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Abstract. In a partitioned fluid-structure interaction simulation separate flow and structure
solvers, each with their own spatial domain, are coupled by exchanging data on the common
interface. Its computational cost is dominated by the execution of these solvers, and the
cost associated with the coupling algorithm and communication are often deemed negligible.
From this point of view, the computational cost is in literature typically expressed by the
number of required coupling iterations per time step or equivalently the number of solver
executions. However, this reasoning implicitly assumes a constant solver cost and ignores the
varying number of internal subproblem iterations, i.e., solver iterations in the nonlinear solvers.

This work addresses this shortcoming and shows that the computational cost of a partitioned
fluid-structure interaction simulation is significantly impacted by the number of subproblem
iterations performed in each solver call. Specifically, it is demonstrated that performing sub-
problem iterations until the solver is fully converged in each call does typically minimize the
number of coupling iterations, but does not lead to minimal computational time. Instead,
under the assumption of constant subproblem iteration cost, the optimum is found by mini-
mizing a weighted sum of both coupling and subproblem iterations. The weighting factors are
determined by the problem itself as well as the computer architecture.

1 INTRODUCTION

In fluid-structure interaction (FSI) simulation, the partitioned approach is often adopted,
because it allows to reuse optimized and validated codes for the flow and structural subprob-
lem, in contrast to the monolithic approach where the equations of both subproblems are solved
in one system. In the partitioned strategy, the solvers are regarded as black boxes and com-
munication is restricted to their shared fluid-structure interface. Its drawback is the need for
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Nicolas Delaissé, Thomas Spenke, Norbert Hosters and Joris Degroote

consecutive fluid and structure solver executions with the intermediate exchange of interface
data. These consecutive executions within every time step, called coupling iterations, assure
that the position of the common interface and the forces thereon are identical up to a certain
tolerance in both subproblems, but they also give rise to stability issues due to the added mass
effect [1], [2].

A series of techniques has been proposed to counter these instabilities and they range from
simply relaxing the change in interface data to applying quasi-Newton techniques, which use
an approximated Jacobian. This last approach forms the basis for the current state-of-the-art
methods. By calculating the differences between the interface data of consecutive iterations,
typically displacement and residual, they construct an approximated low-rank Jacobian, which
is used to determine a new interface value for the next iteration. For an extensive overview of
implementation and variants of these techniques, the reader is referred to [3].

The central question in this work stems from two observations. First, it is common practice
to keep the tolerance of a subproblem constant in every coupling iteration or, in other words,
converge every solver execution up to full tolerance. Nevertheless, in the first few coupling
iterations the intermediate solution is still far from the final one, which means that compu-
tational resources are spent on polishing provisional data. From this perspective it seems
beneficial to gradually increase the computational accuracy of the subproblems in consecutive
coupling steps. However, this also means that less accurate data is fed back into the coupling
loop. Especially when using quasi-Newton techniques, care is warranted since these techniques
construct an approximate Jacobian from differences between interface data of consecutive iter-
ations. The accuracy of these differences directly depends on the tolerance of the subproblems,
such that loosening these tolerances will also negatively affect the accuracy of the quasi-Newton
approximated Jacobian.

Second, in literature, the cost of a partitioned FSI simulation is often expressed by the
number of coupling iterations, or equivalently the number of solver executions. While it is
true that the cost of the solver calls are the dominant contributor to the calculation time, this
reasoning also implicitly assumes a constant cost for every solver execution. In practice, even
when the solvers calculate up to full convergence in each call, this is not the case. For example,
the cost will decrease from one coupling iteration to the next if the previous solver call is used as
starting point. Furthermore, also the time evolution of the subproblems affects this cost, e.g.,
a sudden change in boundary condition will automatically lead to a higher number of internal
iterations and hence a more expensive solver call.

Based on these observations, this work investigates the effect of not fully converging in every
solver execution on the total calculation time, by imposing a maximal number of subproblem
iterations per solver call. Towards this goal, a measure for the computational efficiency is used
that takes the weighted sum of not only the number of coupling iterations but also the number
of subproblem iterations [4].

The next section discusses the subsolvers and how a consistent level of accuracy is reached
when the number of subproblem iterations is limited. Section 3 focuses on the new measure for
computational time and describes how the weighting factors can be obtained through regression.
Section 4 presents a test case for which the results are discussed in Section 5. Finally, the most
important findings are summarized in Section 6.
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2 PARTITIONED FSI: COUPLING OF SUBSOLVERS

In a partitioned FSI simulation, separate flow and structure solvers are coupled: by per-
forming multiple coupling iterations in each time step, the kinematic and dynamic equilibrium
conditions on the interface are fulfilled up to a certain tolerance. These conditions entail cor-
responding displacement and forces on the interface in both domains.

