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Abstract

Computation of compressible multi-fluid flows with a general equation of state using interface tracking and moving

grid approach is discussed in this paper. The AUSM+, HLLC, and Godunov methods are presented and implemented

in the context of arbitrary Lagrangian–Eulerian formulation for solving the unsteady compressible Euler equations.

The developed methods are fully conservative, and used to compute a variety of multi-component flow problems, where

the equations of state can be drastically different and stiff. Numerical results indicate that both ALE HLLC and

Godunov schemes demonstrate their simplicity and robustness for solving such multi-phase flow problems, and yet

ALE AUSM+ scheme exhibits strong oscillations around material interfaces even using a first order monotone scheme

and therefore is not suitable for this class of problems.

� 2003 Elsevier B.V. All rights reserved.
1. Introduction

Multi-material flows, where a moving interface exists between two immiscible fluids, can be found in a

variety of engineering problems. Development of numerically accurate and computationally efficient al-

gorithms for multi-material flow simulations remains one of the unresolved issues in computational fluid
dynamics. These flow problems are characterized by the existence of material interfaces. The modeling of

these complicated free boundaries poses a difficult numerical challenge, as they are either time dependent or

unknown a priori and determined as part of the solution. A number of numerical methods exist for solving

the interface problems: interface capturing methods (mixed cell methods) [5–9], level set methods [23,24],

volume of fluid and interface reconstruction methods [22], interface tracking methods [1–4,25], free-Lag-

range methods [26]. Unfortunately, there are still limitations and shortcomings attached to each of them. In
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general, for all these methods that allow mixed cells, the computation of thermodynamical variables such as

pressure, speed of sound, and temperature on mixed cells is difficult to achieve correctly. In particular, when

the equations of state for different materials are drastically different, a small error on the thermodynamical
variables can lead to collapse or meaningless of the computation. For all these methods where the interface

is represented and tracked explicitly either by marking it with special marker points, or by treating it like a

boundary, it is difficulty to handle very complex free surface problems, especially those involving interface

topological changes such as merging or breakup of the interface.

The objective of the research presented in this paper is to develop a numerical method for the com-

putation of compressible multi-material flow problems using the interface tracking approach. The devel-

opment of such numerical method is strongly motivated by the need to model underwater explosions.

Simulation of underwater explosions plays an important role in determining and assessing platform vul-
nerability and weapon lethality. Such task requires accurate prediction of target loading, which primarily

occurs as a result of the initial shock wave and subsequent bubble collapse. Numerical simulation of un-

derwater explosions represents a technical challenge, as it involves modeling several complex physical

processes: the propagation of the detonation wave through the high explosive; the expansion of the primary

shock wave into water; the pulsating behavior of the gas bubble; and the interaction of these shocks with

the near-by structure. These processes occur over vastly different time scales, from microseconds for the

detonation wave, to millisecond for the propagation of the shock in water, to second for bubble pulsation,

making 3D explicit Euler simulations expensive, if not impossible to model numerically at present.
In this paper, the computation of compressible multi-material flow problems is discussed using the in-

terface tracking approach where the surface separating different materials is explicitly tracked as a La-

grangian surface. The arbitrary Lagrangian–Eulerian (ALE) formulation in conjunction with an

appropriate equation of state for each material is used to solve the resulting equations on a moving grid.

Only those methods which can easily and simply accommodate general equations of state for real fluids can

be considered to solve this class of flow problems, which feature the existence of different equations of state,

which can be general, stiff, and in tabular form. Although a number of characteristics-based upwind

methods have been developed for solving compressible Euler equations in Eulerian formulation, their
accuracy and robustness for solving compressible Euler equations in ALE formulation are relatively un-

explored. In this work, the ALE formulation of AUSM+ [10], HLLC [11], and the approximate Riemann

Solver of Colella [12] has been described and implemented. The developed methods have been used for

computing a variety of multi-material interface problems, including an underwater explosion problem.

Numerical results indicate that even the first order ALE AUSM+ scheme experiences deficiencies: exhibit

oscillations around the material interface and lead to the collapse of calculation for the underwater ex-

plosion problem. On the other hand, both ALE HLLC and Godunov schemes are found to be able to offer

accurate and robust solutions for capturing strong shock, contact, and phase discontinuities on arbitrarily
moving grids.

The outline of this paper is as follows: In Section 2 the governing equations in the context of ALE

formulation are described. The geometric conservation law is then presented in Section 3. The ALE for-

mulation of AUSM+, HLLC, and Godunov schemes is described in Section 4. The results of our calcu-

lations for a variety of multi-material flow problems and the comparison of numerical solutions with

available analytical solutions and experimental data are presented in Section 5. Finally, the conclusions are

summarized in Section 6.
2. Governing equations

The unsteady compressible Euler equations for a moving control volume can be expressed in integral

form as
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Z
XðtÞ

UdXþ
Z
CðtÞ

FdC ¼ 0; ð2:1Þ

where XðtÞ is the moving control volume, and CðtÞ its boundary. The flow variable vector U and the inviscid

