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Abstract In this paper the so-called added-mass effect is investigated from a differ-

ent point of view of previous publications. The monolithic fluid structure problem

is partitioned using a static condensation of the velocity terms. Following this pro-

cedure the classical stabilized projection method for incompressible fluid flows is

introduced. The procedure allows obtaining a new pressure segregated scheme for

fluid-structure interaction problems which has good convergent characteristics even

for biomechanical application, where the added mass effect is strong. The proce-

dure reveals its power when it is shown that the same projection technique must be

implemented in staggered FSI methods.

Keywords Fluid-structure interactions · Added mass effect · Incompressible flows ·
Pressure segregation

1 Introduction

Fluid-structure interaction problems involving an incompressible viscous flow and

elastic non-linear structure have been solved in the past using different methods:

Partitioned (or staggered) [1–4] approaches are probably the most popular solution

technique for the simulation of coupled problems as they allow using specifically

designed codes on the different domains and offer significant benefits in terms of
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efficiency: smaller and better conditioned subsystems are solved instead of a single

problem. Loosely (or weakly) [5] and strongly coupled [6–12] schemes are distin-

guished in the partitioned case: loosely coupling schemes require only one solution

of either field per time step in a sequentially staggered manner and are thus par-

ticularly appealing in terms of efficiency. Strongly coupled schemes give, after an

iterative process, the same results as non-partitioned (also named monolithic) algo-

rithms. Both of them, the strongly coupled as well as the monolithic scheme, lead to

expensive simulations since, at each time step, a sub iteration algorithm including

the fluid and the structure domain have to be performed in the partitioned strongly

coupled scheme. Alternatively, fully coupled systems including the equations for

the fluid and structure must be solved for the monolithic procedure.

There is a key difference between the strongly coupled scheme and the mono-

lithic scheme: the iterative process in the strongly coupled scheme may be diffi-

cult (even non-convergent) when the so-called “added-mass effect ” is important

[13, 14]. Indeed, in such situation, a monolithic scheme seems to be necessary to

avoid numerical instabilities. The name “added-mass effect ” has been used in the

literature to indicate the instabilities that typically occur in the internal flow of an

incompressible fluid whose density is close to the structure density. We will use

the same terminology to be consistent with previous papers, but as will be shown

later, the instabilities are not necessarily caused by a fluid density close to the struc-

ture density. There are other factors, as elasticity coefficients and time step size that

must be taken into account to avoid unstable solutions. The added-mass effect is not

present in aero elasticity problems, but it becomes very important in biomechanics

applications where the materials are normally muscles and arteries and the fluid is

blood.

Weakly coupled schemes are also affected by the added-mass effect: they become

unstable when this effect is significant.

There is a third situation for which the added-mass effect produces complica-

tions. It concerns the monolithic solution of the fluid-structure interaction problem

when the pressure is segregated from the displacement or the velocity fields. In

this case, even if we are solving together in a coupled way the fluid and the solid

equations, the iterative scheme to obtain the pressure may be difficult and even

non-convergent.

The purpose of this paper is to put in evidence that the added-mass effect is

a consequence of the pressure segregation (case 3 in the previous list) and that a

correct understanding of the pressure segregation effect yields different solutions to

the added-mass problem which may be successfully applied to cases 1 and 2.

The segregation of the pressure can be conveniently performed using a Chorin-

Temam projection scheme [15, 16]. This splitting procedure works conveniently

for incompressible flows. Nevertheless we will introduce pressure segregation via

a simple static condensation procedure. This static condensation will explain the

Chorin Teman projection as a particular case and will allow generalizing the

Chorin-Temam scheme for fluid–structure interaction problems.
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2 The Discretized Equations to Be Solved in a FSI Problem

The equations to be solved for both the incompressible fluid and the elastic solid

domains are the momentum equations:

ρai = ρ
DVi

Dt
=

∂σi j

∂x j
+ ρ fi (1)

where σi j is the Cauchy stress tensor, ρ the density, ai the acceleration vector equal

to the total derivative of the velocity Vi and fi a body force vector.