In most cases, internal nonlinear iterations are performed in both the flow and structure
solver, whether these are solved using finite volumes (FV), finite elements (FE) or another
technique. These iterations will be referred to with the general term subproblem iterations.
These iterations are used to find the solution u of the discretized system

A(u)u = b, (1)

where u ∈ Rn contains the dependent variables of interest, e.g., pressure and velocity for the
flow solver, and n is the number of degrees of freedom (DOF) of the system. Subproblem
iterations are required since the coefficient matrix A ∈ Rn×n typically depends on u, rendering
the system nonlinear.1 When solving a subproblem separately, the right-hand side b ∈ Rn

containing the boundary conditions and source terms, on the other hand, is independent of u.2

However, when two subproblems are coupled together as in FSI, the RHS does depend on u.
Indeed, the pressure forces applied on the interface in the structure solver depend on the result
of the flow simulation, which in turn depends on the displacement, the variable of interest in
the structure simulation. Therefore, Eq. (1) is reformulated as

A(u)u = b(u). (2)

As a consequence, only the first subproblem iteration in each subsolver call has a RHS corre-
sponding to the current value of u. For the subsequent subproblem iterations the RHS will
be defective, since it is not updated with the newly obtained u. This observation has lead to
the introduction of a new convergence criterion in Spenke and Delaissé et al. [4]. This new
criterion considers a coupled simulation converged when both subproblems converge in the first
subproblem iteration. That way, the need of specifying a residual tolerance for the coupling
iterations naturally disappears.

For the research question in this work, it has the additional benefit that the number of
subproblem iterations in each solver call can be varied without affecting the final accuracy.
With a conventional coupling convergence criterion this would not necessarily be the case:
imagine that the maximum number of subproblem iterations in a solver execution is limited,
then the coupling residual could drop below the prescribed threshold, before both of the solvers
have reached their prescribed tolerance.

3 EQUIVALENT TIME MEASURE

This works investigates the effect of limiting the number of subproblem iterations in each
solver call on the total calculation effort. It will become clear in Section 5 that this limitation
will increase the number of coupling iterations, but has the potential to significantly shorten

1Another possibility is an iterative linear solver.
2More often than not, part of the dependence on u is in fact treated explicitly resulting in a lagging contri-

bution to the RHS b. For simplicity, it is assumed that this is not the case here.
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the computational time. This shows that the number of coupling iterations is not a suitable
measure for assessing the computational efficiency. Instead, a new measure is introduced in
Spenke and Delaissé et al. [4], which computes a weighted sum of the total number of coupling,
flow solver and structure solver iterations.

Instead of assuming a constant cost associated to each subsolver execution, the new measure
assumes a fixed cost for each internal solver iteration:

Cost of a flow solver call Cf ≈ Cf
fix + nf · Cf

iter (3)

Cost of a structure solver call Cs ≈ Cs
fix + ns · Cs

iter , (4)

where Cf,s are the cost of a solver call in seconds, Cf,s
fix the constant cost associated to a solver

call, e.g., communication or mesh motion for the flow solver, and Cf,s
iter the constant cost of one

subproblem iteration. These cost factors are considered fixed for a particular run, but the cost
of a single solver call can vary, since the number of subproblem iterations nf,s can differ from
one solver execution to another. Therefore, the cost associated to coupling iteration k̄ equals

Cp(k̄) ≈ Cp
fix + np(k̄) · Cp

iter for p = f, s . (5)

k̄ counts the coupling iterations over all time steps, going from 1 to N c, the total number of
coupling iterations.

By expressing the time associated to each coupling iteration as Cc, which includes for example
data exchange, the total simulation time tsimulation can be approximated by Csimulation

tsimulation ≈ Csimulation =
Nc∑
k̄=1

[
Cc +

∑
p=f,s

Cp(k̄)

]
= N c · Cc +

Nc∑
k̄=1

∑
p=f,s

Cp(k̄) . (6)

After inserting Eq. (5) in Eq. (6) and rearranging the terms, the new cost measure is obtained:

Csimulation = N c · Cc
+N f · Cf

iter +N s · Cs
iter (7)

Here, C
c
equals the sum of the fixed contribution of the coupling, flow and structure part, i.e.,

C
c
= Cc+Cf

fix+Cs
fix, and N f,s are the total number of flow and structure iterations, respectively.

