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Abstract In this paper we present a detailed description
of a high-performance distributed-memory implementation
of balancing domain decomposition preconditioning tech-
niques. This coverage provides a pool of implementation
hints and considerations that can be very useful for scien-
tists that are willing to tackle large-scale distributed-memory
machines using these methods. On the other hand, the pa-
per includes a comprehensive performance and scalability
study of the resulting codes when they are applied for the
solution of the Poisson problem on a large-scale multicore-
based distributed-memory machine with up to 4096 cores.
Well-known theoretical results guarantee the optimality (al-
gorithmic scalability) of these preconditioning techniques
for weak scaling scenarios, as they are able to keep the con-
dition number of the preconditioned operator bounded by a
constant with fixed load per core and increasing number of
cores. The experimental study presented in the paper com-
plements this mathematical analysis and answers how far
can these methods go in the number of cores and the scale
of the problem to still be within reasonable ranges of ef-
ficiency on current distributed-memory machines. Besides,
for those scenarios where poor scalability is expected, the
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study precisely identifies, quantifies and justifies which are
the main sources of inefficiency.

1 Introduction

Scientific phenomena governed by partial differential equa-
tions (PDEs) can range from solid mechanics to fluid me-
chanics and electrodynamics, including any of the possible
couplings. The solution of these equations can be approx-
imated with the aid of computers by a discretization (and
possibly linearization) and the subsequent numerical solu-
tion of the resulting sparse set of linear equations. This work
is concerned with the fast solution of the Poisson problem
discretized by the finite element (FE) method. Although the
Poisson problem is the simplest model problem for, e.g.,
fluid flow simulation, it is still very useful as a building
block for the “physics-based” preconditioning of very com-
plex scientific applications governed by coupled systems of
PDEs [1].

The ever increasing demand of reality in the simulation
of the complex scientific and engineering three-dimensional
(3D) problems faced nowadays ends up with the solution of
very large and sparse linear systems with several hundreds
and even thousands of millions of equations/unknowns. The
solution of these systems in a moderate time requires the
vast amount of computational resources provided by current
multicore-based distributed-memory machines. It is there-
fore essential to design parallel algorithms able to take profit
of their underlying architecture.

Non-overlapping domain decomposition (DD) methods
(also referred as iterative sub-structuring or Schur comple-
ment methods) provide a natural framework for the develop-
ment of fast parallel solvers tailored for distributed-memory
machines, as they have by construction the desirable design
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principle of maximizing local computations while minimiz-
ing interprocessor communication. One-level DD precon-
ditioners, such as the Neumann-Neumann preconditioner,
are highly parallel as they only require the solution of lo-
cal problems and communication among neighboring sub-
domains, but unfortunately they do not posses optimality
properties. Consequently, e.g., in a weak scaling scenario,
where the number of processors is increased while keeping
the load per processor constant, more a more computational
resources are wasted because extra iterations are required
to converge. Two-level DD preconditioners combine local
and global terms acting in an additive or in a multiplicative
fashion in order to achieve quasi-optimal condition number
bounds (in the sense discussed in the next paragraph). The
global term couples all the subdomains and involves the so-
lution of a “small” (relative to the original linear system)
coarse-grid problem. Besides, its size has typically only a
linear dependence with the number of processors. However,
only a small amount of parallelism can be exploited for the
solution of this coarse-grid problem, which results in in-
creasing parallel overheads (i.e., loss of efficiency) with the
number of processors.

In this work we focus on two-level DD methods of bal-
ancing type, namely the Balancing Neumann-Neumann [28]
(BNN) and Balancing DD by Constraints [10] (BDDC)
methods; other two-level DD preconditioners are found
in the FETI family [11, 12], although they are not ex-
plored here. These methods are quasi-optimal (algorithmi-
cally scalable) with a poly-logarithmic expression of the
condition number of the preconditioned system κ = 1 +
log2(H

h
), where h and H are, respectively, the mesh and

subdomain characteristic sizes, (H
h

)d is the size of the lo-
cal problems and d is the space dimension. Consequently, in
weak scaling scenarios (i.e., H

h
fixed), the number of itera-

tions of the preconditioned conjugate gradient (PCG) solver
is (asymptotically) independent of the number of processors.

Even though the mathematical theory of these methods
is well established, there is a surprising lack of scientific
works on the design/implementation issues to be consid-
ered for the efficient exploitation of distributed-memory ma-
chines. And even more surprising is the lack of compre-
hensive performance and scalability analysis on large-scale
distributed-memory machines. This situation is in contrast to
multigrid methods, see e.g. [3, 27]. We believe that the abil-
ity of balancing DD (BDD) methods to exploit large-scale
distributed-memory machines is the most cited feature but
their least examined one. To the best of our knowledge only
few studies focus on these aspects for this particular family
of algorithms [7, 19, 20, 38], none of which with the degree
of detail and up to the scale that are considered here. Given
this lack, the contribution of this paper to the state-of-the-art
is twofold. On the one hand, we present a comprehensive
coverage of design/implementation issues provided by the

experience we have acquired by implementing them from
scratch in our FE/numerical linear algebra library which re-
sults in part from preliminary scalability studies. This cov-
erage is intended to provide scientists with some hints and
issues that have to take into account if they want to tackle
large-scale problems efficiently on distributed-memory ma-
chines. On the other hand, we present a comprehensive weak
scalability study of this implementation on a distributed-
memory machine with up to 4096 cores. The main objec-
tive of this study is to identify and quantify sources of over-
head in our current implementation (mainly the impact of
the coarse-grid solver) and determine to what degree they
are weakly scalable, i.e., how far can these methods go in
the number of cores and the scale of the problem to still be
within reasonable ranges of efficiency.

The article is organized as follows. In Sect. 2 we present
the basic ideas underlying BDD preconditioners. For the-
oretical aspects of the algorithms we refer the reader to the
vast literature devoted to DD methods; see, e.g, [42] and ref-
erences therein. Our high-performance distributed-memory
implementation of these methods is described in Sect. 3,
and Sect. 4 presents the aforementioned scalability study.
Finally, some concluding remarks are enumerated in Sect. 5.

