
14th World Congress on Computational Mechanics (WCCM)

ECCOMAS Congress 2020)

Virtual Congress: 11-–15 January 2021

F. Chinesta, R. Abgrall, O. Allix and M. Kaliske (Eds)

PARALLEL UNSTRUCTURED MESH ADAPTATION BASED ON

ITERATIVE REMESHING AND REPARTITIONING

Luca Cirrottola1*, Algiane Froehly2

1 INRIA, Université de Bordeaux, CNRS, Bordeaux INP, IMB UMR 5251, 200 Avenue de la Vieille
Tour, 33405 Talence cedex, France, luca.cirrottola@inria.fr

2 INRIA Direction Générale Déléguée à l’Innovation, InriaSoft, Mmg Consortium,
algiane.froehly@inria.fr

Key words: Parallel mesh adaptation, unstructured meshes, mesh migration

Abstract. We present a parallel unstructured mesh adaptation algorithm based on iterative remeshing

and mesh repartitioning. The algorithm rests on a two-level parallelization scheme allowing to tweak the

mesh group size for remeshing, and on a mesh repartitioning scheme based on interface displacement by

front advancement. The numerical procedure is implemented in the open source ParMmg software pack-

age. It enables the reuse of existing sequential remeshing libraries, a non-intrusive linkage with third-

party solvers, and a tunable exploitation of distributed parallel environments. We show the efficiency of

the approach by comparing interface displacement repartitioning with graph-based repartitioning, and by

showing isotropic weak-scaling tests and preliminary anisotropic tests.

1 INTRODUCTION

Modern computational mechanics solvers nowadays routinely exploit parallel, distributed memory com-

puter architectures. Even if a parallel solver could in principle use a sequential remesher by gathering

the distributed mesh on a single process, due to memory limitations it is not always possible to guarantee

that a large distributed mesh can be gathered on a single computing node. Beside this primary feasibility

consideration, sequential remeshing in a parallel simulation also represents a significant performance

bottleneck [1]. Parallel remeshing is thus becoming increasingly demanded.

Among the many previous works on parallel remeshing (for example [2] [3] [4] [5] [6] [7] [8] [9]), a

broad classification can be made into methods that aim at parallelizing the remeshing kernel itself, and

methods that aim at employing a sequential remeshing kernel in a parallel framework by leveraging a

parallel repartitioning phase. We have opted for a modular approach by adopting an iterative remeshing-

repartitioning scheme that does not modify the adaptation kernel [9], allowing the reuse of an existing

sequential remeshing kernel. Our method is implemented into the parallel ParMmg application and li-

brary [10], built on top of the sequential Mmg3d remesher [11] for tetrahedral mesh adaptation. Both

software are free and open source.

The rest of this paper is organized as follows. Section 2 briefly recalls the parallelization algorithm, which

is detailed in [12]. Section 3 discusses the parallel performances at the current level of implementation,

while section 4 sums up our observations and future research lines.

1

Luca Cirrottola, Algiane Froehly

2 METHOD

As described in depth in [12], at each iteration of the parallel algorithm the sequential remeshing kernel

is applied on the interior partition on each process, while maintaining fixed (non-adapted) parallel inter-

faces. Then the adapted mesh is repartitioned in order to move the non-adapted frontiers to the interior

of the partitions at the next iteration, thus eliminating the presence of non-adapted zones as the iterations

progress. Although the repartitioning step can be accomplished through standard mesh partitioning li-

braries, differently from [9] we have explored the usage of a direct parallel interface displacement method

(or diffusion algorithm) to explicitly prioritize interface displacement over load balancing.

3 PARALLEL PERFORMANCE ASSESSMENT

We show the performances of the parallel algorithm on two academic edge sizemaps, by means of a weak

scaling and a strong scaling test. Both the weak and strong scaling tests have been performed with the

release v1.3.0 of ParMmg[10].

