contours of different results at various time steps. FIGURE 18 shows the solidification
time on sections AA’ and BB’ .F1GURES 19 and 20 show the temperature distribution on
sections AA’ and BB’, respectively, at different time steps. FIGURES 21 and 22 show the
solid volume fraction distribution on sections AA’ and BB’, respectively, at different time
steps. It can be shown that the mushy zone occupes a vast area and there is not any
internal area with metal in liquid state. This is due to a very high initial cooling rate and
a large difference between the solidus and liquidus temperatures. FIGURES 23 and 24 show
the distribution of the Von Mises equivalent stress on sections AA’ and BB’ respectively,
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Temperature: Positions 1 & 2

FIGURE 13. Solidification of an Al-3Mg Si alloy driving wheel into a green
sand mould. Temperature in the part, at t==840 s., for solidification positions

1 and 2.
Von Mises stresses: Positions 1 & 2
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FIGURE 14. Solidification of an Al-3Mg Si alloy driving wheel into a green
sand mould. Von Mises equivalent stress in the part, at t==840 s., for solidifi-

cation positions 1 and 2.
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FIGURE 16. Solidification of an Al-3Mg Si alloy driving wheel into a green
sand mould. Temperature time evolution at selected points of the part and
the mould.
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FIGURE 17. Solidification of an Al-3Mg Si alloy driving wheel into a green
sand mould. Location of the sections AA’ and BB’ selected to show the
contours of different results at various time steps.

FicuRrE 18. Solidification of an Al-3Mg Si alloy driving wheel into a green
sand mould. (A) Solidification time on section AA’; (B) Solidification time
on section BB’.
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FIGURE 19. Solidification of an Al-3Mg Si alloy driving wheel into a green
sand mould. Temperature distribution on section AA’ at different time steps.
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FIGURE 20. Solidification of an Al-3Mg Si alloy driving wheel into a green
sand mould. Temperature distribution on section BB’ at different time steps.
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FIGURE 21. Solidification of an Al-3Mg Si alloy driving wheel into a green
sand mould. Solid volume fraction distribution on section AA’ at different

time steps.
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FIGURE 22. Solidification of an Al-3Mg Si alloy driving wheel into a green
sand mould. Solid volume fraction distribution on section BB’ at different

time steps.
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FIGURE 23. Solidification of an Al-3Mg Si alloy driving wheel into a green
sand mould. Von Mises stress distribution on section AA’ at different time

steps.
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FIGURE 24. Solidification of an Al-3Mg Si alloy driving wheel into a green
sand mould. Von Mises stress distribution on section BB’ at different time

steps.
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at different time steps.

5. CONCLUDING REMARKS

A formulation of coupled thermoplastic problems with phase-change and thermofric-
tional contact has been presented. The formulation has been consistenly derived within a
thermodynamic framework. Viscous strains and phase-change straining have been taken
into account. A particular J2 thermoplastic model has been considered in which the ma-
terial properties have been assumed to be temperature dependent. Operator splits of the
governing differential equations, and their nonlinear stability properties, have been dis-
cussed. Within the isentropic operator split, additional split design constraints have been
introduced. The formulation developed has been applied in a number of representative
numerical examples, including industrial solidification processes.
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APPENDIX I. THERMOPLASTIC RETURN MAPPING ALGORITHMS

In this appendix we summarize the main steps involved in the thermoplastic return
mapping algorithms for the mechanical and thermal problems arising from the isentropic
operator split. Note that for the mechanical problem an isentropic return mapping algo-
rithm is performed, while for the thermal problem the classical isothermal return mapping
is performed.