2 Overview of BDD Methods

This section describes non-overlapping DD methods of bal-
ancing type. Section 2.1 covers the general framework of
these methods. In Sect. 2.2, the Neumann-Neumann (NN)
preconditioner [9, 18] is presented. Although this precon-
ditioner is not algorithmically scalable (as it does not in-
clude a coarse-grid correction), it is the basis for the more
sophisticated BNN preconditioner [28], which is covered in
Sect. 2.3. Finally, the widely used BDDC [10] precondition-
ing technique is described in Sect. 2.4.

2.1 General Framework

As model problem, let us consider the Poisson problem on
a domain Ω ⊂ R

d , with homogeneous Dirichlet boundary
conditions on ∂Ω , where d = 2,3 is the number of space
dimensions. We also consider a uniform FE partition (mesh)
T = {Ki : i = 1, . . . , nelm} of Ω with characteristic size h.
We are interested in solving the set of linear equations

Ax = b, (1)

which arises from the Galerkin FE discretization of the con-
tinuous problem corresponding to T .

Further, we consider a uniform non-overlapping partition
of Ω into subdomains {Ωi : i = 1, . . . , nsbd} with character-
istic size H and a partition of the global mesh T into local
meshes {Ti : i = 1, . . . , nsbd} such that Ti is a conforming
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mesh of Ωi . The interface of Ωi is defined as Γi = ∂Ωi \∂Ω

and the whole interface (skeleton) of the domain decompo-
sition is Γ = ⋃nsbd

i=1 Γi . The set of nodes of T that belong
to Γ (resp. Γi ) is denoted by Γh (resp. Γ i

h ). This partition
of the domain into non-overlapping subdomains induces the
following block reordered structure of(1):

[
AII AIΓ

AΓ I AΓ Γ

][
xI

xΓ

]

=
[

bI

bΓ

]

, (2)

where xΓ contains the unknowns corresponding to the nodes
in Γh and xI the remaining ones, associated with subdomain
interiors. Besides, AII presents a block diagonal structure
(and therefore very amenable to parallelization), i.e.,

AII = diag
(
A1

II ,A
2
II , . . . ,A

nsbd
II

)
,

where Ai
II is the local matrix which represents the cou-

pling of internal unknowns at subdomain i. Eliminating xI

from (2) (exactly as in the static condensation of internal
nodes of high order FEs), this linear system is reduced to
the Schur complement problem

SxΓ = g,

where S = AΓ Γ − AΓ IA
−1
II AIΓ , and

g = bΓ − AΓ IA
−1
II bI . (3)

Let us denote the cardinality of Γh and Γ i
h by n̂ and ni

respectively. The vector space of interface nodal values in
Γh is denoted by V̂ ; clearly, V̂ is equivalent to R

n̂. We also
define the local space Vi of interface nodal values on Γ i

h ,
which is equivalent to R

ni .1 Clearly, the Schur complement
matrix S : V̂ × V̂ → R. System (3) can be written as the as-
sembly (sum) of local Schur complement matrices and right
hand side vectors as

S =
nsbd∑

i=1

Rt
i SiRi, g =

nsbd∑

i=1

Rt
i gi, (4)

where Ri : V̂ → Vi is the restriction operator and Rt
i its

transpose. The former applied to a vector y ∈ V̂ gives the
vector of local values yi = Riy ∈ Vi , while the latter applied
to a local vector gives a global vector (filled with zeros for
nodes not belonging to subdomain i). The local Schur com-
plement Si and local right hand side vector gi are defined
as:

Si = Ai
Γ Γ − Ai

Γ I

(
Ai

II

)−1
Ai

IΓ ,

gi = bi
Γ − Ai

Γ I

(
Ai

II

)−1
bi
I .

(5)

1The spaces V̂ and Vi can also be understood in a functional setting as
the global and local spaces of discrete harmonic functions (see [6]).

The number of subdomains sharing the node with iden-
tifier p is denoted by n(p). We will also make use of the
global set of replicated local nodes Π

nsbd
i=1 Γ i

h , i.e., p is repli-
cated n(p) times, and the corresponding product space V =
Π

nsbd
i=1 Vi . By definition, the cardinality of this space is nγ =

∑nsbd
i=1 ni , which is equivalent to R

nγ .2 Any vector s ∈ V is
univocally defined by local values {si : i = 1, . . . , nsbd} due
to the product space definition. It is possible to obtain an
averaged global vector z ∈ V̂ from s as

z =
nsbd∑

i=1

Iisi , (6)

where Ii = Rt
iWi : Vi → V̂ is the injection operator, and Wi

is a diagonal weighting matrix such that

y =
nsbd∑

i=1

IiRiy, for any y ∈ V̂ . (7)

Wi can be defined as (Wi)pp = 1/n(p), p = 1, . . . , ni , al-
though more elaborated expressions must be considered for
discontinuous physical properties [42].

We can readily check that nsbd = H−d ; assuming a one-
to-one mapping between subdomains and processors, we
will denote the number of processors P = nsbd. The size
of the global problem (1) is denoted by N = h−d . The con-

dition number of the global matrix A is O(N
2
d ) whereas

that of the Schur complement S is O(N
1
d P

1
d ) [42]. It is

well known that the number of iterations required by the
PCG Krylov solver is O(

√
κ), where κ is the condition num-

ber of the preconditioned operator [32]. Therefore, the esti-

mated number of PCG iterations is O(N
1
d ) and O(N

1
2d P

1
2d )

when it is applied to (1) and (3), respectively. Although the
number of PCG iterations is certainly cut down by the re-
statement of the problem on the interface by the DD ap-
proach (since N � P for practical ranges of application),
there is a lot of margin for improvement via preconditioning.
In the rest of this section, we present some non-overlapping
DD preconditioners for the Schur complement matrix S

such that the resulting condition numbers become (almost)
independent of N and P .