flux vector F are defined by

U ¼
q
qv
qE

0
@

1
A; F ¼

ðv� _xÞ � nq
ðv� _xÞ � nqvþ pn

ðv� _xÞ � nqE þ pv � n

0
@

1
A; ð2:2Þ

where q, p, and E are the density, pressure, and specific total energy of the fluid, respectively, and v is

the velocity vector of the flow. n denotes the unit outward normal vector to the moving boundary CðtÞ,
whose velocity is denoted by _x. In the following, u is used to denote the fluid velocity relative to the
interface velocity, i.e.,

u ¼ v� _x: ð2:3Þ

When _x ¼ 0, the system (2.1) and (2.2) corresponds to the Eulerian description of the conservation, whereas
_x ¼ v results in the Lagrangian description of the conservation, where the control volume moves with the

instantaneous fluid velocity. Because of the generality, or in other words, arbitrariness of the description

offered by Eqs. (2.1) and (2.2), the system (2.1) and (2.2) is often referred to as the ALE form of the

conservation laws.

This set of equations is completed by the addition of an equation of state (EOS) which establishes the
relationship between, at most, three thermodynamic variables. Here the EOS is taken to be of the form

p ¼ pðq; eÞ; ð2:4Þ

where the specific internal energy, e, is related to the specific total energy by

E ¼ eþ jvj2

2
: ð2:5Þ

Introducing the entropy, s, the speed of sound, c, is defined by

c2 � dpðq; sÞ
dq

����
s

¼ op
oe

p
q2

þ op
oq

; ð2:6Þ

where the partial derivatives on the right in Eq. (2.6) are with respect to the function p ¼ pðq; eÞ.
3. Geometric conservation law

When grids are moving and/or deforming, the conservation property may be violated unless the fol-

lowing geometric conservation law (GCL) is satisfied

oX
ot

�
Z
CðtÞ

_x � ndC ¼ 0: ð3:1Þ

The GCL can be easily derived by assuming uniform velocity and density fields in the continuity equation.

Clearly, GCL will ensure free stream capturing with moving and/or deforming grids. The GCL may be

satisfied by either explicitly updating the volume XðtÞ through an evaluation of Eq. (3.1) or implicitly

defining the control surface area CðtÞ as a weighted average of the n and nþ 1 time level areas such that
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Eq. (3.1) is satisfied automatically by construction. Geometrically conservative formulas for a general

polygons and polyhedra used in finite volume schemes can be found in Zhang et al. [13] and Nkonga et al.

[14]. A more general treatment of the GCL is presented by Lesoinne et al. [15], which recovers the time-
averaged normal formulas for polygons and polyhedra derived in [13,14].
4. Numerical methods

The governing equation (2.1) is discretized using a finite volume cell-vertex formulation, where the cell-

averaged variables are stored at the vertices of the grid. The control volumes are non-overlapping dual cells

which are constructed by the median faces of the tetrahedra in 3D and the triangle in 2D. The finite volume
approximation of the governing equation (2.1), applied to the control volume around a node i becomes

dðXUÞi
dt

þ
Z
Ci

FdC ¼ 0; ð4:1Þ

where Ci is the boundary of the control volume Xi. The flux integral in Eq. (4.1) is evaluated by summing all

the contributions over the cell interfaces between the node i and its neighboring node j, Cijð¼ Ci \ CjÞ. Eq.
(4.1) can then be rewritten in a compact form as

dðXUÞi
dt

¼ Ri; ð4:2Þ

where Ri is the right hand side residual,

Ri ¼ �
X
j

Z
Cij

FdC: ð4:3Þ

The numerical fluxes on the interface Cij are approximated at the mid-edge of the edge ij, and the integral

along the interface can then be evaluated asZ
Cij

F � ndC ¼ FijCij; ð4:4Þ

where Cij denotes the magnitude of the interface.
Over the last two decades characteristic-based upwind methods have established themselves as the

methods of choice for prescribing the numerical fluxes for compressible Euler equations. However, many

popular and enduring methods such as Roe�s flux-difference scheme [16] and van Leer�s flux-vector scheme

[17] cannot be easily modified to solve the compressible Euler equations with a general EOS, as they are

primarily derived under the assumption of ideal gas EOS. The three methods considered here, AUSM+ [10],

HLLC [11], and approximate Godunov [12] share the same feature that they all can easily and simply ac-

commodate general EOS: a necessary requirement for the problems to be solved. Although the three upwind

schemes have been proven to be accurate, simple, and robust for solving unsteady Euler equations on fixed
grid, their applicability, accuracy and robustness for solving compressible Euler equations in ALE formu-

lation are relatively unexplored. The primary objective of this effort is to examine the performance, ro-

bustness, and accuracy of these schemes for solving unsteady compressible Euler equations on moving grid.

The most remarkable feature of the ALE formulation is that grid motion may be arbitrarily specified.