3.1 Weak scaling

A weak scaling test is shown in table 1. A sphere of radius 10 is uniformly refined while keeping the

workload of each process as constant as possible as the number of processes is increased. The test is

performed on the bora nodes of the PlaFRIM cluster1. The weak scaling performances are shown in

figure 1a. The slow increase in the time spent in the repartitioning and redistribution phase still leaves

space for some implementation optimization. Anyway, a major improvement is visible with respect to

the preliminary results shown in [12], where a significant performance degradation was present on more

than 64 cores. This improvement is due to an algorithmic optimization concerning the pre-computation

of the pair of processes interacting in the communication phase, which replaces a direct probing on the

presence of data to exchange whose cost grew quadratically.

3.2 Strong scaling

A strong scaling test is performed with an isotropic sizemap h describing a double Archimedean spiral

h(x,y) = min(1.6+ |ρ−aθ1|+0.005,1.6+ |ρ+aθ2|+0.0125) (1)

with
θ1 = φ+π

(

1+floor
(ρ

2πa

))

θ2 = φ−π
(

1+floor
(ρ

2πa

)) (2)

and φ = atan2(y,x), ρ = s
√

x2 + y2, a = 0.6, s = 0.5, into a sphere of radius 10 with uniform unit edge

length. The surfacic adaptation and a volumic cut of the adapted meshes on 1 and 1024 processes

are shown in figure 2. The resulting edge length statistics are shown in table 2. The strong scaling

performances are shown in logarithmic scale in figure 1b, where the speedup Sp over p processes is

1Supported by Inria, CNRS (LABRI and IMB), Université de Bordeaux, Bordeaux INP and Conseil Régional d’Aquitaine

(see https://www.plafrim.fr/)

2

Luca Cirrottola, Algiane Froehly

p nin
v /p nout

v /p nout
v /nin

v nout
v nin

e /p nout
e /p nout

e /nin
e nout

e

2 3625 1293637 356.81 2587274 18876 7780974 412.21 15561948

4 3467 1341637 386.88 5366549 18798 8072081 429.39 32288325

8 3346 1380055 412.38 11040444 18666 8306084 444.98 66448675

16 3264 1412516 432.66 22600269 18599 8503695 457.2 136059129

32 3190 1437267 450.46 45992552 18557 8654569 466.36 276946210

64 3214 1431186 445.2 91595935 18625 8619098 462.75 551622317

128 3215 1444674 449.31 184918370 18878 8701524 460.91 1113795077

256 3345 1468905 439.01 376039759 19705 8848464 449.03 2265206835

512 3375 1446532 428.52 740624790 19998 8714450 435.74 4461798709

1024 3335 1449215 434.54 1483996788 19821 8731162 440.49 8940710661

Table 1: Mesh statistics for the ParMmg weak scaling test. Number of vertices nv and tetrahedra ne in

input and output using p processors.