2.2 Neumann-Neumann Preconditioner

We can readily observe that a local contribution to the Schur
complement Si is a singular matrix for every floating sub-
domain i, i.e., ∂Ω ∩ ∂Ωi = ∅ with ker(Si) = {1i} (the space
of constant functions). We denote the pseudo-inverse of the

2In a functional setting, functions in V̂ are uni-valued on Γ . On the
contrary, since every node p in Γh is replicated n(p) times in Π

nsbd
i=1 Γi ,

functions in V can take different values at different subdomains. As in
[42], ·̂ is used to denote uni-valued functions on Γ .
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local Schur complement Si as S
†
i . The Neumann-Neumann

(NN) preconditioner is an additive Schwarz preconditioner
built from local pseudo-inverses as

B−1
NN =

nsbd∑

i=1

IiS
†
i I t

i .

For non-floating subdomains S
†
i = S−1

i whereas for float-

ing ones S
†
i applied to a vector r ∈ ker(Si)

⊥gives the
unique solution of the singular problem Six = r such that
x ∈ ker(Si)

⊥ (see [39]). When r /∈ ker(Si)
⊥, the prob-

lem Six = r does not have a solution and S
†
i r only mini-

mizes ‖r − Six‖. The following condition number estimate
(cf. [42])

κ
(
B−1

NNS
) ≤ CP

2
d

[

1 + 1

d2
log2

(
N

P

)]

, (8)

gives O(P
1
d ) number of PCG iterations for weak scaling

analysis.

2.3 Balancing Neumann-Neumann Preconditioning

The NN preconditioner was enhanced in [28] by introduc-
ing a coarse-grid solver, the so-called balancing, designed to
satisfy I t

i r ∈ ker(Si)
⊥ on each subdomain and to provide a

global communication mechanism among subdomains. This
condition is equivalent to

0 = ϕt
i I

t
i r = (Iiϕi)

t r, for any ϕi ∈ ker(Si),

i.e., making the residual orthogonal to the injection Ii of
functions ϕi ∈ ker(Si) to V̂ . We introduce the coarse space

H0 = span
{
φi : i = 1, . . . , nsbd

} ⊆ V̂ ,

where φi = Iiϕi ; H0 is readily represented by R
nsbd vectors.

The coarse-grid preconditioner can be written as

B−1
C = I0S

−1
0 I t

0,

where I0 : H0 → V̂ is the injection defined as I0γ =∑nsbd
i=1 φiγi (i.e., the columns of I0 are the basis functions

φi ), and S0 = I t
0SI0 is the coarse-grid space operator.

The coarse-grid balancing preconditioner is combined
with the Neumann-Neumann one in a multiplicative fash-
ion, leading to the BNN preconditioner. In order to preserve
symmetry, this combination results in the following (naive)
form of the BNN preconditioner:

B−1
BNN = B−1

C + (
I − B−1

C S
)
B−1

NN

(
I − SB−1

C

)
.

It can be further shown [41] that if the initial residual in the
PCG algorithm is balanced, i.e.,

r∗ = (
I − SB−1

C

)
r,

then the preconditioner can be rewritten as

B−1
BNN = B−1

C + (
I − B−1

C S
)
B−1

NN.

An important observation is that the BNN preconditioner is
more efficiently implemented as:

B−1
BNN = B−1

C

(
I − SB−1

NN

) + B−1
NN,

as it was originally proposed in [28]. This equivalent ex-
pression results in a three-step application, (1) z = B−1

NNr ;
(2) t = B−1

C (r − Sz); (3) update z := z + t . Let us remark
that in this case the application of the BNN preconditioner
only requires to solve one coarse-grid problem. A modified
implementation of the algorithm that leads to a spare of one
Dirichlet solve per PCG iteration has recently been proposed
in [2].3 The condition number estimate (cf. [28])

κ
(
B−1

BNNS
) ≤ C

[

1 + 1

d2
log2

(
N

P

)]

, (9)

results in a constant number of PCG iterations for weak scal-
ing analysis.

2.4 Balancing DD by Constraints Preconditioner

The BDDC preconditioner also presents a two-level struc-
ture where local fine-grid and global coarse-grid corrections
are combined. However, in contrast to the BNN precondi-
tioner, the combination is additive and the coarse problem
is not a Galerkin projection. The construction of the BDDC
preconditioner is based on a topological classification of the
nodes on the interface as corners, or members of edges or
faces.

We denote by N(p) the index set of subdomains that
share node p, i.e., N(p) = {i : p ∈ Γ i

h}, with cardinality
already defined in Sect. 2.1 as n(p). We can construct the
set G = {Ga : a = 1, . . . , ncts}, where every object Ga is a
maximal subset of nodes in Γh with identical index set, i.e.,
N(p) = N(q) for any p, q ∈ Ga , denoted as N(Ga).4 Now,
we can consider a topological classification of the objects as
follows: Ga is a face if |N(Ga)| = 2 and |Ga | > 1, an edge
if |N(Ga)| > 2 and |Ga | > 1 and a corner if |Ga| = 1; this
definition corresponds to a 3D space but can readily be re-
stricted to 2D. Grouping together the objects of the same
type, we obtain the set of faces F = {Fa, a = 1, . . . , nF },

3It is based on the observation that SI0v0 for v0 ∈ H0 can readily be
obtained as a linear combination of Sφi quantities, that have already
been computed when assembling S0 at the preconditioner set-up. This
observation, combined with a slight modification of the PCG recur-
rence described in [2], spares one Schur complement-vector product
per PCG iteration.
4This definition of {Ga : a = 1, . . . , ncts} generates a unique partition
of Γh.
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the sets of edges E = {Ea, a = 1, . . . , nE} and the set of cor-
ners C = {Ca, a = 1, . . . , nC}; clearly ncts = nF +nE +nC .
We can consider the restriction of all these sets to a given
subdomain i as follows: we define Gi = {Ga ∈ G : i ∈
N(Ga)} and ni

cts = |Gi | denotes the number of constraints
on subdomain i; analogously for (Fi , ni

F ), (Ei , ni
E) and

(Ci , ni
C ).