So in short, the new equivalent time measure Csimulation represents the cost as weighted
sum of the total number of coupling, flow and structure iterations. The weighting factors are
cost factors and are generally not known. Their value depends on the simulated problem,
the solution techniques of the subsolvers and the coupling algorithm, but also on for example
computer architecture. In this work, the cost factors are determined by performing regression
over all simulations of the parameter study, which is discussed in detail in Section 5. This
approach will allow to gain insights in the trends that occur when limiting the number of
subproblem iterations per solver call. Additionally, it helps to avoid the effects of the random
variation in run time on the results due to, e.g., load balancing or loading and clock speeds of
the processors. For this reason the equivalent time will be used in Section 5.

To determine the cost factors of the flow solver, linear regression with two independent
variables is performed, where the independent variables are N f and N c while the dependent
value is the total time spent in the flow solver, i.e.,

∑Nc

k̄=1 C
f (k̄) = N c · Cf

fix +N f · Cf
iter. An

analogous approach is followed for the structure solver. For Cc, a linear regression is performed
with one independent variable N c and as dependent value the part of the run time not spent
on the flow and structure solver.
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Figure 1: Deformation of the flexible gate and pressure field of the air and water at t = 0.1 s.

4 TEST CASE

The breaking dam simulation [5] serves as test case. It consists of a rubber gate, fixed at
the top, behind which a water column is located. At the start of the simulation, this water
column is released and, due to the effect of gravity, the water starts to flow underneath the
flexible gate, pushing it away, as illustrated by Fig. 1. The geometry and boundary conditions
are sketched in Fig. 2. The water density and dynamic viscosity are 1000 kg/m3 and 0.001Pa s,
the values for air are 1.225 kg/m3 and 1.7894× 10−5 Pa s and the rubber gate has an elasticity
modulus of 1 × 107N/m2, a Poisson ratio of 0.4 and a density of 1100 kg/m3. The simulated
time is typically 0.4 s, divided in 400 time steps of 0.001 s. To reduce the computational effort
of the parameter study in the next section, only 50 time steps are calculated.

The flow domain is simulated using the finite-volume (FV) method with ANSYS Fluent [6]
and its deformation is included using the arbitrary Lagrangian-Eulerian (ALE) frame of refer-
ence. The motion of the triangular mesh is obtained by combining spring-based smoothing with
remeshing and the free surface is tracked with the volume of fluid (VOF) method. Furthermore,
the flexible gate is modeled with finite elements (FE) in the Structural Mechanics Application
of the Kratos Multiphysiscs code [7]. A hyperelastic neo-Hookean plane strain material model
captures the flexible behavior of the rubber. Finally, the in-house, open source code CoCoNuT
[3] achieves the FSI coupling and can be found in the GitHub repository pyfsi/coconut. Radial
basis interpolation [8] realizes the data exchange on the non-matching interface.

The flow and structure domain have 7276 triangular cells (initially) and 273 total Lagrangian
quadrilateral first-order elements, respectively. The flow solver is considered fully converged
when the scaled continuity and velocity residuals are lower than 1 × 10−5. For the structural
solver this is the case when the norm of the residual divided by the number of degrees of freedom
(DOF) becomes smaller than 1 × 10−6. The used coupling algorithm is IQN-ILS [9] without
reuse (q = 0) and without filtering.

Although obtaining a physically accurate solution is not essential for the research question of
this work, Fig. 3 compares the displacement of the tip of the gate, centrally over the thickness,
to those found in literature. The observed deviations with the experimental and numerical
results in literature stem from the material model used for the structure. While both Antoci
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Figure 2: Sketch of the geometry and boundary conditions. The initial gap has been exaggerated
for clarity.

et al. [5] and Yang et al. [10] employ the non-linear Mooney-Rivlin material model, fitted
to the stress-strain curve of the material used in the experiments, this work resorts to a neo-
Hookean model, since the Mooney-Rivlin model is not available within Kratos Multiphysiscs.
The proposed explanation is supported by the agreement with the results obtained with a linear
material model by Yang et al.

5 RESULTS

The goal of this work is to investigate to what extent the computational effort of a partitioned
FSI simulation can be reduced, by limiting the number of subproblem iterations in a solver call.
With that goal in mind, a parameter study is performed in which both the number of flow and
structure subsolver iterations per solver call are limited to nf

max and ns
max, respectively.