In the incompressible part of the domain, mass conservation must be enforced:

εV =
∂Vi

∂xi
= 0, (2)

and the boundary conditions for both domains are:

σni = σ̄ni in Γσ and Ui = Ui in ΓU (3)

On the fluid domain, it is sometimes useful to use a moving framework different

than the particle displacement. In this case, the acceleration vector may be written

as a function of the framework velocity VM j as:

DVi

Dt
=

DFVi

Dt
+(Vj −VM j)

∂Vi

∂x j
(4)

where DFVi
Dt represents the framework derivative of the velocity.

Apart from the incompressible condition the only difference between the fluid

and the solid are the constitutive equations. Nevertheless, once the time integration

scheme has been chosen, both constitutive equations may be written as a function

of the displacement rates or the velocities rates (adding always the pressure in the

incompressible part).

Assuming for simplicity that an implicit Euler time integration has been chosen,

then:

Un+1
i = Δt

(
θ V n+1

i +(1−θ )Vn
i
)

(5)

where the upper index indicates the time position, Δt is the time step and θ is an

integration parameter between 0 and 1. To simplify the notation, in the following

the upper index n + 1 will be omitted.

In the following and without lack of generality, we will consider that the consti-

tutive equations for the solid and the fluid domains are expressed as a function of

the velocity field (plus the pressure in the incompressible regions). The same results

and conclusions may be obtained using the displacements as the main unknowns.
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The weighted residual form of the momentum and mass conservations equations

are: ∫
V

Wl

(
ρ

DVi

Dt
− ∂σi j

∂x j
−ρ fi

)
dV+

∫
Γσ

Wl(σni −σni)dΓ = 0 (6)

∫
V

Wp(−εV )dV = 0 (7)

and the weak form is:∫
V

[
Wl

(
ρ

DVi

Dt

)
+

∂Wl

∂x j
σi j −Wlρ fi

]
dV −

∫
Γσ

WlσnidΓ = 0

∫
V

Wp(−εV )dV = 0

(8)

Replacing the stress tensor from the corresponding constitutive equation and dis-

cretizing the velocity and the pressure fields with standard shape functions:

Vi = NT Vi (9)

p = NT
p P (10)

and using Galerkin weighting functions the global fluid–structure interaction prob-

lem may be written in a compact monolithic form as:[(
Mρ
Δt + K

)
−B

−BT 0

][
V
P

]
=

[
F + Mρ

Δt Vn

0

]
(11)

where Mρ is the mass matrix which is a function of the fluid density ρ f or the solid

density ρs and the shape functions: with Ki j = K1
i j + K2

i j + K3
i j. In the fluid part:

K1
ii =

∫
V

∂N
∂x j

μ
∂NT

∂x j
dV ; (12a)

K2
i j =

∫
V

∂N
∂x j

μ
∂NT

∂xi
dV ; (12b)

K3
i j =

∫
V

∂N
∂xi

(
−2μ

3

)
∂NT

∂x j
dV , (12c)

and in the solid domain:

K1
ii =

∫
V

∂N
∂x j

(
ΔtG

J

)
∂NT

∂x j
dV ; (13a)
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K2
i j =

∫
V

∂N
∂x j

(
ΔtG

J

)
∂NT

∂xi
dV ; (13b)

K3
i j =

∫
V

∂N
∂xi

(
Δtλ

J

)
∂NT

∂x j
dV (13c)

In the case where the moving framework is different than the particle displacement

matrix K includes the convective terms K4
i j:

K4
ii =

∫
V

N(Vj −VM j)
∂NT

∂x j
dV (14)

Matrix B affects the incompressible part of the domain. This means that B has

non-zero terms only in the degrees of freedom related with the fluid including the

interfaces solid–fluid.