The local, fine-grid preconditioner in the BDDC method
is defined as

B−1
F =

nsbd∑

i=1

Ii

(
Sc

i

)−1
I t
i ,

where (Sc
i )

−1 is a “constrained” inverse of the local Schur
complement Si . The application of (Sc

i )
−1 to a vector r in-

volves the solution of the following (constrained) linear sys-
tem
[

Si Ct
i

Ci 0

][
(Sc

i )
−1r

λ

]

=
[

r

0

]

,

where Ci ∈ Rni
cts×ni is the matrix of constraints. Denoting

by li (a) the local numbering of Ga ∈ Gi at subdomain i, the
li (a) row of Ci (a constraint) is defined as

(Ci)li (a)p =
{

1 if p ∈ Ga,

0 otherwise,
(10)

followed by a further scaling to have all rows with unit 1-
norm. With such a definition, the product z = Ciy, with z ∈
Rni

cts and y ∈ Rni , gives a vector y whose component yli (a)

is related to object Ga . If Ga is a corner this component take
the value of z in this corner, i.e., yli (a) = zli (a); if Ga is a face
(edge), it takes the mean value of z on the face (edge), i.e.,
zli (a) = |Ga|−1 ∑

j∈Ga
yj . The three most common variants

of the BDDC method, here referred as BDDC(c), BDDC(ce)
and BDDC(cef), are based on only corner constraints, corner
and edge constraints, and corner, edge and face constraints,
respectively.

The coarse space H0 ⊆ V is defined as

H0 = span
{
φa : a = 1, . . . , ncts

}
,

where every coarse function φa is associated with coarse
object Ga . Coarse functions are constructed as the tensor
product of local values, i.e., φa = {φa

i , i = 1, . . . , nsbd} ∈ V .
If i ∈ N(Ga), φa

i is obtained as the solution of

[
Si Ct

i

Ci 0

][
φa

i

λ

]

=
[

0
eli (a)

]

,

where eb denotes the b column of the identity matrix; φa
i =

0 otherwise. Note that by its definition the coarse space is

non-conforming, i.e., H0 �⊂ V̂ . The coarse-grid space basis
functions define the mapping I0 : H0 → V̂ as

I0γ =
ncts∑

a=1

nsbd∑

i=1

Iiφ
a
i γa, (11)

and the coarse space operator as

(S0)ab =
nsbd∑

i=1

Rt
iφ

a
i Siφ

b
i Ri. (12)

The final preconditioner can be written as an additive com-
bination of a coarse and a fine-grid contribution

B−1
BDDC = B−1

C + B−1
F ,

where B−1
C = I0S

−1
0 I t

0 as in the BNN method. The condition
number estimate (cf. [29])

κ
(
B−1

BDDCS
) ≤ C

[

1 + 1

d2
log2

(
N

P

)]

,

results in a constant number of PCG iterations (neglecting
the logarithmic factor) for fixed load per core and increasing
number of cores. For the 2D Poisson problem, BDDC(c) al-
ready achieves this bound, but for the 3D Poisson problem,
at least BDDC(ce) is required [6].

3 Parallel Implementation

In this section we describe in detail a parallel distributed-
memory implementation of DD methods of balancing type,
namely the BNN and BDDC methods. This implementa-
tion inherits the two-level structure of the preconditioners
subject of study. On the first level, the subdomains result-
ing from the non-overlapping partition of the global mesh
are mapped to the MPI tasks, with a one-to-one mapping
among subdomains, MPI tasks and computational cores of
the underlying distributed-memory computer. On this level,
all data structures required for the (preconditioned) iterative
solution of the interface problem (3) are distributed among
MPI tasks conformally with the underlying non-overlapping
partition, and both computation and message-passing among
MPI tasks are inherently of local nature, therefore, highly
parallel. On the second level, the one corresponding to the
global coupling among subdomains, the coarse-grid prob-
lem is assembled and solved serially on one processor (or
all processors in the communicator) and therefore no paral-
lelism is exploited at all.

For the sake of efficiency and portability, our implemen-
tation relies on several standard computational kernels pro-
vided by the dense/sparse BLAS and LAPACK, and highly
efficient cache-aware vendor implementations of these ker-
nels in order to achieve high flop rates on the computational
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core level (such as Intel MKL or IBM ESSL for Intel and
IBM PPC multicore CPUs, respectively). Besides, through
proper interfaces to third party libraries (e.g., PARDISO [36,
37]), the local Dirichlet (Schur complement-vector prod-
uct) and Neumann (fine-grid correction) problems, as well
as the global coarse-grid problem, are solved via cutting-
edge sparse direct solvers. These solvers typically follow a
super-nodal/multi-frontal approach for the efficient exploita-
tion of the core cache subsystem thorough the level 3 BLAS
[8]. The use of sparse direct methods is mandatory in the
current setting as the iterative solution of (3) requires the
Schur complement-vector to be computed exactly.5 Besides,
sparse direct solvers are highly robust numerically and very
successful in the efficient exploitation of the cache hierar-
chy. The former factor is very helpful for the validation of
computer implementations, while the latter one is becoming
more important given the poor (main memory) bandwidth
scalability in current/future multi-core/many-core CPUs.

The implementation is (essentially) split into two main
phases. The first phase sets up the Schur complement and
preconditioner before starting the iterations. This phase is in
turn divided into a symbolic phase, where the geometrical
information is computed beforehand (e.g., the sparsity pat-
tern of a sparse Cholesky triangular factor), and a numer-
ical phase, where the actual numerical computations take
place. The second phase is the actual iterative solution of
(3). Special attention will be paid to the application of the
Schur complement and preconditioner to a vector. The rest
of the section is structured as follows. Section 3.1 presents
the data distribution and the general setting for a distributed-
memory implementation of the PCG method. Sections 3.2
and 3.4 discuss the implementation of the computation and
communication kernels required by the fine-grid precondi-
tioning level, respectively, while Sects. 3.3 and 3.5 focus on
those required by the coarse-grid preconditioning level.

