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E. Oñate, M. Papadrakakis and B. Schrefler (Eds)

A TRANSONIC POTENTIAL SOLVER WITH AN
EMBEDDED WAKE APPROACH USING MULTIVALUED

FINITE ELEMENTS
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Abstract. A potential transonic solver with an embedded wake is presented. The flow
outside of attached boundary layers of streamlined bodies flying at high Reynold numbers
can be assumed to be irrotational and isentropic. This assumption reduces the Navier-
Stokes equations to a single scalar nonlinear partial differential equation, namely the
full-potential equation (FPE). The FPE expresses the conservation of mass in terms of
the velocity potential. In this work, the FPE is discretized using a standard Galerkin finite
element method, and the nonlinear system of equations stemming from the discretization
is solved using Newton’s method. An artificial compressibility method is used to stabilize
the problem in supersonic flow regions. This method prevents the Jacobian from becoming
singular and allows capturing shock waves. To include the viscosity effects in the lift
generation, a model for the trailing wake needs to be introduced. In the presented method,
the wake is modeled as a straight surface in the free-stream direction. This assumption is
relaxed allowing mass flux across the wake. To capture the discontinuity in the velocity
potential across the wake, a multivalued element method is employed. This implicit
description of the wake within the mesh presents an effective approach to perform fluid-
structure interaction computations and apply aeroelastic optimization methods, where the
position of the wake changes during consecutive iterations. The solver is implemented in
Kratos Multi-Physics and verified for different angles of attack and free-stream conditions.
Since the pressure does not change in the transverse direction of the boundary layer, the
FPE yields accurate lift, induced drag, and moment computations.
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I. López, E. Baez Jones, M. Nuñez, R. Zorrilla, R. Rossi, K.-U. Bletzinger and R. Wüchner

1 INTRODUCTION

Linear potential solvers are still used in the industry to perform aeroelastic optimization
in the early design stages. Yet, using higher fidelity solvers could allow detecting design
flaws sooner, saving time and money. Full-potential solvers offer an appealing trade-
off, enlarging the range of application to capture nonlinear compressibility effects while
providing fast solutions. However, standard full-potential solvers require modeling a gap
in the mesh, hindering their effective use for aeroelastic optimization, where the wake’s
position may change due to the structural response and the geometry’s evolutionary steps
[1, 2]. To overcome this problem, an embedded wake approach for potential transonic
solvers is proposed.

2 METHOD

2.1 Full-potential equation

The full-potential equation expresses conservation of mass in terms of density ρ and
velocity u:

∇ · (ρu) = 0 (1)

where, assuming irrotational flow, the velocity can be expressed using the free-stream
velocity u∞ and the gradient of the scalar potential φ as:

u = u∞ +∇φ (2)

Assuming isentropic flow, the density may be derived from the energy equation:

ρ = ρ∞

[
1 +

γ − 1

2

u2
∞
a2
∞

(
1− u2

u2
∞

)] 1
γ−1

(3)

where ρ∞ and a∞ are the free-stream density and speed of sound respectively [3]. The
constant γ is the heat capacity ratio, which is 1.4 for air.

2.2 Boundary conditions

Figure 1 illustrates the fluid domain and its boundaries in two dimensions. The bound-
ary conditions are:

φ = φ∞ on ΓD (4)

n · (ρu) = g on ΓN (5)

n · (ρuuu − ρlul) = 0 on ΓW (6)

|uu|2 − |ul|2 = 0 on ΓW (7)
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Figure 1: Two-dimensional representation of the fluid domain and its boundaries.

Eq. (4) is a Dirichlet condition, where φ∞ is an arbitrary value specified along the domain’s
ΓD boundary. This condition is necessary because the full-potential equation and the
remaining boundary conditions are only defined in terms of the potential’s derivatives.

Because the wake intersects the outlet, and there is a jump in the potential across
the wake, a Dirichlet condition cannot be applied at the outlet. Instead, the free-stream
velocity is specified at the outlet as a Neumann condition using Eq. (5) and setting
g = n · (ρu∞). A slip condition is applied on the airfoil and walls (g = 0).

Eqs. (6) and (7) are the wake boundary conditions, where the subscripts u and l stand
for the upper and lower wake. The wake is modeled as a straight surface in the free-stream
direction. To relax this assumption, mass flux is allowed across the wake. Eq. (6) enforces
the conservation of mass flux across the wake. Because the wake is thin, it cannot support
pressure jumps. The pressure equality condition is imposed in Eq. (7).