p N(0,0.3] N(0.3,0.6] N(0.6,0.7] N(0.71,0.9] N(0.9,1.3] N(1.3,1.41] N(1.41,2] N(2,5] N>5

1 1.34 % 35.34 % 16.89 % 25.49 % 20.15 % 0.63 % 0.16 % 0 0

2 1.14 % 34.87 % 16.97 % 25.79 % 20.45 % 0.63 % 0.15 % 0 0

4 1.04 % 34.20 % 17.03 % 26.08 % 20.85 % 0.64 % 0.16 % 0 0

8 0.98 % 33.66 % 17.06 % 26.30 % 21.18 % 0.66 % 0.16 % 0 0

16 1.07 % 32.41 % 17.06 % 26.78 % 21.84 % 0.68 % 0.16 % 0 0

32 0.91 % 30.78 % 17.29 % 27.59 % 22.57 % 0.70 % 0.16 % 0 0

64 0.93 % 30.22 % 17.20 % 27.76 % 23.01 % 0.72 % 0.17 % 0 0

128 0.88 % 29.48 % 17.20 % 28.06 % 23.48 % 0.73 % 0.17 % < 0.01 % 0

256 0.70 % 27.63 % 17.20 % 28.84 % 24.67 % 0.77 % 0.18 % < 0.01 % < 0.01 %

512 0.66 % 27.19 % 17.14 % 28.96 % 25.04 % 0.80 % 0.20 % < 0.01 % < 0.01 %

1024 0.69 % 26.14 % 16.91 % 29.03 % 25.99 % 0.92 % 0.30 % 0.02 % < 0.01 %

Table 2: Mesh statistics for the ParMmg strong scaling test. Percentage of edges N(a,b] whose length in

the assigned metrics falls in the interval lM ∈ (a,b], for each simulation on p processors.

defined as the ratio between the wall time on 1 process and the wall time on p processes

Sp =
T1

Tp

(3)

except for the speedup of the redistribution part of the program, which is defined with respect to the

redistribution time on 2 processes instead of 1 (as there is no redistribution on 1 process). As the number

of interfaces increases with the number of processes, it can be noticed both in table 2 and in figure 1b that

there is still a trend for a more pronounced propagation of large edge sizes from the fixed interfaces as

the number of processes increases, as well as a performance reduction in the redistribution phase. These

issues are the subject of current improvement efforts.

3

Luca Cirrottola, Algiane Froehly

2 4 8 16 32 64 128 256 512 1024
0

200

400

600

800

1,000

1,200

1,400

Number of processes

W
al
l
ti
m
e
(s
)

Ideal
Total

Remeshing
Redistribution

(a) Weak scaling performances for the uniform refinement of a sphere.

1 2 4 8 16 32 64 128 256 512 1024
1

2

4

8

16

32

64

128

256

512

1024

Number of processes

S
p
ee
d
u
p

Ideal

Sequential

Total

Remeshing

Redistribution

(b) Strong scaling performances for the double Archimedean spiral in a sphere.

Figure 1: Weak and strong scaling performances of ParMmg for two different tests.

4

Luca Cirrottola, Algiane Froehly

(a) Surface adaptation on 1 process. (b) Surface adaptation on 1024 processes.

(c) Volume adaptation on 1 process. (d) Volume adaptation on 1024 processes

Figure 2: Examples of adaptation to the double Archimedean spiral on 1 and 1024 processes.

5

Luca Cirrottola, Algiane Froehly

3.3 Extension to anisotropic metrics

As already shown in [12], the application to anisotropic metrics can suffer from a more serious size

diffusion effect than the one shown in the previous section, if specific precautions are not taken when

dealing with the metric specification on parallel interfaces. This is the subject of current studies.

4 CONCLUSIONS

We have shown a performance assessment of a parallel remeshing algorithm for unstructured meshes

based on iterative remeshing-repartitioning first described in [12]. Parallel iterations are performed by

alternating remeshing on interior process partitions, with fixed parallel interfaces, to mesh repartition-

ing aiming at moving previous interfaces on the interior of the next partitions to be remeshed. A key

point for the choice of this specific parallelization strategy rests in software modularity, since building a

parallelization framework on top of an existing sequential remeshing kernel allows the parallel software

application to benefit from the continuous development of its sequential kernel. Modularity also applies

to the choice of the mesh repartitioning strategy, since it is independent from the internal mechanics of

the remeshing kernel. While weak scaling results show that meshes of billions of tetrahedra are easily

achievable through the current framework, they also show that care needs to be taken in the design of

the parallel redistribution phase, as more data and more processes are involved in the communication

phase. Strong scaling results show that the parallel application exhibits an overhead with respect to its

sequential counterpart, due to the fact that several remeshing iterations are performed. Although this

overhead is quickly catched up as the number of processes increases, it has to be kept in mind when the

coupling with an external solver is envisaged, as its relative weight on overall performances can depend

on the performances of the external solver itself, on the target mesh size, and on the parallel communi-

cator size. Future research lines involve further improvement of the scalability of the mesh redistribution

phase, which could be achieved by further optimizing the software implementation of the parallel com-

munication, as well as the reduction of the parallel overhead, which could be achieved by optimizing

the number of iterations or the interface displacement phase. Future developments also concern the full

support of non-smooth boundary surfaces and anisotropic metrics.