This flexibility is often exploited to solve the moving boundary problems, such as wing flutter, periodic

pitching of an airplane, and store separation from flight vehicles, where the grid velocity at the moving

boundary is defined by the moving boundary motion. Alternatively, by appropriate definition of the grid
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velocity, a Lagrangian surface can be established in the computational domain for the purpose of distin-

guishing and tracking material interface boundaries. By definition, a Lagrangian surface is established at a

control surface by setting the interface velocity equal to the fluid velocity at the interface. This can be done
as long as the fluid velocity is defined and continuous. After specifying the grid velocity at one point, for

example, at a domain boundary or a contact surface, then it is usually a simple matter to construct a

suitable distribution of grid velocity at all other points in the domain.
4.1. AUSM+ scheme on moving grids

The flux vector in ALE formulation can also be written as

F ¼
u � nq

u � nqvþ pn
u � nqH þ p _x � n

0
@

1
A; ð4:5Þ

where H ¼ E þ p=q is total enthalpy. The basic ideal behind Liou�s AUSM+ [10] scheme is to recognize

convection and acoustic waves as two distinct processes and consists in treating them separately

F ¼ Fc þ Fp: ð4:6Þ

In the ALE formulation,

Fc ¼ MrcU; U ¼
q
qv
qH

0
@

1
A; Fp ¼

0

pn
p _x � n

0
@

1
A; ð4:7Þ

where Much number relative to the interface velocity Mr ¼ ðu � nÞ=c and the term p _x � n appears. In fact,

this term can be splitted as a pure pressure term because _x, i.e., the interface mesh velocity, has the same

value on the left and on the right of the interface. The numerical flux of the AUSM+ at the interface ij,
when generalized to accommodate an interface moving with velocity _x, can be expressed as

FAUSMþ
ij ¼ 1

2
½MrijcijðUi þUjÞ � cijjMrijjðUi �UjÞ� þ

0

pn
p _x � n

0
@

1
A

ij

; ð4:8Þ

where the numerical speed of sound at the interface cij is computed by the simple average formula

cij ¼
1

2
ðci þ cjÞ: ð4:9Þ

Let

Mri ¼
ui � n
cij

; ð4:10Þ

and

Mrj ¼
uj � n
cij

: ð4:11Þ

The interface Mach number and pressure are then computed as a sum of two individual components,
respectively,

Mrij ¼ Mþ
ð4;bÞðMriÞ þM�

ð4;bÞðMrjÞ; ð4:12Þ
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pij ¼ Pþ
ð5;aÞðMriÞpi þP�

ð5;aÞðMrjÞpj; ð4:13Þ

where the split Mach numbers are defined as

M�
ð1ÞðMÞ ¼ 1

2
ðM � jM jÞ; ð4:14Þ
M�
ð2ÞðMÞ ¼

M�
ð1ÞðMÞ; if jM jP 1;

� 1
4
ðM � 1Þ2; otherwise;

(
ð4:15Þ
M�
ð4;bÞ ¼

M�
ð1ÞðMÞ; if jM jP 1;

M�
ð2ÞðMÞ½1� 16bM�

ð2ÞðMÞ�; otherwise;

(
ð4:16Þ
P�
ð5;aÞðMÞ ¼

1
M M�

ð1ÞðMÞ; if jM jP 1;

�M�
ð2ÞðMÞ½ð2�MÞ � 16aMM�

ð2ÞðMÞ�; otherwise;

(
ð4:17Þ

with a ¼ 3=16, and b ¼ 1=8.
This AUSM+ scheme has been used to compute the unsteady flows with moving boundaries and yields

reasonably good results [18].
4.2. HLLC scheme on moving grids

The particular version of the HLLC flux [11] used in this work is defined by

FHLLC
ij ¼

Fi; if Si > 0;
FðU�

i Þ; if Si 6 0 < SM ;
FðU�

j Þ; if SM 6 06 Sj;
Fj; if Sj < 0;

8>><
>>: ð4:18Þ

where

U�
i ¼

q�
i

ðqvÞ�i
ðqEÞ�i

0
@

1
A ¼ 1

Si � SM

ðSi � uniÞqi

ðSi � uniÞðqvÞi þ ðp� � piÞn
ðSi � uniÞðqEÞi � piuni þ p�SM

0
@

1
A; ð4:19Þ
U�
j ¼

q�
j

ðqvÞ�j
ðqEÞ�j

0
@

1
A ¼ 1

Sj � SM

ðSj � unjÞqj

ðSj � unjÞðqvÞj þ ðp� � pjÞn
ðSj � unjÞðqEÞj � pjunj þ p�SM

0
@

1
A; ð4:20Þ
F�
i � FðU�

i Þ ¼
SMq�

i

SMðqvÞ�i þ p�n
SMðqEÞ�i þ ðSm þ _x � nÞp�

0
@

1
A; ð4:21Þ
F�
j � FðU�

j Þ ¼
SMq�

j

SMðqvÞ�j þ p�n
SMðqEÞ�j þ ðSm þ _x � nÞp�

0
B@

1
CA; ð4:22Þ
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p� ¼ qiðuni � SiÞðuni � SMÞ þ pi ¼ qjðunj � SjÞðunj � SMÞ þ pj; ð4:23Þ

and un ¼ u � n. SM is defined as

SM ¼
qjunjðSj � unjÞ � qiuniðSi � uniÞ þ pi � pj

qjðSj � unjÞ � qiðSi � uniÞ
: ð4:24Þ

Signal velocities Si, and Sj are defined as

Si ¼ min½uni � ci; ðv̂� _xÞ � n� ĉ�; ð4:25Þ
Sj ¼ max½unj þ cj; ðv̂� _xÞ � nþ ĉ�; ð4:26Þ

with v̂ and ĉ being Roe�s average variables for velocity and speed of sound.