I.A. Mechanical problem

Step 1. Triwal state (kinematics). Given the initial data {e,,©,} and database
{€P, &, a,} at time t,, and prescribed €n+1 at time 41, set:

ptrial ,_ p
6n—i—l =€,
trial ,__
n+1l = 6”’
etrial ptrial

€nt+1 T €pp1 —€ny1
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and At
trial] .__ etrial
dev[ait%] = devla,] + — i@ Al Atdev[€”+1 anl,
Hn+1
At
l
tradriel] = trlom] + —grar — oy tl€n+1 — @]
trial €n+1 n
Knr—,ib—ai + At
At ~
~ trial ~
— ——————[8(07}7) — &(B0)]
e AL ’
WA trial dev trial trial
rial ,__ ev tria ria
Tppt1 = Tontl /2/1’71-{—1 )
trial .__ vol trial trial
Tf’vn—}—l = 77Un+1 /3K’n+1 )
and

(OIa) = Ba(OH) (OU1s! — Oreg) + 7 (O,
é(@o) = 3(1(@0)(@0 = @Tef) + eps(@o).

Step 2. Trial temperature. Compute trial (isentropic) temperature at time t,4+1 at
constant elastic entropy H,..
IF (constant material properties) THEN

trial ._ A etrial trial trial
@n+1 T @( n+1 £n+l’ n+1)

with HZ = ﬁe(eza@naénaan)’

ELSE
Solve for @Friel the implicit nonlinear equation:
n+1 p q
fre( etrial trml trial trial e __
H (En—i—l n+l 7§n+1 ) n+1) —H, =0
with HE := H®(€,, On, &ns n).
END IF

Step 3. Trial (generalized) stresses. Compute trial generalized stresses at trial tem-

= trial
perature ;17"

trial .__ triall __ o ~trial etrial
8 = devlo11] = 20,7 dev[en (1" — a,],

n+1
trial ,__ Atrwl ~trial trial N
pn+1 = Kp41 tl[ n-l-l - an] - n+1[ (@n—i—l ) - 6(90)]7
trial ,__ trial tm'al
Ani1 = —Ké(gn—{—l y Yn41 )’
where
T trial
~trial .__ Pn41 trial
n+l "7 o trial n+1>
n—+—1 + At
- trial
~trial ,__ kn+1 trial
1 1
ML e AT
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with
trial .__ dev trial/2 trial
Tun_+_1 = TMvpt1 K41
trial .__ vol trial trial
Tiin—i—l — llvn+41 /3'A€n+1’
and
A(@trial) =9 (@trial)(@trial o) ) 1 ePs (@tm’.al)
e(Ony1) =20 \Cn 41 n+1 ref € n+1 /s

£(60) = 3(G0) (0 — Ore) + €7* (Co).-

Step 4. Trial yield function. Compute trial yield function at constant temperature
O, as a consequence of the additional design constraint of constant plastic entropy.

ol A drial o y 2 i
aist = Bolrid, ¢, 0n) = llsiidl - \/; [vo(©n) — 41713

F Prial <0 THEN

Set (Vpt1 = ()Zﬁl and update database

RETURN

END IF

Step 5. Isentropic return mapping. Perform an isentropic return mapping algorithm
at constant elastic and plastic entropy.

IF (constant material properties) THEN
Solve for v,41 the implicit nonlinear equation:
Ppq1 = A(O'n+1, In+1,6n) =0 with

@n—i—l :@(624—1, HZJ En—i—la an—l—l)a

ELSE
Solve for yp4+1 and @41 the implicit nonlinear set of equations:

@n—i—l = Qs(o'n—i—l? dn+1, @n) == 07 }

€ —

He(en+1a@n+1a£n+1)an+1) - Hn 03

END IF
where
B o Pl trialy o SR —
n+l *— <irial Hsn—{—l H Un+1Yn+1 ’ 3[y0( n,) Qn—i—l]a
ﬂn+1

n+1 = _Ké (én—{-la @n+1)a

- 2
Ent1 = Sffﬁl + \/g')’n-kl,
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ﬁ’TH‘l trial A~ trial
Sn+1 = Ziar Sn+l — 2/1’n+17n+1nn+1 )
ru’n—{—l