References

[1] Michael A Park et al. “Unstructured Grid Adaptation: Status, Potential Impacts, and Recom-

mended Investments Towards CFD 2030”. In: AIAA Fluid Dynamics Conference, AIAA AVIATION

Forum. Washington DC, United States, 2016. URL: https://hal.inria.fr/hal-01438667.

[2] José G. Castaños and John E. Savage. “The Dynamic Adaptation of Parallel Mesh-Based Compu-

tation”. In: PPSC. 1997.

[3] H. L. De Cougny and M. S. Shephard. “Parallel refinement and coarsening of tetrahedral meshes”.

In: International Journal for Numerical Methods in Engineering 46.7 (1999), pp. 1101–1125.

[4] Leonid Oliker, Rupak Biswas, and Harold N Gabow. “Parallel tetrahedral mesh adaptation with

dynamic load balancing”. In: Parallel Computing 26.12 (2000). Graph Partitioning and Parallel

Computing, pp. 1583 –1608. URL: http://www.sciencedirect.com/science/article/pii/

S0167819100000478.

6

Luca Cirrottola, Algiane Froehly

[5] Nikos Chrisochoides and Démian Nave. “Parallel Delaunay mesh generation kernel”. In: Interna-

tional Journal for Numerical Methods in Engineering 58.2 (2003), pp. 161–176. eprint: https:

//onlinelibrary.wiley.com/doi/pdf/10.1002/nme.765. URL: https://onlinelibrary.

wiley.com/doi/abs/10.1002/nme.765.

[6] J.E. Flaherty et al. “Parallel structures and dynamic load balancing for adaptive finite element

computation”. In: Applied Numerical Mathematics 26.1 (1998), pp. 241 –263. URL: http://

www.sciencedirect.com/science/article/pii/S0168927497000949.

[7] Peter A. Cavallo, Neeraj Sinha, and Gregory M. Feldman. “Parallel Unstructured Mesh Adaptation

Method for Moving Body Applications”. In: AIAA Journal 43.9 (2005), pp. 1937–1945. eprint:

https://doi.org/10.2514/1.7818. URL: https://doi.org/10.2514/1.7818.

[8] Hugues Digonnet et al. “Massively parallel anisotropic mesh adaptation”. In: International Jour-

nal of High Performance Computing Applications (Mar. 2017). URL: https://hal.archives-

ouvertes.fr/hal-01487424.

[9] Pierre Benard et al. “Mesh adaptation for large-eddy simulations in complex geometries”. In: In-

ternational Journal for Numerical Methods in Fluids 81.12 (2016), pp. 719–740. eprint: https://

onlinelibrary.wiley.com/doi/pdf/10.1002/fld.4204. URL: https://onlinelibrary.

wiley.com/doi/abs/10.1002/fld.4204.

[10] ParMmg version 1.3.0. SWHID:swh:1:rel:bf45d6314a386455d53a6c351be771d6252e0d43; REPOS-

ITORY: https://github.com/MmgTools/ParMmg.

[11] Mmg version 5.5.2. SWHID: swh:1:rel:fe173a75f45f079d363d5a82204c9737550c5d79; REPOSI-

TORY: https://github.com/MmgTools/mmg.

[12] Luca Cirrottola and Algiane Froehly. Parallel unstructured mesh adaptation using iterative remesh-

ing and repartitioning. Research Report RR-9307. INRIA Bordeaux, équipe CARDAMOM, Nov.

2019. URL: https://hal.inria.fr/hal-02386837.

7