This HLLC flux is found to have the following properties: (1) exact preservation of isolated contact and

shear waves, (2) positivity-preserving of scalar quantity, (3) enforcement of entropy condition.
4.3. Approximate Godunov scheme on moving grids

The approximate Riemann problem solver for a general EOS, developed by Colella [12], starts with the
calculation of ðp�; u�nÞ by q:

p� ¼
Wjpi þ Wipj þ WiWjðuni � unjÞ

Wi þ Wj
; ð4:27Þ
u�n ¼
Wiuni þ Wjunj þ pi � pj

Wi þ Wj
; ð4:28Þ

where W ¼ qc. The remainder of the �-state calculation proceeds as follows:

q�
i;j ¼ qi;j þ

p� � pi;j
c2i;j

; ð4:29Þ
ðc�i;jÞ
2 ¼

p�qi;jc
2
i;j

pi;jq�
i;j

; ð4:30Þ
ðqeÞ�i;j ¼ ðqeÞi;j þ ðp� � pi;jÞ
eþ p=q

c2

� �
i;j

; ð4:31Þ
u�ti;j ¼ uti;j ; ð4:32Þ

where ut ¼ u � t is the tangential velocity with t being the unit tangential vector. The (approximate)

Godunov state QG is defined to be the value of Q ¼ ðq; u; qe; pÞt along the ray x=t ¼ 0 and is computed in

two steps. First, we set

Q;Q� ¼ Qi;Q
�
i if u�n > 0;

Qj;Q
�
j otherwise;

�
ð4:33Þ
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and

k; k� ¼ c� sun; c� � su�n; ð4:34Þ

where s ¼ signðu�nÞ. Also, an approximate shock speed

r ¼ 1

2
ðkþ k�Þ ð4:35Þ

is computed. Second, if k� > k, then

QG ¼ Q if r < 0;
Q� otherwise;

�
ð4:36Þ

otherwise, if k� < k, then

QG ¼
Q if k < 0;
Q� if k� > 0;
aQ� þ ð1� aÞQ otherwise:

8<
: ð4:37Þ

Here, a ¼ 1
2
ð1þ kþk�

k�k�Þ. These two steps guarantee entropy-satisfying waves; the last equation implements

linear interpolation in the wave speed to approximate the solution inside a rarefaction fan. The conservative

flow variable vector at the interface can then be computed from the Godunov variable vector as

Uij ¼
qij

ðqvÞij
ðqEÞij

0
@

1
A ¼

qG

qGðuG þ _xÞ
ðqeÞG þ 0:5qGjuG þ _xj2

0
@

1
A: ð4:38Þ

Finally, the fluxes for flow equations at the interface can be evaluated from the Godunov state as follows:

Fij ¼
uGqij

uGðqvÞij þ pGn
uGððqEÞij þ pGÞ þ pG _x � n

0
@

1
A: ð4:39Þ

It is worth noting: (1) The description of these three schemes does not assume any particular form of

EOS. Hence, they can be used to compute real fluids with a general EOS, as long as the interrogation of the

state relations for pressure and speed of sound is known; (2) At the Lagrangian contact where pi ¼ pj,
u ¼ 0, the dissipation vanishes for all three schemes. This fact easily explains why the contact disconti-

nuities can be sharply resolved by the moving grid methods; (3) In the absence of grid motion, all three

schemes are shown to recover exactly their Eulerian formulation; and (4) In the case of uniform free stream

flow conditions, all three schemes lead to the GCL. This fact might seem trivial, but is extremely important

to ensure that no error is introduced due to the ALE formulation, as the implementation of these schemes
can easily violate this property.
5. Numerical examples

All computations used an explicit four-stage Runge–Kutta time-stepping scheme to advance the solution

in time, and a CFL number of 0.85. The second order accuracy in space is achieved using reconstruction

algorithm based on the primitive variables and MUSCL approach [19]. The Van Albada limiter [27] is
employed to eliminate spurious oscillations in the vicinity of discontinuities. The first four test cases are

chosen to validate the numerical schemes and assess the solution accuracy, where the following Tammann

EOS [5] is used in the computation
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p ¼ ðc� 1Þðqe� qV2

2
� PcÞ � Pc;

and the speed of sound is computed according to

C2 ¼ c
p þ Pc

q
;

where c is the ratio of specific heats and Pc is a prescribed pressure-like constant. These values can be

assigned to describe the material property of interests, such as stiffened polytropic gas. The computational

results for these cases were obtained on a grid of 101 points. A Lagrangian surface is established at the

contact discontinuity, and the grid velocity is tapered linearly to zero at both ends of the computational

domain.
5.1. Material interface problem

The first test case is the material interface problem, whose solution represents a single contact discon-

tinuity in gas dynamics. A shocktube is filled with low-density fluid on the left and high-density on the right

under different ratios of specific heat. Velocity and pressure equilibrium are assumed along the whole tube.