The form of matrix B is:

BT = [BT
1 ,BT

2 ,BT
3 ] with BT

i =
∫
V

Np
∂NT

∂xi
dV (15)

Equation (11) represent the coupled monolithic fluid–structure interaction problem

that must be solved. It is well known that this system of equations must be stabilized

for some class of equal order interpolations (e.g. when Np = N) [17].

Independently of the method chosen to stabilize the problem, we will assume

that the problem has been conveniently stabilized by a matrix S in such way that the

problem reads: [(
Mρ
Δt + K

)
−B

−BT S

][
V
P

]
=

[
F + Mρ

Δt Vn

0

]
(16)

3 Monolithic Solution of the FSI Equations by Pressure
Segregation

Solution of the Eq. (16) as a fully coupled system of equations is sometimes expen-

sive due to ill-conditioning problems. A more convenient way to solve this system is

segregating the pressure from the remaining unknowns (in our examples the veloc-

ity field). Segregation means to separate during the solution process the pressure

from the velocity variables in a staggered way: first the velocities (or the pressure)

are evaluated independently of the pressure (or the velocities) and then the solution

of the pressure (or the velocities) is found using the previous results. Segregation of

the pressure has several advantages as:

1. Decreases the number of degrees of freedom to be solved simultaneously

2. Avoid ill-conditioned matrices
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3. Allows using unified formulations for fluid and solid

4. Allows us to draw some conclusions to be used in partitioned schemes (in which

the pressure is always segregated from the solid part)

There are several ways to segregate the pressure from the velocity. The simplest

one is to assume an initial value for the pressure, compute the velocities using this

initial value and then evaluate the pressure iteratively. A more sophisticated scheme

to segregate the pressure is the Chorin-Temam projection scheme [15, 16] which

will be discussed later.

In order to easy the discussion the algorithm to be presented next, the following

change of variable will be introduced: Being P0 anyarbitrary vector of the same

dimension of the pressure, the following new unknown will be defined:

δP = P−P0 (17)

Note that P0 is not necessarily the initial pressure vector at time t = 0.

The system of equations to be solved becomes:[(
Mρ
Δt + K

)
−B

−BT S

][
V

δP

]
=

[
F + Mρ

Δt Vn

−SP0

]
(18)

3.1 Static Condensation of the Pressure

The only way to segregate exactly the pressure from the velocity is via static con-

densation. Static condensation is a procedure to solve a system of equations in a

partitioned way. It consists of inverting a part of the initial matrix. For instance in

system (18) we can condensate the pressure by inverting matrix S, or condensate

the velocity by inverting matrix
(

Mρ
Δt + K

)
. Matrix S must be singular and then the

only possibility is to statically condense the velocity field.

From the first row of (18) the velocity field may be obtained as:

V =
(

Mρ

Δt
+ K

)−1(
F +

Mρ

Δt
Vn + BP0 + BδP

)
(19)

Inserting this into the second line of Eq. (18) gives:

−BT
(

Mρ

Δt
+ K

)−1(
F +

Mρ

Δt
Vn + BP0 + BδP

)
+ SδP = −SP0 (20)

This means that the static condensation of the velocity allows one solving the

problem in two steps:
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(I)

[
−BT

(
Mρ

Δt
+ K

)−1

B+ S

]
δP =

BT
(

Mρ

Δt
+ K

)−1(
F +

Mρ

Δt
Vn + BP0

)
−SP0

(21)

(II)
(

Mρ

Δt
+ K

)
V =

(
F +

Mρ

Δt
Vn + BP0 + BδP

)
(22)

Defining the Ṽ vector as

Ṽ =
(

Mρ

Δt
+ K

)−1(
F +

Mρ

Δt
Vn + BP0

)
(23)

Static condensation is implemented in the following three steps:

(I)
(

Mρ

Δt
+ K

)
Ṽ =

(
F +

Mρ

Δt
Vn + BP0

)
⇒ Ṽ (24)

(II)

[
−BT

(
Mρ

Δt
+ K

)−1

B+ S

]
δP = BT Ṽ−SP0 ⇒ δP (25)

(III)
(

Mρ

Δt
+ K

)
(V− Ṽ) = BδP ⇒ V (26)

Equations (24–26) represent the way to segregate the pressure from the velocity in

a exact way. It is a very expensive procedure from the computational point of view,

but if enough resources are available is the correct method to apply. On the other

hand, Eqs. (24–26) suggest a procedure to approximate the exact algorithm and to

obtain a more efficient way to segregate the pressure.