Pn+1 = l%n+1tl‘[€n+1 - an] - ’%TH-l[é(@""rl) - é(QO)]7

At
devlan 1] = dev[a,] + ———sn41,
Un+1
At
tl‘[an+1] = tr[an] < vol 3pn+17
Un+1
with
trial
ﬂ N T'“n+1 " ﬂtrial L T/LTH-l ”trial
n+1 = n+1» n+1 *— trial n—+1>»
Thny1 T At Tl‘nrial +A¢
fipq = it
n+1 * Tnn+1 +At n+1»
and
e dev trial ,__ dev trial trial
Thnt1 = Toni1/2bng1s Tumyq = Mo /20 4%,
i vol
Ten+1 = 77vn+1/3"5n+1a
and

é(@n+l) = 3a(@n+1)(@n+l - Qref) + eps (@n+1)’
é(@o) = 3&(@0)(@0 — @ref) + €ps(@0).
Step 6. Update database and compute stresses.

P __p trial trial
€rt1 =€t T Vn+1Mpy,

: 2
Ent1=ETY + '\/;'Yn+1a

At At
Qnt1 = Qp + — Spy1 + ——— Pny1 13,
77U77,+1 nvn+1

_ ﬂn+1 trial ~ trial
Sn41 = ~trial Sn+1 - 2:u’n+17n+1nn+17
n+1

Prnt1 = Rnyitrf€nts — o] — Rpy1[€(Ong1) — €(O0)],
On+1 = Pn+1 ]-3 + Sn+41,

where

il = sirial|lsirigl

2(OL) = 3a(OiF) (OIS ~ O,ep) + e (O171%),

é(QO) = 3&(@0)(@0 - @ref) + eP? (@0)7
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and
T T trial
il — Hn41 m ‘atrial ._ Hn41 th’al
n+l *— — | ApHn+1s n+l trial n+1>
Tﬂn+1+At Thnil + At
A Tfin+1
K:n+1 = H’n—i—l?
Tony1 T Al
with

o dev trial ,__ dev trial trial
Thp41 = 77vn+1/2ﬂn+17 Tppt1 = Tt /2ﬂn+1 )

o vol
Ten+1 = nUn+1/3h3n+1'

I.B. Thermal problem

Step 1. Trial state (kinematics). Given the initial data {e,,©,} and database
{€8,&n, an} at time ¢, and prescribed {€,41,O,41} at time ¢, 1, set:

p trial . p
€n—}-l Totno
trial ,__
n+l *— fn,
e trial .__ p trial
€+l T €ny1 — €ng1
and Ad
trialy .__ e trial
dev[a,, 7] := dev[a,] + T—Wdev[€”+1 — Qg
Pn41
where

o dev
T[Ln+1 T 77'un+1/2,un+1'

Step 2. Trial (generalized) stresses. Compute trial generalized stresses at current
temperature ©,,4.

trial .__ trial] __ e trial trial
Spt+1 = deV[O’n+1 ] - 2/’Ln+1dev[en+l —Qni ]a
trial ,__ trial
Int+1 = —K§(§n+1 ’@n+1)'

Step 3. Trial yield function. Compute trial yield function at current temperature
Opits

. . % 4 . ) 2 i
it = Bttt et Ous) = I~ Llnol@rs) —
IF @irial < () THEN

Set (*)py1 = ()Z‘j_"ll and update database
RETURN

END IF
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Step 4. Isothermal return mapping. Solve for v,41 the implicit nonlinear equation:
Bpy1:=B(Ont1, ns1,Ont1) =0 with
) 2
Bpi1 = ||t || — 28n41Vnt1 — \/;[y0(9n+1) — @nt1];

2
fn—{—l — ::-}Z-%l + \/;7n+1,

qn+1 = —Kg (én—l—la@n—i—l)-

Step 5. Update database.