The initial conditions in the present computation are the following:

q ¼ 1:000; u ¼ 1; p ¼ 1; c ¼ 1:4; Pc ¼ 0; 06 x < 50;
q ¼ 0:125; u ¼ 1; p ¼ 1; c ¼ 1:2; Pc ¼ 0; 506 x6 100;

where the solution of this Riemann problem consists of a single contact discontinuity in gas dynamics. The

solutions obtained by the three schemes AUSM+, HLLC, and approximate Godunov at time t ¼ 20 are

presented in Fig. 1. The three schemes are all able to capture the exact solution, demonstrating the ability of
the ALE formulation to sharply capture the Lagrangian contact discontinuity. The criterion of free-stream

conserving is clearly satisfied by all three schemes, which has proved invaluable to validate the imple-

mentation of ALE formulation.

5.2. Single material Sod shocktube problem

The well-known Sod shocktube problem is considered in this test case, whose solution contains simul-

taneously a shock wave, a contact discontinuity, and an expansion fan. The initial conditions in the present

computation are the following:

q ¼ 1:000; u ¼ 0; p ¼ 1:0; c ¼ 1:4; Pc ¼ 0; 06 x < 50;
q ¼ 0:125; u ¼ 0; p ¼ 0:1; c ¼ 1:4; Pc ¼ 0; 506 x6 100:

This test case was chosen to test and assess the accuracy of the ALE solution by comparing with the
Eulerian solution, as the problem can be solved using either the Eulerian or the ALE formulation. Fig. 2(a)

and (b) compare the first order and second order ALE solutions with the Eulerian solutions at t ¼ 20

obtained by AUSM+, HLLC, and Godunov schemes, respectively. As expected, the first order solutions

obtained by all three schemes are monotonic on the fixed grid. Both the HLLC and Godunov schemes are

also able to produce monotonic solutions on the moving grid. However, the ALE AUSM+ scheme fails to

yield the monotonic solution, as small oscillations near the material interface are clearly visible. Both fixed

and moving grid results are in good agreement with the exact solution for this case, although the ALE



Fig. 1. Computed first order (a) and second order (b) solutions for the multi-component interface problem at t ¼ 20 by AUSM+,

HLLC, and Godunov schemes using ALE formulation on 101 grid points.
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Fig. 2. Comparison of first order (a) and second order (b) Eulerian and ALE solutions for the Sod shocktube problem at t ¼ 20

obtained by AUSM+, HLLC, and Godunov schemes on 101 grid points.
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solution is found to be less dissipative than its Eulerian counterpart, and gives better resolution at main-

taining sharp contact discontinuity.

5.3. Shocktube problem with different Gamma

The Sod shocktube problem, now with two different ideal gases, is considered in this test case. The initial

conditions in the present computation are the following:

q ¼ 1:000; u ¼ 0; p ¼ 1:0; c ¼ 1:667; Pc ¼ 0; 06 x < 50;
q ¼ 0:125; u ¼ 0; p ¼ 0:1; c ¼ 1:200; Pc ¼ 0; 506 x6 100:

Figs. 3(a) and (b) show the first order and second order ALE solutions at t ¼ 20 obtained by the AUSM+,

HLLC, and Godunov schemes, respectively. Although profiles from the first order solutions obtained by
the HLLC and Godunov schemes are fairly smeared, a typical result for first order solutions, clean and

monotonic solutions are obtained. However, the AUSM+ scheme is unable to produce a monotonic so-

lution, generating small oscillations around the contact discontinuity. It is worth noting that the material

interface is sharply captured in both the first and second order solutions and computations with a second

order scheme tend to improve solutions significantly for both the shock wave and the rarefraction wave.

Note though that a small amount of numerical diffusion at the material interface does exist. This diffusion

can be attributed to the first order scheme used in the material interface. However, this should not be

viewed as a setback for the present approach, as a second order scheme can easily lead to oscillation across
the material interface, and a little oscillation can lead to collapse or meaningless of the computation for stiff

EOS.

5.4. Gas/water shocktube problem

A two phase gas–liquid Riemann problem is considered here. The initial conditions in the present

computation are the following:

q ¼ 1:271000; u ¼ 0; p ¼ 9:119252E þ 09; c ¼ 1:4; Pc ¼ 0; 06 x < 50;
q ¼ 0:999983; u ¼ 0; p ¼ 1:013250E þ 06; c ¼ 7:0; Pc ¼ 3:03975E þ 09; 506 x6 100:

This is an extremely difficult problem, since the equations of state for water and air are drastically different.