3.2 Approximation to the Static Condensation

In the Chorin-Teman projection methods, matrix BT
(

Mρ
Δt + K

)−1
B in Eq. (25) is

approximated by the Laplace matrix L:

BT
(

Mρ

Δt
+ K

)−1

B ∼= Δt
ρ

L (27)

where:

L =
∫
V

∂N
∂x j

∂NT

∂x j
dV (28)

This approximation is acceptable in non viscous or nearly in viscid flows for

which matrix K is negligible versus the mass matrix
Mρ
Δt . The remaining matrix
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BT
(

Mρ
Δt

)−1
B is approximately equal to Δt

ρ L (see the definition of B, Mρ and L) for

a lumped mass matrix and continuous pressure shape functions.

A more suitable way to approximate matrix BT
(

Mρ
Δt + K

)−1
B for cases where

matrix K is not negligible will be proposed next.

Being M = ∑Me and K = ∑Ke where Me and Ke are the element mass and

stiffness matrix corresponding to an element “e”. Let us introduce the following

approximation in Eq. (25):

Me ≈ ρeMe
D (29)

where Me
D is the lumped mass matrix without the ρ

Ke ≈
(

Δtλ
J + ΔtG

J

)
1
h2 Me

D in the elastic domain and

Ke ≈ μ
h2 Me

D in the fluid domain.

In case of a moving framework different from the particle displacement, the

convective term is added to the fluid lumped stiffness matrix Ke:

Ke ≈
(

μ
h2

+
|V−Vm|

h

)
Me

D (30)

In all previous definitions, h represents a characteristic mesh size, for instance, the

average distance between two points.

It must be noted that with the same idea, different possibilities for the lumped

mass and stiffness matrices may be proposed. In (29, 30) just the diagonal terms

of each matrix are chosen, but other most sophisticated lumped matrices may be

used. It is important to repeat that these lumped matrices are used exclusively in the

pressure Eq. (25). In Eqs. (24) and (26) the fully consistent matrices are used.

With the previous approximations, the original matrix in Eq. (25) becomes:

(
M
Δt

+ K
)−1

= ∑
(

Me

Δt
+ Ke

)−1

≈ ∑
(

τe [Me]−1
D

)
= M−1

T (31)

where M−1
T is a diagonal matrix obtained from the assembly of the elemental

contributions τe [Me]−1
D , with

τe =
(

ρs

Δt
+

Δtλ
Jh2

+
ΔtG
Jh2

)−1

(32)

in the elastic domain and

τe =
(

ρ f

Δt
+

μ
h2

+
|Ve −Ve

m|
h

)−1

(33)

in the incompressible domain.
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The first two approximations may be written as:

BT
(

Mρ

Δt
+ K

)−1

B ≈ BT M−1
T B (34)

Finally, a third approximation, similar to the classical introduced in projection

method will be added:

BT M−1
T B ≈ L(τ) (35)

where L(τ) = Σ(τeLe) being Le the elemental Laplace matrices.

Then, the three steps algorithm stand:

1.

(
Mρ

Δt
+ K

)
Ṽ =

(
F +

Mρ

Δt
Vn + BP0

)
⇒ Ṽ (36)

2. [−L(τ)+ S]δP = BT Ṽ−SP0 ⇒ δP (37)

3.