3.1 Data Distribution and Basic Building Blocks

Algorithm 1 depicts the BDD-PCG iterative solver applied
to the interface problem (3).6 In a distributed-memory im-
plementation of this algorithm, all vectors y ∈ V̂ and the
Schur complement S ∈ V̂ ⊗V̂ are partitioned and distributed

5BDD methods can certainly be reformulated as preconditioners for
the global linear system (1). This enables approximate solvers (e.g.,
AMG [35, 40, 43]) to be used in conjunction with BDD methods. Al-
though this approach relaxes the arithmetic/memory demands of sparse
direct solvers (particularly in 3D), it would result in a new source of
difficulties (e.g., robustness/complexity trade-off evaluation, parame-
ter tuning, load unbalancing issues, poor flop rates) that deserve further
research.
6For the BNN method, we assume that the initial value x0 is such that
r0 is balanced (see [28]).

Algorithm 1: Preconditioned Conjugate Gradient algo-
rithm

BDD_PCG (Input: (S,BBDD, g, x0), Output: x)

1: r0 := g − Sx0

2: z0 := B−1
BDDr0 (see Algorithms 2 and 3)

3: p0 := z0

4: for j = 0,1, . . ., till convergence do
5: αj := (rj , zj )/(Spj ,pj )

6: xj+1 := xj + αjpj

7: rj+1 := rj − αjSpj

8: zj+1 := B−1
BDDrj+1 (see Algorithms 2 and 3)

9: βj := (rj+1, zj+1)/(rj , zj )

10: pj+1 := zj+1 + βjpj

11: end for

among MPI tasks conformally with the underlying non-
overlapping partition of the global interface. For those vec-
tors y ∈ V̂ in Algorithm 1 which are naturally expressed as
the assembly (sum) of subdomain contributions (in particu-
lar r , Ap, g), it is convenient (for reasons made clear below)
that each MPI task keeps on its local address space partially
summed contributions, e.g., gi to g in (4). The same idea is
applied to the interface block-matrix AΓ Γ , where every pro-
cessor stores local contributions Ai

Γ Γ which, together with
the corresponding local arrays (Ai

II ,A
i
IΓ ,Ai

Γ I ), form par-
tially summed contributions Si to S in (4), as defined in (5).
Our implementation does not compute/store explicitly Si on
each MPI task. Instead, the application of S to a vector is
computed implicitly following the approach described be-
low.7

On the other hand, for the rest of vectors y ∈ V̂ in Algo-
rithm 3 (in particular, x, z, p), it is convenient that each MPI
task keeps local fully summed (i.e., assembled) entries yi ,
such that yi = Riy. Finally, any vector in the product space
v ∈ V is naturally distributed in such a way that each MPI
task stores one local component vi ∈ Vi of v. Vectors v ∈ V

are not explicitly present in Algorithm 1, but as the result
of intermediate steps during the application of the precondi-
tioner. Following this approach, Algorithm 1 is therefore im-
plemented in a subdomain-by-subdomain form, in the same
way as in element-by-element techniques [13].

We next enumerate the basic building blocks of Algo-
rithm 1, highlighting implementation details in our distrib-
uted-memory codes:

7An explicit assembly of Si is required for some DD preconditioners
(see e.g. [17]). Besides, this approach allows one to exploit the dense
level 2 BLAS for the Schur complement-vector product, which can
only compensate the expensive set-up of Si for non-scalable precondi-
tioners with high iteration counts.
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Algorithm 2: z := B−1
BNNr

1: zF := B−1
NNr

2: r := r − Sz

3: zC := B−1
C r

4: z := zF + zC

Algorithm 3: z := B−1
BDDCr

1: zF := B−1
F r

2: zC := B−1
C r

3: z := zF + zC

Task 1 Vector updates in lines 6, 7 and 10. No communi-
cations are required. Each MPI task performs a local update
using local data structures.

Task 2 Computation of inner products in lines 5 and 9. The
computation of the inner product zt r is particularly simple
as

zt r = zt

nsbd∑

i=1

Rt
i ri =

nsbd∑

i=1

(Riz)
t ri =

nsbd∑

i=1

zt
i ri .

After the computation of local inner products zt
i ri , a global

sum reduction operation (MPI_Reduce) is required to as-
semble the result on all MPI tasks.

Task 3 Application of the Schur complement operator in
line 5. No communications are required. Each MPI task per-
forms a local product gi = Siyi . This local operation results
in a vector g such that each MPI task keeps local partially
summed contributions, i.e.:

g = Sy =
nsbd∑

i=1

Rt
i SiRiy =

nsbd∑

i=1

Rt
i Siyi =

nsbd∑

i=1

Rt
i gi . (13)

During Schur complement set-up, Ai
II is extracted from Ai

and the sparse Cholesky factorization of Ai
II is computed.

The product Siyi is computed following a three-step algo-
rithm: (1) compute t = −Ai

IΓ yi ;(2) solve Ai
II u = t ; (3)

gi = Ai
Γ Γ yi + Ai

Γ Iu. A sparse backward/forward substitu-
tion is required for step (2), and one and two sparse matrix-
vector products for steps (1) and (3), respectively. These
sparse matrix-vector products are performed using a stan-
dard (sparse) level 2 BLAS kernel.

Task 4 The application of the preconditioner in lines 2
and 8 as shown in Algorithms 2 and 3 for the BNN and
BDDC preconditioners, respectively. Here is where the two-
level structure of both preconditioners is exposed. In the

case of the BNN method, there is an additional residual
update; see line 2 in Algorithm 2. The Schur complement-
vector in this update is performed as in (13).

The first step in the application of the preconditioner is
the computation of the fine-grid correction zF (see line 1 in
Algorithms 2 and 3). For both methods, the fine-grid precon-
ditioner is applied to a global vector r (a residual) which is
distributed in such a way that each MPI task keeps local par-
tially summed contributions. In both the application of B−1

NN

and B−1
F , the following computation has to be performed

first:

I t
i r = I t

i

nsbd∑

j=1

Rt
j rj , (14)

which requires to obtain fully summed entries of r at each
MPI task, followed by the application of the weighting
matrix. The former fully summed assembly of r involves
communication among nearest neighbors. The efficient im-
plementation of this communication kernel is described in
Sect. 3.4. The latter application of the weighting matrix is
highly parallel as it can be applied locally on each MPI task.
After the solution of local fine-grid problems (see Sect. 3.2),
we obtain si = S

†
i I t

i r and si = (Sc
i )

−1I t
i r for the BNN and

BDDC methods, respectively, which define a global element
of the product space sF ∈ V . Finally, it is transformed to a
continuous zF ∈ V̂ as in (6). This operation also involves
communication among nearest neighbors, as described in
Sect. 3.4.