P ___p trial trial
€nt1 = €nt1 T Vnt1Mpi1s

" 2
En—i—l f:.:_ll + \/;’Yn-i—la

At At
Ony1 = Qp + —5o— Snt1+ ——or Pn+1 13,
Ton¥1 Tn¥1
where . .
nirial = airie /st
Snt1 = ST — 2 1 YnpiniiY,
Pry1l = Rnyitrfents — o) — Fint1[(Ony1) — €(O0)],
B(O47141) = 3a(OI) OLf3! — Orey) + 7 (OU)
&(60) = 3a(00)(O0 — Ores) + €7(60),
with -
~ HPn41
Hpy1 = Hn41
" Tpn+1 + AT
/% o Thn+1
1 1
n+ Thn+1 + At n+
and

dev

Tppt1 = 77’Un+1/2.un+1’

Thn+1 *— 77‘vn+1/3“n+1

Step 6. Plastic mechanical dissipation.

2 1 3
nvn—}-l 7vn+l
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APPENDIX II. THERMOFRICTIONAL RETURN MAPPING ALGORITHMS

In this appendix we summarize the main steps involved in the thermofrictional return
mapping algorithms for the mechanical and thermal problems arising from the isentropic

operator split.
II.A. Mechanical problem

Step 1. Trial state (kinematics) Given the initial data {gnn, 97o} and the database
{95, OcnsCcn} at time ¢,, and prescribed data {9Nns1, 9Ty} at time Epq, set:

patrial | pa
I9Tn+1 = 9T
trial ,__
Ccn+1 = Ccna
eatrial ,__ o p atrial
9Tn+1 = 9Tn+1 ~ 9Tnn1

Step 2. Trial contact temperature. Solve for @cfﬁﬁl the implicit nonlinear equation:

‘re e atrial trial trial e __
HS(gNn41:9Tn41 + Ocnti »Cent1) — Hen =0,

with Hcen = Hg(gNn,g%za@cnaCcn)'

Step 3. Trial (generalized) traction.

Loy lomnnl—loma)’ g 2
INp41 = g INp+1—9Nn ' Nn+1 Nn»

6N<gNn-|~1>; if INn+1 = 9YNn>
trial . __ e Btrial
tTa n+l 6T]\4C\fﬁn+1ng—{—1 ’
trial ,__ ? trial trial
ep+1 = — 8CCKC(<Cn+1 ’@Cn+1 )

Step 4. Trial slip function. Compute trial slip function at fixed contact temperature
O.,, to satisfy the design constraint of constant plastic contact entropy.
trial F ] i
@Cnr-iz—q = @C(th+1’ tTZ;a—{l—l’ Ocn; qczr—iz-all)
. p trial " il
= ”tT'n+1 Href — (f10(Ocn) — (chmrial ) tNnt1
. b trial - ial s
with HtTn.H lref = (tTZ%aq-lMgfltTtﬁrﬁﬁﬂl/Q-
F &% <0 THEN
Set (-)nt1:= ()44 and update database
RETURN

END IF
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Step 5. Isentropic return mapping. Solve for v, .1 and @,y the implicit nonlinear
set of equations:

A

@Cn-l-l = @c(th+1,tTa n+1s 6Cna qcn+1) = 07 }
HS(gNn_f_l; g’%z+1a 96n+1, CCn—}—l) - Hsn = 0’

where
gpcn_H = Ht%"n+1“7"6f - (ﬂo(@cn) - an—i—l) tNn+t1s

_ trial trial btrial
I gnsl =T gntl = Vont1 €T £ n+1/|ltTn+1 Hrefa
p atrial p trial

pa trial
ng+1 ng+1 + Yen+1 Mn+1 ﬁr'rzz(]:kl/||tTn+1 H?’ef’
trial
CCn—H — Ccnr_ﬁ + Yen41 th—}-la
an—|—1 = _aC (Ccn—}—l, an—i-l)ﬂ

with  |[t5,, 4 1llref = (trans1 My, 0 trpn) 2

Step 6. Update database and compute contact traction.