(
Mρ

Δt
+ K

)
(V− Ṽ) = BδP ⇒ V (38)

Of course, Eq. (37) is an approximation to Eq. (25) when BT
(

Mρ
Δt + K

)−1
B is

replaced by L(τ). This approximation introduces en error in the evaluation of the

unknown P. In order to diminish this error, an iterative procedure may be used to

approximate P0 by P. Effectively, now the introduction of the arbitrary variable P0

in Eq. (17) becomes justifiable. Introducing this assumption in a iterative process

in which once P evaluated at the k iteration, then, the next iteration is started with

P0 = Pk. The error introduced by the approximation to BT
(

Mρ
Δt + K

)−1
B becomes

negligible when δP → 0.

4 Evaluation of the Laplace Matrix L(τ) for FSI Problems

When solving an incompressible fluid–elastic solid interaction problem, the incom-

pressible condition (2) is only applied to the fluid domains. This means that the

discretized form BT
i Vi = 0 is only affects some degrees of freedom (DOF).

Let us call nP the total DOF corresponding to the pressure, nV the total DOF cor-

responding to the velocity, ns the velocity DOF corresponds to the solid exclusively

(without the interfaces), n f the velocity DOF corresponding exclusively to the fluid

(without the interfaces), and ns f the velocity DOF of the interfaces solid–fluid.

Then matrix BT is a matrix of nP files and ns columns, but all the columns corre-

sponding to the ns solid DOF are zero. Matrix BT has non-zero columns in the DOF

corresponding to the fluid domain and the interfaces.
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On the other hand, matrix M−1
T is a diagonal matrix, with terms:

M−1
T =

[(
ρ f

Δt
+

μ
h2

+
|Vn+1 −Vm|

h

)
MD

]−1

(39)

in the n f DOF

M−1
T =

[(
ρs

Δt
+

GΔt
Jh2

+
λ Δt
Jh2

)
MD

]−1

(40)

in the ns DOF and

M−1
T =

[(
ρ f

Δt
+

μ
h2

+
|Vn+1 −Vm|

h
+

ρs

Δt
+

GΔt
Jh2

+
λ Δt
Jh2

)
MD

]−1

(41)

in the ns f DOF.

Performing the double product BT (M−1
T )B, all the terms corresponding to the ns

DOF are zero. Matrix L(τ) may be written as:

L(τ) = BT (M−1
T )B = L f (τ f )+ Ls f (τs) (42)

L f (τ f ) is the standard Laplace matrix corresponding to the fluid domain including

the interfaces.

L f
(
τ f
)

= ∑(τe
F Le) (43)

Lsf(τs) is a Laplace matrix corresponding only to the fluid–solid interfaces:

Ls f (τs) = ∑
(
τsLe

s f
)

(44)

where

Le
s f =

∫
V

∂Nsf

∂x j

∂NT
sf

∂x j
dV (45)

is the Laplace matrix of the solid elements evaluated only with the shape functions

Nsf that are different from zero on the fluid–solid interface.

Equation (42) may be also written as:

L(τ) = L f (τ f )+ Ls f (β τ f ) (46)

with

β =
τs

τ f
=

ρ f
Δt + μ

h2 + |Vn+1−Vm|
h

ρs
Δt + GΔt

Jh2 + λ Δt
Jh2

(47)

This means that the Laplace interface matrix Lsf(β τ f ) becomes negligible for small

values of the β parameter. This is for instance the case when ρs >> ρ f and the

added-mass effect is not present. However, for other physical properties the β
parameter may not be negligible, and the Laplace interface matrix must be evaluated

in order to obtain good results.
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5 The Partitioned (or Staggered) Scheme

Partitioned schemes are based in dividing the original FSI problem in two parts: the

solid one and the fluid one. The division is performed independently of using or

not sub-iterations in a strongly coupled partitioned scheme or in a loosely coupled

one. The idea is exactly the same as for the pressure segregation procedure described

above in which the system was split in the velocity and pressure unknowns. Now the

same system of equations is split in the solid unknowns (for instance the velocity or

the displacements) and the fluid unknowns (normally the velocity and the pressure).

Both systems are solved separately.

Let us call Vs the vector containing the solid unknowns, V f and P the vectors

containing the fluid unknowns, not including the common solid–fluid unknowns,

and Vs f the vector including the common solid–fluid unknowns.