2.3 Finite element discretization

Eq. (1) is discretized using a standard Galerkin approach. Here unstructured meshes
with linear triangular and tetrahedral elements are used. Weighting Eq. (1) with the test
function N and discretizing into finite elements results in:∑

e

∫
Ωe

N∇ · (ρu) dΩe = 0 (8)

being Ωe each element’s domain. Using integration by parts, applying the divergence
theorem, and inserting Eq. (5) yields:∑

e

∫
Ωe

∇N · (ρu) dΩe =
∑
c

∫
Γc

Ng dΓc (9)

where Γc is the boundary of element c. Eq. (9) can be rewritten in residual form using
Einstein notation as:
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Ri =
∑
e

∫
Ωe

∂N i

∂xa
ρua dΩe −

∑
c

∫
Γc

N ig dΓc = 0 (10)

where Ri is the residual at each node. Eq. (10) is solved using Newton’s method:

J ij∆φj = −Ri (11)

being ∆φj the solution update and J ij the corresponding Jacobian, which is defined as:

J ij =
∂Ri

∂φj
=
∑
e

∫
Ωe

∂N i

∂xa

(
ρ
∂ua

∂φj
+

∂ρ

∂φj
ua
)
dΩe (12)

2.4 Artificial compressibility

To stabilize the problem in supersonic flow regions an artificial compressibility method
is employed [4]. This prevents the Jacobian from becoming singular and allows capturing
shock waves. In this method, an upwind scheme is used to compute the density:

ρ̃ = ρ− µ
(
∂ρ

∂s

)
∆s ≈ ρ− µ(ρ− ρup) (13)

where ρup is the upstream element’s density and µ is the upwinding factor, which is defined
as the following switching function:

µ = µc max(0, µ, µup) (14)

µ = 1− M2
crit

M2

where µc is the upwinding factor constant, and Mcrit is the critical Mach number. These
factors control the amount of artificial dissipation introduced into the system. Eq. (13)
replaces ρ in Eqs. (10) and (12). To avoid reaching vacuum conditions, the fluid variables
and their derivatives are clamped to a maximum Mach number squared of M2 = 3.0.

2.5 Embedded wake approach

To support a jump in the potential, elements cut by the wake are enriched with auxiliary
degrees of freedom and disconnected across the wake, so that wake elements are present
twice. This is illustrated in Figure 2, where the auxiliary degrees of freedom are denoted
by φi

aux. The degrees of freedom φi
u and φi

l corresponding respectively to the upper and
lower wake elements are:

φi
u =

{
φi if ith node above the wake

φi
aux if ith node below the wake

φi
l =

{
φi

aux if ith node above the wake

φi if ith node below the wake
(15)
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Wake

(a) Mesh around the trailing edge.
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(b) Elements above the wake.
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(c) Elements below the wake.

Figure 2: Elements are disconnected across the wake to support a jump in φ.

These auxiliary degrees of freedom are then used to apply the wake boundary conditions.
For a two-dimensional problem Eqs. (6) and (7) can be written as a single vector equation:

uau − ual = 0 on ΩW (16)

where ΩW is the domain covered by the wake elements. Applying a least squares finite
element approach yields the residual energy functional:

Π =
1

2

∫
ΩW

(uau − ual )2 dΩW (17)

Deriving with respect to the degrees of freedom results in the upper and lower wake
conditions’ residuals:

Ri
u =

∂Π

∂φi
u

=
∑
Wu

∫
ΩWu

∂N i
u

∂xa
(uau − ual ) dΩWu (18)

Ri
l =

∂Π

∂φi
l

=
∑
Wl

∫
ΩWl

∂N i
l

∂xa
(ual − uau) dΩWl

(19)

and their corresponding Jacobians:

5
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J ij
uu =

∂Ri
u

∂φj
u

=
∑
Wu

∫
ΩWu

∂N i
u

∂xa
∂N j

u

∂xa
dΩWu , J

ij
ul =

∂Ri
u

∂φj
l

= −
∑
Wu

∫
ΩWu

∂N i
u

∂xa
∂N j

l

∂xa
dΩWu (20)

J ij
lu =

∂Ri
l

∂φj
u

= −
∑
Wl

∫
ΩWl

∂N i
l

∂xa
∂N j

u

∂xa
dΩWl

, J ij
ll =

∂Ri
l

∂φj
l

=
∑
Wl

∫
ΩWl

∂N i
l

∂xa
,
∂N j

l

∂xa
dΩWl

(21)

3 RESULTS

To evaluate the proposed embedded wake approach, the flow over a two-dimensional
NACA0012 airfoil and a three-dimensional rectangular wing are computed. Lift, pitching
moment, and pressure coefficients are compared with reference data from other codes.
Salome is used to generate the geometries and the meshes [5]. A significant advantage
of using an embedded wake approach is that the wake does not need to be explicitly
modeled in the domain, substantially reducing the modeling time. In the numerical
studies presented here, triangular and tetrahedral meshes are created using the NETGEN
algorithm [6]. The main parameters defining the meshes are the maximum element size,
the minimum element size, and the growth rate, which is the maximum ratio by which two
adjacent elements can differ (e.g. a growth rate of 0.1 means that the linear dimensions
of two adjacent elements can differ by 10%). To convert Salome’s output mesh format
into Kratos’ input mesh format, Kratos Salome Plugin developed by Philipp Bucher is
employed [7]. Using these components, a tool to automatically perform parameter studies
has been developed.