The breaking dam test case for which every solver called is converged fully never requires
more than 300 fixed-point iterations for the FV flow solver and not more than 3 Newton
iterations for the FE structure solver. Therefore, nf

max is varied from 300 to 5 subproblem
iterations3 and ns

max from 3 to 1. With the methodology from Section 3, the numerical values for
the cost factors in Table 1 are obtained. This approach assumes constant subproblem iteration
cost, which admittedly is not exact, but it is still a better approximation than constant coupling
iteration cost, as supported by Fig. 4, which compares both. Before discussing the optimal
choice of the maximal number of iteration in each solver call, the variation of the different total
number of coupling (N c), flow subproblem (N f ) and structure subproblem (N s) iterations is
presented.

Figure 5a shows how the number of coupling iterations changes for the different runs. As
expected, the minimum is reached for fully converging both the flow and structure solver in
every call, since in that case, the maximal accuracy of the intermediate solutions is reached

3Since only a few flow solver calls require more than 150 subproblem iterations, the variation for nf
max > 150

is small and left out of the following figures for clarity. The full parameter study, including these omitted runs,
is presented in Table 2.
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Figure 3: Horizontal (∆x) and vertical (∆y) displacement of the tip of the flexible gate in
function of time. The blue lines correspond to the results of this work. The black data are
determined by Antoci et al. [5], either experimentally (marked points) or through simulation.
The gray data are simulation results obtained by Yang et al. [10] with a linear and non-linear
material model.

Table 1: Cost factors in seconds per corresponding iteration.

Cf
fix Cf

iter Cs
fix Cs

iter Cc C
c

1.0803 0.0847 0.0497 0.0133 0.0147 1.1447
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Figure 4: Difference between the actual time, the equivalent time used here, and the equivalent
time considering a constant cost per coupling iteration. Note that the equivalent time with
constant cost per coupling iteration forms a line through the origin.
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(a) Coupling iterations N c. (b) Flow subproblem iterations
Nf .

(c) Structure subproblem itera-
tions N s.

Figure 5: Different iteration counts plotted over nf
max and ns

max.

before coupling back, minimizing the number of coupling steps. Restricting the number of flow
subproblem iterations leads to an increase, which becomes significant from nf

max ≈ 25. The
reason is that as less accurate flow solutions are transferred to the structure solver, the exchange
needs to happen more frequently. While in general, this is also the case for limiting the structure
subproblem iterations, no such trend is obvious here. For nf

max ⪅ 5 the simulation does not
converge as a consequence of a too inaccurate flow solution, which when used as boundary
condition in the structure solver, also prevents the latter to reach an appropriate solution.
While this is true in general, it is especially important when employing quasi-Newton coupling
techniques, since they base the construction of the approximate Jacobian on differences between
iterations.

Figures 5b and 5c present how the total number of flow and structure iterations vary. Op-
posite to the coupling iterations trend, fewer subproblem iterations per solver call lead to fewer
overall subproblem iterations. This indicates that the decrease in subproblem iterations per
solver call outweighs the increase in coupling iterations and that exchanging data before they
are fully polished can indeed reduce the time spent in the subsolvers. For the structure sub-
problem iterations, a secondary trend is visible: decreasing nf

max leads to an augmentation in
number of structure subproblem iterations, which occurs together with the increase in coupling
iterations shown in Fig. 5a.

Now that the trends in iterations count have been clarified, the optimal choice of nf
max and

ns
max follows from a weighted sum, as explained in Section 3. The weighting factors are the cost

factors, expressed in seconds, given in Table 1. The result of this weighted sum is shown in
Fig. 6, wherein, for clarity, the computational time has been normalized by the value obtained
for full convergence. For nf

max ≈ 21 and ns
max ≈ 1, an optimum is reached, reducing the

calculation time to only 61% of the time required for the full convergence case. Also note that
this optimum is rather flat.

As explained, the addition of the plots in Fig. 5 is determined by the cost factors in Table 1.
This table shows that Cf

fix has by far the greatest value, which is a consequence of the costly
remeshing operation at the start of every flow solver call. Of all costs occurring every coupling
iteration, it constitutes the biggest part of C

c
. Nevertheless, Fig. 6 most closely resembles

Fig. 5b, which shows the number of flow subproblem iterations. This is a consequence of the
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Figure 6: Contour plot of the equivalent time
measure, normalized with respect to the value
obtained for full convergence.
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Figure 7: Contour plot of the equivalent time
measure with the fictional cost factors C

c
=

1 s, Cf
iter = 0.1 s and Cs

iter = 3 s, normalized
with respect to the value obtained for full con-
vergence.

large variation in N f between different runs, as well as its high value, which is about an order
of magnitude bigger than N c and N s. Comparing N f and Cf

iter to N s and Cs
iter shows that

structure solver is much cheaper and therefore has limited effect on the total computational
cost. The increase in N c around nf

max ≈ 5, on the other hand, is significant and visible in the
contour plot of the equivalent time.