The transfer of information occurs on the boundary ΓSF by using techniques

that guarantee momentum and energy conservation [2]. For staggered algorithms

the use of non-matching meshes is a common practice since both systems, fluid

and structure, are completely decoupled. The classical boundary conditions at the

interface are:

(V f −Vs)T n = 0 on Γ f−s (48)

σn + ts = 0 on Γ f−s (49)

where Eq. (48) represents the consistency condition. Since the interface is modelled

using a fully Lagrangian frame of reference this condition guarantees that the fluid

and solid meshes will remain tightly coupled along the FSI interface. Equation (49)

represents the equilibrium of normal stresses along the interfaces.

The original FSI Eq. (15) may be then written as:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
Mρ
Δt + K

)
s

(
Mρ
Δt + K

)
s f

0 0

(
Mρ
Δt + K

)T

s f

(
Mρ
Δt + K

)
ss f f

(
Mρ
Δt + K

)
f s
−Bs f

0
(

Mρ
Δt + K

)T

f s

(
Mρ
Δt + K

)
f
−B f

0 −BT
s f −BT

f 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

Vs
Vs f
V f
P

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

(
F + Mρ

Δt Vn
)

s(
F + Mρ

Δt Vn
)

s f(
F + Mρ

Δt Vn
)

f
0

⎤
⎥⎥⎥⎥⎥⎥⎦

(50)

In the monolithic method previously described with pressure segregation, Eq. (50)

was partitioned in (a) the three first rows and columns and (b) in the fourth row and

fourth column. In classical staggered methods, Eq. (50) is partitioned in the first two

rows and columns and then in the other two rows and columns.

For each sub iteration, the static condensation of the terms

BT
s f

(
M
Δt

+ K
)−1

ss f f
Bs f (51)

must be taken into account when the added-mass effect is strong.
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Using the same conclusion reached in Section 4, an interface Laplace matrix

Lsf(β τ f ) must be added when solving the incompressible part of the domain. Since

the meshes on the interface may be non-matching special care has to be taken when

Eqs. (39–41) are evaluated. In the general case Eq. (41) takes the form:

M−1
T =

[(
ρ f

Δt
+

μ
h2

+
|Vn+1 −Vm|

h

)
MD f +

(
ρs

Δt
+

GΔt
Jh2

+
λ Δt
Jh2

)
MDs

]−1

(52)

In conclusion, matrix Lsf(β τ f ) must be added to the fluid equation, independently

of the method used to solve the incompressibility condition. This means that inde-

pendently of using or not pressure segregation, the fluid solution must include

the interface Laplace matrix. This is because, when using a partitioned solution,

pressure segregation is implicitly included in the procedure as explained in Eq. (50).

6 Fluid Column Interacting with an Elastic Solid Bottom

The example is a very simple 1D problem for which an analytical results can be eas-

ily obtained. Nevertheless from the numerical point of view it has some convergence

problems. The example is ideal to test different materials and time step sizes in order

to check the validity of the algorithm proposed, in particular the effectiveness of the

interface matrix to improve the convergence rate.

The example consistsin an incompressible column over an elastic solid (Fig. 1).

Both column walls have the horizontal displacement constrained (plane strain).

The upper line is a free surface and the bottom one has the displacement constrained.

Initially, the example had the following physical properties. ν = 0.4; μ f = 0, ρs =
1500[kg/m3]; ρs = 1000[kg/m3], Es = 2.3× 105[kg/m.sec2].

The gravity was fixed to g =−10 [m/s2] in the vertical direction and the geometry

was discretized as a 2D problem using a mesh of x three-noded linear triangles with

h = 0.025 [m].

Fig. 1 Water column with an
elastic beam

0.75m

0.05m

0.25m
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The numerical solution does not converge when the interface Laplace matrix

Lsf(β τ f ) is neglected (β = 0). The best way to see the importance of this matrix

is to study different situations for different densities, different Young modulae and

different time steps.