3.1 NACA 0012

To verify the presented method, the convergence of the lift and pitching moment coef-
ficients is investigated. The airfoil’s shape is described by:

z = ±0.6(0.2969
√
x− 0.1260x− 0.3516x2 + 0.2843x3 − 0.1015x4) (22)

where z is the half-thickness, and x the position along the chord (x ∈ [0, 1]). This
description results in a blunt trailing edge. For the purposes of this study, the last
coefficient was slightly modified to achieve a sharp trailing edge:

z = ±0.6(0.2969
√
x− 0.1260x− 0.3516x2 + 0.2843x3 − 0.1036x4) (23)

This modification is specified by the AIAA Aerodynamic Design Optimization Discussion
Group. The airfoil was generated using Salome’s parametric curve generator, which de-
fines a parametric equation for each coordinate. In total, six meshes with a domain size
of 100 m and a chord length of 1 m are considered. Figure 3 shows the domain’s mesh
in the far-field and in the vicinity of the airfoil for different mesh refinements, where the
minimum element size is denoted by h. Note the substantial benefit of using an embedded
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(a) Domain’s far-field mesh.

(b) Mesh around the airfoil for h = 10−2 m (left) and h = 10−3 m (right).

(c) Mesh around the leading edge for h = 10−2 m (left) and h = 10−3 m (right).

Figure 3: Meshes around NACA 0012.
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wake approach, where the wake does not need to be explicitly represented by the mesh.
The meshes are refined towards the leading and trailing edge, where the solution’s gra-
dients are largest. This refinement also accurately captures the geometry at the leading
edge, where the radius of curvature is smallest. The airfoil is discretized using a geometric
progression where the common ratio is set to 1.01. The domain’s boundary is discretized
using a uniform distribution with an element size of 2 m (1/50th of the domain size).
The domain’s maximum element size matches the boundary’s element size, and the mesh
growth rate is set to 0.05 to ensure a smooth element size transition.

Figures 4 and 5 present the convergence of the lift and pitching moment coefficients,
and their errors over the minimum element size. The lift coefficient’s relative error is
expressed as a percentage using:

δcl =
|cl − clref |
|clref |

· 100% (24)

where the reference lift coefficient (clref = 0.2038) is the value reported in [8]. The moment
coefficient is computed using a near-field analysis, whereas the lift coefficient is computed
using three approaches:

• Near-field analysis: integrating the pressure force over the airfoil.

• Wake potential jump analysis: using Kutta-Joukowski theorem [9].

• Far-field analysis: using the integral momentum theorem.

Figures 4 and 5 show that the solution accurately matches the reference. For a minimum
element size smaller than 10−2 the lift relative error is below than 2%. Note that the
three force analysis yield very similar results.
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Figure 4: NACA 0012 mesh refinement study (α = 1◦, M∞ = 0.72).
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Figure 5: NACA 0012 mesh refinement study (α = 1◦, M∞ = 0.72).

Figure 6: Pressure coefficient contour plot, NACA 0012 (α = 2.0◦, M∞ = 0.75).

Figure 6 shows the pressure coefficient contour plot for α = 2.0◦ and M∞ = 0.75. The
pressure coefficient is continuous across the wake, meaning that the wake pressure equality
boundary condition is satisfied. Figure 7 compares the solution and reference pressure
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Figure 7: Pressure coefficient distributions.

coefficient distributions along the upper and lower airfoil surfaces for the different flow
conditions. Note that despite using an embedded wake approach, the stagnation point at
the trailing edge is captured accurately.

3.2 Rectangular wing with NACA 0012 airfoil section

The proposed method has been extended to three dimensions. To verify the imple-
mentation, the solution of a rectangular wing of aspect ratio 4 in incompressible flow at
α = 5◦ is presented. Figure 8a shows the wing’s surface mesh and a clip of the tetrahedral
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(a) Wing’s mesh. (b) Tip vortices’ structure.

Figure 8: NACA0012 rectangular wing.
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Figure 9: Pressure coefficient distribution at different wing sections.
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volume mesh along the symmetry plane. The wake surface is indicated in blue. Figure 8b
shows a front view of the wing along with the tip vortices’ structure. In Figure 9 the
pressure coefficient distribution is compared with the solution from XFLR5 at four wing
sections, where each section spanwise location y is nondimentionalized using the half span
b (η = y/b).

4 CONCLUSIONS

An embedded wake approach for a potential transonic solver is presented. This ap-
proach allows reducing the modeling time significantly. Furthermore, the method’s ro-
bustness is demonstrated for two- and three-dimensional examples, where the reference
data is accurately reproduced without requiring an extra mesh refinement towards the
wake. Describing the wake implicitly within the mesh allows to effectively perform aeroe-
lastic optimization, where the wake’s position may change due to the structural response
and the geometry’s evolutionary steps. In the future, this approach will be verified for
three-dimensional transonic flow conditions.
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