Figs. 4(a) and (b) show the first order and second order ALE solutions at t ¼ 1:55921E� 04, obtained by

the AUSM+, HLLC, and Godunov schemes, respectively. The computed results for this difficult problem

clearly indicate the deficiencies of the ALE AUSM+ scheme, giving rise to serious oscillations near both

material interface and shock wave. However, both the first order ALE HLLC and Godunov schemes are

able to yield monotonic, oscillation-free, and sharp contact solution. Computations with the second order

schemes improve solutions significantly for both shock and rarefraction waves. This example clearly
demonstrates the potential and robustness of the ALE HLLC and Godunov schemes for solving multi-

material flows with strong shock wave and contact discontinuity.
5.5. Spherically symmetric underwater explosion

As an example of application, the developed three schemes were used to compute a benchmark 1D

spherically symmetric underwater explosion problem. This represents a serious challenge to any multi-

material computation methods, as the materials are drastically different, and the EOS for water is very stiff.



Fig. 3. (a) Computed first order solutions for the multi-component gas shocktube problem at t ¼ 20 by AUSM+, HLLC, and

Godunov schemes using ALE formulation on 101 grid points. (b) Computed second order solutions for the multi-component gas

shocktube problem at t ¼ 20 by AUSM+, HLLC, and Godunov schemes using ALE formulation on 101 grid points.
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Any oscillations in the material interface will lead to invalid EOS (negative pressure), resulting in either

collapse or meaningless of calculation. This difficult problem is chosen to test the ability of the described

numerical methods to model multi-component problems with strong shocks and contact discontinuities. In

addition, it is easy to assess the accuracy of the numerical solution, as the experimental data [20] is available

and the problem has been investigated previously by several authors and a benchmark numerical solution

exists [2]. The computational conditions are: detonation of 300 g of TNT spherical charge (radius of 3.5287

cm) at a depth of 91.4 m (ambient pressure of 1.0E+ 07 d/cm2). The problem can be essentially regarded as
a spherical two-phase shocktube problem where the initial conditions in cgs units are given by

q ¼ 1:63000000; u ¼ 0; e ¼ 4:29Eþ 10; 0:06 x6 3:5287;



Fig. 3 (continued)
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q ¼ 1:00037984; u ¼ 0; p ¼ 1:00Eþ 07; 3:5287 < x6 25:

The Jones–Wilkins–Lee (JWL) and Tait equations of state are used for the detonation-products gas and

liquid water, respectively:

Tait : p ¼ B
q
q0

� �c�
� 1

�
þ A;

where

B ¼ 3:31Eþ 09; q0 ¼ 1:0;
A ¼ 1:0Eþ 06; c ¼ 7:15:



Fig. 4. Computed first order (a) and second order (b) solutions for the multi-component gas/water shocktube problem at

t ¼ 1:55921E� 04 by AUSM+, HLLC, and Godunov schemes using ALE formulation on 101 grid points.
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JWL : p ¼ A 1

�
� xq
R1q0

�
e�

R1q0
q þ B 1

�
� xq
R2q0

�
e�

R2q0
q þ xqe;

where

A ¼ 7:712Eþ 12;
B ¼ 0:0323Eþ 12;
R1 ¼ 4:15; R2 ¼ 0:95; x ¼ 0:3;
q0 ¼ 1:63; e0 ¼ 0:0429Eþ 12:

Note the speed of sound for Tait EOS is computed as

c2 ¼ c
p þ A
q

:

The computation was performed on a series of four grids in order to get a mesh converged solution. These

grids contain 751, 1501, 3001, and 6001 uniform placed points, respectively. It is found that the mesh, that

features 3001 points with 424 points in the bubble and 2577 grid points in the water, is adequate to provide

a grid converged solution. A Lagrangian interface is established at the material interface by constraining

the grid velocity to match the fluid velocity at the interface. The grid velocity is further constrained by

setting it to be zero at the origin and Vmax þ Cmax at the outer boundary of the domain, where the Vmax and
Cmax are the maximal velocity and speed of sound for water, respectively. At intermediate points between

these constraints the grid velocity is linearly interpolated. The computation was performed using the three

HLLC, Godunov, and AUSM+ schemes, respectively. It is found that both HLLC and Godunov methods

produced the virtually identical results, however the ALE AUSM+ scheme generated erroneous oscillations

around the gas/water interface, which ultimately lead to the collapse of the computation. Unless stated

otherwise, the numerical results to be presented here are obtained using ALE Godunov scheme on the 3001

grid-points mesh.

Figs. 5(a)–(d) show the evolution of the computed solution through different phases of spherically
symmetric underwater explosion problem. The initial phase, illustrated in Fig. 5(a) starts with a primary

shock wave traveling to the right into the water and an expansion wave moving to the left toward the

bubble origin. The expansion wave reflects from the origin as an expansion, resulting in a region of very low

pressure near the origin. The outward inertia of the expanding gas is eventually overcome by the centripetal

pressure gradient and the gas reverses direction, forming an inward moving shock wave which in turn

reflects as a shock wave from the origin. This reflected secondary shock wave then propagates outward

toward the gas/water interface. Note the shock wave is accurately resolved and material interface is sharply

captured without any oscillations due to the ALE formulation.
Fig. 5(b) shows the shock and free-surface interaction phase, where the secondary shock wave propa-

gates to the gas/water interface and interacts with it. This interaction generates a reflected shock wave

which moves back into the bubble toward the origin, and a transmitted shock wave that travels outward

from the bubble into the water. This process repeats numerous times, each time at a reduced shock strength,

as shown in Fig. 5(c) where the primary, secondary, and tertiary shock waves are clearly visible in the

pressure time history plot.