Table 1 shows the performance of the algorithm for a stiff material with a Young

modulus similar to steel and different density rates. We can observe that β = 0 is

acceptable only for density rates larger than 6. The number of iterations to achieve

the same error is equal to 20 in all cases for β �= 0 but it is larger than 40 iterations

for β = 0. This means that even in the case of a FSI problems involving steel and

water ( ρs
ρ f

= 7), β �= 0 must be used. Probably only in aero-elasticity applications

where the density rate is larger than 1,000 the omission of the interface Laplace

matrix is justified.

Es = 2×1011

[
kg

ms2

]
; ν = 0.3 Δt = 10−5[s]

Table 2 shows the same problem for different stiffness properties for the elastic

domain but with the density rate fixed to one. This means that the density in the

elastic solid and in the fluid is the same. Due to the oscillatory behaviour of the

problem, the time step (Δt [s]) must be changed in order to achieve reasonable time

integration with a minimum of time steps for each oscillation. We observe that only

for very high Young modulus the case with β = 0 converges.

Table 1 Iterations to achieve convergence for different density rates

ρs
ρ f

β �= 0 β = 0

10 20 iterations 20 iterations
7 20 iterations More than 40 iterations
6 20 iterations More than 40 iterations
5 20 iterations Does not converge
3 19 iterations Does not converge
1 18 iterations Does not converge

Table 2 Iterations to achieve convergence for different Young modulus

E ( kg
m2 ); (Δt [s]) β �= 0 β = 0

2×1013; (0.2×10−5) 10 iterations More than 40 iterations

2×1012; (0.5×10−5) 14 iterations Does not converge

2×1011; (1×10−5) 18 iterations Does not converge

2×108; (1×10−4) 40 iterations Does not converge

2×107; (1×10−3) 36 iterations Does not converge

2×106; (1×10−3) 40 iterations Does not converge

2×106; (1×10−2) 34 iterations 33 iterations

2×105; (1×10−2) 36 iterations Does not converge
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Table 3 Iterations to achieve convergence for different time steps

Δt (s) β �= 0 β = 0

2×10−5 23 iterations 21 iterations

1×10−5 20 iterations More than 40 iterations

0.75×10−5 18 iterations Does not converge

0.5×10−5 16 iterations Does not converge

0.25×10−5 11 iterations Does not converge

ρs

ρ f
= 1; ν = 0.3

The most worrisome results are those presented in Table 3. They correspond to a

standard steel elastic modulus with a density rate equal to 7. We use first the correct

time step size for this kind of problem and see that both formulations for β = 0 and

β �= 0 converge reasonably well in 21 iterations. Nevertheless, halving the time step,

the number of iterations with β = 0 duplicates. Decreasing the time step further, the

method with β = 0 does not converge, while the algorithm with the interface Laplace

matrix converges in a decreasing number of iterations as expected.

ρs

ρ f
= 7; Es = 2 × 1011[

kg
ms2

] ν = 0.3

This example shows that even when classical materials like steel and water are

involved, the use of the interface Laplace matrix is recommended to avoid possible

difficulties when the time step is smaller than necessary.

The problems were tested with both methods: monolithic with pressure segrega-

tion and with a strongly coupled partitioned scheme, with similar conclusions for

both cases.

7 Conclusions

The pressure segregation method proposed for the solution of FSI problems with

special emphasis in added mass effects has shown an excellent behaviour with

promising possibilities in the field of bio-medical applications.

The method was extended to strongly coupled partitioned schemes with the same

excellent results. This allows us to conclude that a correct understanding of the pres-

sure segregation is the key issue to solve any FSI problem with either a partitioned

or a coupled scheme.

A key feature of the formulation proposed is to learn how to segregate the

pressure in the monolithic scheme in order to correctly solve the staggered FSI

problem.
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Based on the pressure segregation scheme, we have proposed an interface Laplace

matrix that gives excellent convergence rates for all the examples studied, even in

those cases where the added mass effect is important.
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