The second step in the application of the preconditioner is
the computation of the coarse-grid correction zC (see lines 3
and 2 in Algorithms 2 and 3, respectively). The coarse-
grid preconditioner is also applied to a residual r which
is distributed in such a way that each MPI task stores par-
tially summed contributions. For both preconditioners the
first step is a projection onto the coarse space. For the BNN
method it reads as:

(
I t

0r
)
i
= (

φi
)t

r = (
φi

)t
∑

j∈N(i)

Rt
j rj =

∑

j∈N(i)

(
Rjφ

i
)t

rj ,

(15)

where abusing the notation of Sect. 2.3, N(i) is the set of
subdomains neighboring subdomain i (included itself). For
the BDDC method, since the coarse-grid space is non-con-
forming (see (11)), we compute (I t

0r)a = ∑
i∈N(a)(φ

a
i )t I t

i r ,
where the computation of I t

i r is reused from the fine-grid
component (see (14)). The solution of the global prob-
lem γ = S−1

0 I t
0r ∈ H0 is then injected into the fine-grid

space. For the BNN method, since H0 ⊂ V̂ and zC =
I0γ = ∑nsbd

i=1 φiγi , we can compute locally (zC)i = RizC =∑
j∈N(i) Riφ

jγj . In the case of the BDDC method, we first
compute the local components

∑
a∈Gi

φa
i γa of sC ∈ V which
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has to be transformed to a continuous zC ∈ V̂ as described
above with zF. Note that as both the fine-grid and coarse-
grid correction lead to sF ∈ V and sC ∈ V , respectively, we
can actually compute s = sF + sC in line 3 of Algorithm 3,
to finally obtain z from s as in (6). In other words, the above
communication required to transform sF ∈ V to a continuous
zF ∈ V̂ can be postponed until the coarse-grid and fine-grid
corrections are combined. The distributed-memory imple-
mentation of I t

0r and I0γ requires global communications as
described in Sect. 3.5. Besides, they require the coarse-grid
basis functions which are obtained as the solution of local
problems as described in Sect. 3.3. The assembly and solu-
tion of the coarse-grid problem is also described in Sect. 3.3.

As it is apparent from the description of Algorithm 1,
the distributed-memory implementation of BDDC and BNN
methods has only subtle differences, so that a common im-
plementation framework for both has been used.

3.2 Fine-Grid Preconditioning Level

This section describes the computations to be performed in
the fine-grid preconditioning level of the BNN (Sect. 3.2.1)
and BDDC (Sect. 3.2.2) preconditioners. Special emphasis
is put on the identification of the (dense/sparse) standard
computational kernels and techniques that lead to an effi-
cient implementation of the algorithms subject of study.

3.2.1 BNN

The implementation of the BNN fine-grid precondition-
ing level must take care of the efficient computation of
si = S

†
i I t

i r . Recall from Sect. 2.3 that, when the subdomain

is non-floating, S
†
i I t

i r = S−1
i I t

i r . This is (most) efficiently
computed as the solution of the following linear system:
[

Ai
II Ai

IΓ

Ai
Γ I Ai

Γ Γ

][
t

si

]

=
[

0
I t
i r

]

. (16)

On the other hand, when the subdomain is floating (i.e., Si

is singular), then S
†
i I t

i r is computed as the solution of the
following (constrained) local system:
⎡

⎢
⎣

Ai
II Ai

IΓ 0

Ai
Γ I Ai

Γ Γ 1i

0 1t
i 0

⎤

⎥
⎦

⎡

⎣
t

si
λ

⎤

⎦ =
⎡

⎣
0

I t
i r

0

⎤

⎦ , (17)

where λ ∈ R is the Lagrange multiplier, with λ = 0 as
I t
i r ∈ ker(Si)

⊥ = span(1i )
⊥ by construction of the BNN

coarse-grid space (see Sect. 2.3). We stress that the con-
strained linear system (17) is symmetric indefinite but non-
singular. Although λ is known in advance, the elimination
of the third equation in (17) leads to a singular problem,
therefore unsolvable by sparse direct solvers (this is indeed
one of the main drawbacks of some BNN implementations).

The solution of (16) and (17) requires, during precon-
ditioner set-up, the computation of a sparse direct factor-
ization of their corresponding coefficient matrix, while the
application of the preconditioner requires a sparse back-
ward/forward substitution to finally obtain si . The algo-
rithms for the direct solution of symmetric indefinite lin-
ear systems (e.g. (17)) are typically more expensive than
those required for symmetric definite ones (e.g. (16)).8 An
alternative approach (also implemented in our codes) that
we recommend to deal with floating subdomains is the one
presented in [2]. Essentially, it is based on the observation
that (17) can be transformed into an equivalent positive def-
inite (PD) system by simply fixing judiciously (in particular
by analyzing the kernel of Si ) picked degrees of freedom;
for the Laplacian problem it simply reduces to fix one ar-
bitrary degree of freedom. We refer the reader to [2] for a
detailed explanation and comparison of both approaches for
elasticity and Laplacian problems.

3.2.2 BDDC

The BDDC fine-grid preconditioning level is responsible for
the computation of the product si = (Sc

i )
−1I t

i r . This is ob-
tained as the solution of the following constrained linear sys-
tem:
⎡

⎢
⎣

Ai
II Ai

IΓ 0

Ai
Γ I Ai

Γ Γ Ct
i

0 Ci 0

⎤

⎥
⎦

⎡

⎣
t

si
λ

⎤

⎦ =
⎡

⎣
0

I t
i r

0

⎤

⎦ . (18)

There are two solution approaches for this symmetric in-
definite (but non-singular) linear system. The first one is to
tackle (18) directly using a sparse direct solver for sym-
metric indefinite linear systems. In such a case, a sparse
direct factorization of the coefficient matrix is computed
for the set-up of the preconditioner, while a sparse back-
ward/forward substitution is required to compute si during
preconditioner application. The second approach, originally
presented in [10], exploits the particular structure of Ci to
enable the exploitation of symmetric definite problems for
the solution of (18). In the rest of this section we discuss
this second approach and its efficient implementation.