The evolution of the pressure and density profiles through bubble collapse phase is illustrated in Fig. 5(d)

where one can clearly see that at the bubble minimum volume, a compression pressure pulse, called bubble
impulse, is emitted from the bubble.



Fig. 5. (a) Density and pressure distributions during the initial phase of spherically symmetric underwater explosion problem.

(b) Density and pressure distributions during the shock/material–surface interaction phase of spherically symmetric underwater

explosion problem. (c) Density and pressure distributions during the incompressible phase of spherically symmetric underwater ex-

plosion problem. (d) Density and pressure distributions during the bubble collapse phase of spherically symmetric underwater explosion

problem. (e) Comparison of bubble radius time and interface pressure history for different mesh size solutions of the spherically

symmetric underwater explosion problem.
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As mentioned before, a grid convergence study has been performed on a series of four grids to provide

insight and guideline into grid resolution requirements for underwater explosion bubble problem. The

bubble radius and the bubble–water interface pressure time history for all four grids are compared in

Fig. 5(e). The oscillations of interface pressure are clearly present due to the interactions of the shock waves

inside the bubble with the gas/water interface. This type of oscillatory interface behavior has been previ-

ously observed by Mader [21], and later confirmed by Wardlaw et al. [2]. The grid density has significant

impact on the bubble period, however the maximum bubble radius differs very little among those four grids.
Table 1 shows a detailed comparison among the four grids and the experimental data of Swift and Decius

[20]. The difference of the solutions between the last two grids is insignificant, indicating a converged so-

lution can be considered as a grid converged solution on the third grid, which has 3001 grid points with 424

grid points in the bubble. From these results, it can be seen that the present computation has clearly

captured all of the important physical phenomena: initial primary shock wave, shock wave and material–

surface interaction, and the pressure pulses from bubble collapse and rebound. The computed bubble

period and maximum radius are in good agreement with experimental data, clearly demonstrating the

accuracy of the purposed numerical methods. Note that the maximum radius is converging to a larger value
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than observed experimentally. This is mainly due to the fact that the same uniform TNT conditions are

used as the initial bubble state. Dr. Wardlaw et al. [2] shown that they got the same maximum radius as

experimental one, if they use the so-called non-uniform Euler model, where the distribution of properties
within the bubble is determined using a spherical analog to the Taylor plane wave solution based on the

work of Guirguis. The resulting bubble property profile features the highest pressure at the bubble/water

interface with a constant minimum pressure region at the bubble center.

5.6. Supersonic missile over water

This test case is designed to investigate the behavior of the refraction of a bow wave generated by a

supersonic missile flying above the ocean. The computation shows a missile with the shape of an ellipse of
diameters 3 by 0.5 m, traveling at 500 meters per second at an altitude of 5 m above a flat body of water.

The initial conditions in cgs units in the computation are the following:

q ¼ 0:001225; u ¼ 50000; v ¼ 0; p ¼ 1013250; c ¼ 1:4; Pc ¼ 0 for air;
q ¼ 1; u ¼ 50000; v ¼ 0; p ¼ 1013250; c ¼ 7; Pc ¼ 3:03975E þ 09 for water:

Note that the perfect gas EOS is used for air and Tammann EOS is used for water. The computational

mesh containing 37,373 points and 74,067 elements is shown in Fig. 6(a). The computed pressure contours

obtained using HLLC method and displayed in Fig. 6(b) show good resolution of both reflected shock wave

and refraction wave at the water/air interface. This example clearly demonstrates that the ALE formulation
is especially attractive for problems where the material interface does not submit big deformation and the

resolution of contact surfaces is important. Fig. 6(c) shows the shape of water/air interface, where the small

interface deformation is very well resolved. Clearly any capturing methods will have the difficulty to capture

such small deformation. Note that pure Lagrangian method will fail for this problem, as the flow expe-

riences a significant shear across the material interface, which can clearly be seen in Fig. 6(d) where the

velocity distribution for both air and water along the material interface is shown.

5.7. 2D underwater explosion

In this example, a 2D underwater explosion inside a water tank is computed using ALE HLLC method.