Since the cost factors are determined by, among others, the specific problem, the used solvers
and the computer hardware, the dominance of the flow cost is not a general conclusion. For
example, the cost of the flow solver could be reduced by doubling the number of cores it uses
or the structure problem could be refined leading to an increase in structure solver cost. These
actions would lead to new cost factors which in turn result in a new optimal choice of nf

max

and ns
max. To illustrate this, the equivalent time shown in Fig. 7 has been calculated with the

fictional cost factors C
c
= 1 s, Cf

iter = 0.1 s and Cs
iter = 3 s. Compared with Fig. 6, the region of

optimal performance is situated differently. Likewise, if for example C
c
would be the dominant

contribution, the equivalent time plot would resemble Fig. 5a and the optimum would be found
at the fully converged case.

While, up to now, the focus was each time on a single aspect of the parameter study, the
complete results are given in Table 2.

6 CONCLUSIONS

This work investigates the effect of limiting the number of subproblem iterations in the flow
and structure solver of a partitioned FSI simulation. By means of the breaking dam test case,
the effect is systematically evaluated in a parameter study, and, through the use of a new
convergence criterion, it is assured that the different runs have the same accuracy.

While minimization of the number of coupling iterations is the typical performance criterion
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Table 2: Breaking dam with IQN-ILS (q=0). The row and column header contain the maximal
number of subproblem iterations for the flow and solid solver, nf

max and ns
max, respectively. For

each case, the equivalent time is given, as well as the number of coupling iterations, flow
solver iterations and solid solver iterations. A missing value indicates that the coupling did not
converge.

Newton iterations per coupling iteration - Structural solver
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- - 1.33 1525 1.26 1449 1.28 1461
5

- - 7289 2665 6912 2847 6993 2795
0.74 696 0.73 683 0.73 687 0.73 679

10
6181 696 6092 1148 6141 1340 6077 1337
0.63 510 0.63 507 0.63 506 0.63 506

15
6495 510 6495 889 6494 1080 6492 1080
0.62 445 0.62 443 0.62 443 0.61 440

20
7143 445 7137 793 7137 982 7004 980
0.61 433 0.62 436 0.62 436 0.62 433

21
7126 433 7265 781 7265 969 7128 972
0.61 426 0.62 427 0.62 427 0.62 427

22
7226 426 7246 756 7246 948 7246 948
0.62 419 0.62 426 0.63 430 0.62 425

23
7382 419 7418 756 7558 950 7416 944
0.63 417 0.64 424 0.63 418 0.63 418

24
7675 417 7703 750 7536 933 7536 933
0.63 415 0.63 411 0.64 415 0.64 415

25
7827 415 7656 734 7816 930 7816 930
0.66 394 0.66 393 0.67 398 0.67 398

30
8654 394 8544 710 8665 907 8665 907
0.71 365 0.72 368 0.72 368 0.72 370

40
10227 365 10245 681 10245 873 10269 874
0.79 361 0.80 362 0.80 362 0.80 362

50
11994 361 12012 673 12011 865 12011 865
0.96 353 0.96 353 0.95 352 0.96 353

100
15535 353 15544 655 15432 845 15544 847
0.99 352 1.00 352 1.00 352 0.99 351

150
16341 352 16348 652 16348 844 16264 843
1.00 352 1.00 351 1.00 351 1.00 351

200
16481 352 16391 651 16391 843 16391 843
1.00 351 1.00 351 1.00 351 1.00 350

300
16495 351 16499 652 16499 844 16449 842
1.00 350 1.00 350 1.00 350 1.00 350∞

16448 350 16449 650 16449 842 16449 842
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in FSI, this work shows that the number of subproblem iterations is equally important. Since
minimization of the number of coupling and subproblem iterations are typically conflicting
goals, the fastest simulation is only obtained by balancing the two.

To study these effects, a new performance measure has been introduced which describes the
computational efficiency of a simulation as a weighted sum of the iteration counts. In this
equivalent time, the weighting factors are so-called cost factors that are determined by, among
others, the specific problem, solving strategy and computing infrastructure.

Besides allowing to study the trends, the parameter study revealed that a reduction in
computational time of 39% could be obtained. In practice, it is of course unpractical to run
a parameter study in order to determine the optimum for every new case. In that regard,
dynamically adapting the subproblem iteration limits based on, e.g., the coupling residual,
presents itself as a viable alternative and even has the potential to further shorten the run
time.
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