Let us consider a reordering of (18) in such a way that
FE equations/unknowns related to corners (C) are numbered
first, followed by the rest (R) of nodes, ordered as internal
nodes first, followed by nodes members of faces and nodes

8For example, PARDISO is based on the sparse Cholesky factoriza-
tion without pivoting for symmetric positive definite problems, while
for symmetric indefinite problems, it uses a more expensive sparse
LDLT factorization which, for numerical stability purposes, combines
static (prior-to-factorization) pivoting via symmetric weighted match-
ings and classical Bunch-Kaufman dynamic (during factorization) piv-
oting only applied inside the supernodes [36, 37].
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members of edges. Further, rows and columns of Ci related
to nodes in Ci are labeled first, followed by those of Fi and
Ei . Let us also assume that the local ordering of corners
is conformal with that of the rows of Ci corresponding to
corner constraints. Then we obtain the following block re-
ordered (constrained) linear system:

⎡

⎢
⎢
⎢
⎢
⎣

Ai
CC (Ai

RC)t I 0

Ai
RC Ai

RR 0 (Ci
R)t

I 0 0 0

0 Ci
R 0 0

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

xi
C

xi
R

λi
C

λi
R

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

bi
C

bi
R

0
0

⎤

⎥
⎥
⎥
⎦

, (19)

where

Ai
RR =

⎡

⎢
⎢
⎣

Ai
II Ai

IF Ai
IE

Ai
FI Ai

FF Ai
FE

Ai
EI Ai

EF Ai
EE

⎤

⎥
⎥
⎦ ,

Ci
R =

[
0 Ci

F 0

0 0 Ci
E

]

,

and λi
C and λi

R are the Lagrange multipliers associated to
corner constraints and the rest of constraints, respectively.
The particular block structure of Ci is easily derived from its
definition in (10). Although the permutation matrix which
leads to (19) from (18), and its inverse, have been omitted
for simplicity, note that (bi

C bi
R)t is obtained from (0 I t

i r)
t

and (t si)
t from (xi

C xi
R)t after the application of the former

and the latter permutations, respectively. In our implementa-
tion, both permutations are explicitly computed (and stored
as usual in permutation arrays) as they are used for the ex-
traction of those blocks of (19) which are required for its
solution (see below).

The solution of (19) is computed as follows. From the
third and second block equations of (19) we have that xi

C =
0 and

xi
R = (

Ai
RR

)−1
bi
R − (

Ai
RR

)−1(
Ci

R

)t
λi

R, (20)

respectively, where Ai
RR is a large, sparse, symmetric posi-

tive definite matrix. If the first two block equations are elim-
inated from (19), Lagrange multipliers λi

R are obtained as
the solution of the following system:

Ci
R

(
Ai

RR

)−1(
Ci

R

)t
λi

R = −(
Ci

R

)t(
Ai

RR

)−1
bi
R, (21)

where Ci
R(Ai

RR)−1(Ci
R)t , the Schur complement matrix as-

sociated to λi
R , is a small, dense, symmetric positive definite

matrix (of size nF
i + nC

i ). During preconditioner set-up, the
following four tasks are performed: (1) compute the sparse
Cholesky factorization of Ai

RR ; (2) compute (Ai
RR)−1(Ci

R)t

by means of a kernel which allows the exploitation of the
level 3 BLAS during the (blocked) sparse backward/forward

substitution, and store the result in a dense work ar-
ray for later use; (3) compute Ci

R(Ai
RR)−1(Ci

R)t (reusing
(Ai

RR)−1(Ci
R)t from step (2)); (4) compute a dense Cholesky

factorization of Ci
R(Ai

RR)−1(Ci
R)t using the corresponding

LAPACK kernel. We stress that (Ci
R)t is stored in dense

storage mode as required by the kernel exploited in step (2).
However, Ci

R is not stored. Instead, it is more efficient
to implement the matrix-vector (and matrix-matrix) mul-
tiplication using a subroutine which generates its entries
“on the fly” to save storage and that only operates with
the non-zero entries of Ci

R to save floating-point calcula-
tions. On the other hand, during the preconditioner applica-
tion, the following tasks are performed: (1) solve Ai

RRtiR =
bR
i by sparse backward/forward substitution; (2) compute

wi
R = Ci

RtiR ; (3) solve Ci
R(Ai

RR)−1(Ci
R)tλi

R = −wi
R us-

ing the corresponding level 2 BLAS kernel for the trian-
gular solution of dense linear systems; (4) compute xi

R =
t iR −(Ai

RR)−1(Ci
R)tλi

R . The computation of step (4) requires
a former level 2 BLAS dense matrix-vector product. The
dense work array setup during preconditioner construction
for the storage of (Ai

RR)−1(Ci
R)t is reused for this product.

3.3 Coarse-Grid Preconditioning Level

In this section we focus on the implementation details of
the second level in the two-level structure of the BNN and
BDDC preconditioners, namely the coarse-grid precondi-
tioning level. Duties on this level include: (1) the com-
putation of coarse-grid space basis functions during pre-
conditioner set-up; (2) the computation of the contribu-
tion of each subdomain to the coarse-grid coefficient ma-
trix S0 and coarse-grid residual, during preconditioner set-
up and application, respectively; (3) the assembly, Cholesky
factorization of S0 and solution of the coarse-grid system
during preconditioner set-up and application, respectively.
Although there are several implementation approaches for
(3) in a distributed-memory code (e.g., in parallel on all
or a subset of processors in the global communicator), we
turn our attention into a MPI implementation that solves the
coarse-grid problem serially. Apart from the evaluation of
the scalability of this solution, another purpose of this pa-
per is to determine whether it is more efficient to assem-
ble/factorize/solve the coarse-grid problem on one proces-
sor, and then distribute the solution over the rest of proces-
sors, or to assemble/factorize/solve an identical problem on
all processors, where no global communication is required
afterwards. The solution on one or all processors decision
depends on the extra synchronization and communication
overhead incurred by the global collectives required to im-
plement each option. Section 3.5 presents these collectives
and evaluates their performance and scalability on a large-
scale distributed-memory machine, and Sect. 4 studies the
weak scalability of the coarse-grid preconditioning level,
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paying special attention to the one or all processors decision.
The rest of the current section describes in detail implemen-
tation considerations of this preconditioning level.