The test case is designed to investigate the early stage of underwater explosion problems, namely the

propagation of primary shock waves and the dynamics of shock–bubble interaction. The problem can be

essentially regarded as a two dimensional two-material flow problems, where the initial conditions in cgs

units are given by

q ¼ 1:00037984; u ¼ 0; p ¼ 1:00Eþ 07; 06 x6 15; �86 y6 15; r > 3:5287;
q ¼ 1:63000000; u ¼ 0; e ¼ 4:29Eþ 10; 0:06 r6 3:5287;
Table 1

Computation and experiment for underwater explosion bubble (grid convergence study)

Grid size Period (ms) Error (%) Rmax (cm) Relative error (%)

751 (106) 31.65596 6.2 48.92498 5.45

1501 (212) 30.39513 2.0 48.88203 5.35

3001 (424) 29.94145 0.47 48.83771 5.25

6001 (847) 29.70043 )0.33 48.75348 5.07

Experiment 29.8 0 46.4 0



Fig. 6. (a) Mesh used for computing a missile flying above the ocean. (nelem¼ 74,067, npoin¼ 37.373). (b) Computed pressure

contours for a flying missile above the ocean at a speed of 50,000 cm/s. (c) The water/air material interface shape for flying missile

simulation. (d) Computed velocity distribution of water and air along the water/air material interface.
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where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. The same JWL and Tait equations of state for test problem E are used for the det-

onation-products gas and water, respectively. The initial and final meshes in the vicinity of the bubble used

in the computation, shown in Fig. 7(g) contain 60,121 points, 119,286 elements, and 138 material interface

points, where one can see that an uniform mesh at the beginning of the computation becomes severely

distorted in the water region as a result of the bubble expansion. Fig. 7(h) shows the X - and Y -components

of grid velocity, which are obtained by solving a Laplace equation. The bubble shapes at different times are

displayed in Fig. 7(i), where the interaction between bubble and the reflected shock wave causes the un-
symmetrical bubble. Figs. 7(a)–(f) shows the evolution of the computed density, velocity, and pressure

contours at different times. The simulation starts with a primary shock wave traveling into the water and an

expansion wave moving in the bubble toward the bubble origin (Fig. 7(a)). The primary shock wave then

hits the bottom of the tank and the resulting reflected shock wave is then moving toward the water/gas

bubble interface (Fig. 7(b)). After the interaction with the bubble, this reflected shock wave is diffracted into

two waves (Fig. 7(c)): a reflected rarefraction wave moving into the water and a transmitted shock wave in



Fig. 7. (a) Computed density, velocity, pressure contours at t ¼ 0:1542E� 04 s for 2D underwater explosion problem. (b) Computed

density, velocity, pressure contours at t ¼ 0:2523E� 04 s for 2D underwater explosion problem. (c) Computed density, velocity,

pressure contours at t ¼ 0:3249E� 04 s for 2D underwater explosion problem. (d) Computed density, velocity, pressure contours at

t ¼ 0:4015E� 04 s for 2D underwater explosion problem. (e) Computed density, velocity, pressure contours at t ¼ 0:4893E� 04 s for

2D underwater explosion problem. (f) Computed density, velocity, pressure contours at t ¼ 0:5488E� 04 s for 2D underwater ex-

plosion problem. (g) Computational meshes at t ¼ 0 s and t ¼ 0:5488E� 04 s for 2D underwater explosion problem (npoin¼ 60,121,

nelem¼ 119,286). (h) Computed X -component, and Y -component mesh velocity at t ¼ 0:5488E� 04 s for 2D underwater explosion

problem. (i) Computed bubble shape at different time for 2D underwater explosion problem.
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the bubble. The reflected rarefraction wave then hits the bottom of the tank, and the resulting reflected

wave is then moving toward the water/bubble interface at a reduced shock strength (Fig. 7(d)). At later

time, the primary shock wave hits both top and side of the tank (Fig. 7(e)) .This results in two reflected

shock waves from top and bottom (Fig. 7(f)). Note that the present ALE HLLC method preserves very well

the water/gas material interface and no spurious oscillations are produced during the computation, clearly



Fig. 7. (continued)
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demonstrating the potential of the purposed ALE method for the simulation of underwater explosion

problems.
6. Conclusions

AUSM+, HLLC, and Godunov schemes have been presented and implemented in the context of ALE
formulation. The developed methods have been used for computing a variety of multi-material interface

problems, where the material interface is explicitly tracked as a Lagrangian surface in an effort to ensure the

unambiguous separation of different phases during the computation. Computational results show that even

first order ALE AUSM+ scheme fails to yield a monotonic solution and leads to the collapse of calculation

for the underwater explosion problem. Despite its simplicity, ALE AUSM+ scheme should not be con-

sidered suitable and appropriate for this class of problems. On the other hand, both ALE HLLC and

Godunov schemes are found to be able to offer accurate and robust solutions for capturing strong shock,

contact, and phase discontinuities on arbitrarily moving grids.



Fig. 7. (continued)
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The preliminary results for 2D examples confirm that both ALE HLLC and Godunov methods are able

to preserve excellent material interface resolution without generating any spurious oscillations in the vi-

cinity of discontinuities for higher dimension problems. This makes ALE methods especially attractive for

many applications where the material interfaces are not subjected to large deformation and complicated

phenomena near the interfaces require material interface tracking in order to obtain accurate results.

Ongoing work on automatic restructuring and remeshing will help to extend the current method to more
complex interface problems, where large interface deformation will unavoidably lead to significant dis-

tortion of the mesh. It is our expectation that the present ALE methods combined with automatic re-

structuring and remeshing offered by unstructured grids will ultimately provide an accurate, robust, and

viable algorithm for computing complex interface problems.
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