p atrial af trial p trial
ng+1 9T n+1 T Yen+1 Mn+1 tTﬁ n+1/||tTn+1 Hrefv

trial
Cent1 = Cent1 T Yent1 ENnt1s
- e
ITq n+l ‘= €T Ma,Bn+1 9T n+1s

en41 + :—8CC (Ccm—l,@cw—l)

I1.B. Thermal problem

Step 1. Trial state (kinematics). Given the initial data {gn,,, g7rq } and the database
{ng, ens Cen b @b time ¢,,, and prescribed data {gn, 1,970, 1} at time t,41, set:

patrial | pa
Tn+1l 9T n>
trial ,__
CCn-]—]_ O CCTH
eatrml _ p atrial
9Tn+1 = 9Tn+1 = ITn41
Step 2. Trial contact temperature. Solve for @cfl’i“ll the implicit nonlinear equation:
e trial e (1)tmal (2)trial
ch+1 ch - @ trml( c n+1 Qc n+1)’
cn+1
wheze trial trial l
, etrial ,__ fre e atria tria trial
ch+1 T e (gN'rH-l’ ng+1 @ n+1’5Ccn+1 )
e ._ fre
ch &= c(gNnang7QCnaCCn)a
ial . :
(rytreal (1) trial (1) trial
Qc n+l 7 h’cond(th-f-l’ 90n+1 )(@n+1 - @Cn+1 )’

2 2 il ial
QP = A (tnnyr, OTi) (68, — O triahy.
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Step 3. Trial (generalized) traction.

lf (gNn+1)2_<gN11)2_ if __’é
th+1 — 2 N gn n+l_gNn ! gNn+1 gNn"
N<gNn+1>; if gNn+1 = dNn>
trial e Btrial
tr Tan+l *— ETMaﬁn—i—lng-i—l )
trial trial tm’al
Qeny1 = — 3@} (CCn—{—l y Yen+1 )

Step 4. Trial slip function.

A

trial ,__ trial trial
ganJrl = (th+1’tTan+1’@Cn+1’ Cn+l)

trial "
= “tk’)fn+1 ||ref - (NO(Qchil) - QJLTJ-%I) INn+1
. trial . .
with  [[t5,,1) llrey = (it M tytr il )12,
1F &% <0 THEN

Set ()py1 = ()Zﬂl and update database
RETURN

END IF

Step 5. Isothermal return mapping. Solve for ., 11 and O, ;¢ the implicit nonlinear
set of equations:

gﬁcn_H = @c(th+1, tTa n+1> @cn+1a an_H) - 0,

At (1 2 At
Hgn—i—l Hgn o 90n+1 (an?—{-l + Q£72+1) et Dc,mechn_|_17
where
b s
gzsC'n+1 = ”tTn+1||ref - (NO(an—H) - 9cn+1) th,+1,

H§n+1 = ﬁg(gNn—}-l’ g%ﬁﬂ, Ocnt1, Ccn+1),
HZ,, = HE (9N, 95> Ocns Cen)s
Qilﬁﬂ = Bgzzd(th-H, 9cn+1)(9£}+)1 = Opa )
Q£272+1 = h((:i)nd(thH, @cn+1)(@§ﬁ1 — ap1)s
Dc,mechn+1 = Yent1io (@cn+1) th—i—l/Ata
trial trial p trial

tTa n+l = tTa n+1 ~ VYenst1 €T tTa n+1/”tTn+1 H7‘€f7

p atrial af trial p trial
ng+1 ng+1 +7 Yen+1 Mn+1 ,Bn+1/||tTn—|—1 ”TEf:

_ ~ trial
Ccn+1 - Ccn+1 + Yen41 th+1a

Gen+1 = —aCc C(Ccm-lv @cm—l)a
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with ||thn+1”T’€f = (tTan+1M7?-€1tTﬁn+l)l/2'

Step 6. Update database.

pa __ patrial afl trial p trial
I97n+1 = ITn41 + Yen+1 Mn+1 tTﬂ n+1/||tTn+1 Hv‘ef’
trial

CCn+1 = Ccn+1 + Yen+1 tNTH-l‘
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