We denote by Φi the matrix whose columns are the local
coarse basis functions. In the case of the BNN method they
are Riφ

j for j ∈ N(i). In the case of the BDDC method
they are φa

i for a ∈ Gi (see Sect. 2.4). In the case of the
BDDC method, the computation of Φi involves the solution
of the following (constrained) sparse linear system with sev-
eral right hand sides:

⎡

⎢
⎣

Ai
II Ai

IΓ 0

Ai
Γ I Ai

Γ Γ Ct
i

0 Ci 0

⎤

⎥
⎦

⎡

⎣
βi

Φi

Λi

⎤

⎦ =
⎡

⎣
0
0
I

⎤

⎦ , (22)

where φa
i , i.e., the a-column of Φi , is the restriction of a

(corner, edge, or face) constraint basis function to subdo-
main i, β

j
i is the discrete harmonic extension of φ

j
i , λ

j
i is

the vector of Lagrange multipliers, and I is the identity ma-
trix of size ni

cts. The solution of (22) reuses the data struc-
tures which are computed during the set-up of the fine-grid
preconditioner; see Sect. 3.2.2. Any of the two approaches
described for the solution of (18) can be used for (22). How-
ever, the efficient computation of (22) is carried out with
dense level 3 BLAS (e.g., the solution of a dense triangular
linear system with several right hand sides) and sparse ker-
nels which allow the exploitation of the level 3 BLAS dur-
ing the (blocked) sparse backward/forward substitution. Be-
sides, given the identity matrix on the right hand side of (22)
(instead of a zero matrix as in (18)), ARC has also to be ex-
tracted from (19) during preconditioner set-up and stored as
a dense matrix (as it becomes the input of a kernel for the
solution of triangular systems with several right hand sides).

Coarse-grid preconditioning level duties also include the
computation of the contribution of each subdomain to the
coarse-grid coefficient matrix S0 and coarse-grid residual.
The sparse matrix S0 can be obtained as the assembly (sum)
of subdomain contributions

∑nsbd
i=1(Φi)

tSiΦi as in (12). In
the case of the BNN method, the computation of SiΦi is
split (as in (13)) into two steps: (1) solve Ai

II βi = −Ai
IΓ Φi ;

(2) SiΦi = Ai
Γ Iβi + Ai

Γ Γ Φi . Step (1) is efficiently com-
puted with a kernel for the sparse direct solution of linear
systems with several right hand sides, i.e., a kernel which
allows the exploitation of the level 3 BLAS during the
(blocked) sparse backward/forward substitution. Step (2) re-
quires a pair of sparse-dense matrix-matrix multiplications,
which are efficiently computed using the corresponding ker-
nel in the (sparse) level 3 BLAS. In case of the BDDC
method, the computation of SiΦi comes almost for free
as SiΦi = −CT

i Λi (see (22)). Once SiΦi is computed, the
computation of Φt

i SiΦi just requires a further dense matrix-
matrix multiplication, which for portability and efficiency,
is performed using the corresponding kernel in the level 3

BLAS. On the other hand, the computation of the contribu-
tion of subdomain i to the coarse-grid residual during pre-
conditioner application, i.e., Φt

i ri , is most conveniently car-
ried out with a level 2 BLAS matrix-vector multiplication.

Finally, the coarse-grid preconditioning level is respon-
sible for the assembly, the Cholesky factorization of S0 and
the solution of the coarse-grid system during preconditioner
set-up and application, respectively. For convenience, we
split the presentation into these two phases.

Coarse Preconditioner Set-up In a first symbolic phase,
the adjacency graph of the sparse coarse-grid coefficient
matrix S0 is built on one or all processors. Two steps
are required: (a) the computation of a global ordering of
coarse-grid nodes (objects for BDDC and subdomains for
BNN); (b) the computation of the global (although sparse)
coupling among coarse-grid nodes. Step (a) is naive in the
case of the BNN method, as this ordering already coincides
with the global ordering of the subdomains. However, in
the case of the BDDC method, its construction requires that
one or all processors gather all the coarse-grid nodes each
MPI task has identified on its local interface. The labeling
of coarse-grid nodes is greatly simplified in our implemen-
tation by the fact that coarse-grid nodes are extracted from
communication objects on the local interface (see Sect. 3.4
and Fig. 1), which are already labeled with a global identi-
fier. Step (b) depends on the support of coarse basis func-
tions on Γ . In the case of the BDDC method, the support of
these functions is such that a given coarse-grid node is cou-
pled with all the coarse-grid nodes identified on the subdo-
mains that surround the node. Therefore, it is sufficient that
the processor(s) in charge of S0 gather, per each subdomain,
the list of subdomains that surround each coarse-grid node.
In case of the BNN method, the support of basis functions
is such that two coarse-nodes are coupled if they are neigh-
bors or neighbors of neighbors. Therefore, to determine the
sparsity pattern of S0, it is sufficient to gather, per each sub-
domain, its list of neighboring subdomains. This global data
structure is referred on the literature as subdomain graph or
partition graph (see, e.g. [31, 33, 34]). In a second numer-
ical phase, the matrix S0 is both assembled and then fac-
torized on one or all processors. In order to do so, proces-
sor(s) in charge of S0 gather subdomain local contributions
Φt

i SiΦi , and then assemble them into S0. The correspon-
dence among the entries of each subdomain elemental ma-
trix and S0 for this assembly process is given by the global
ordering (pre)computed on step (a).

Coarse Preconditioner Application The processor(s) re-
sponsible for the coarse-grid problem solution first gather
subdomain local contributions (see (15) and then assem-
ble them to build the coarse-grid residual. The back-
ward/forward substitution with the Cholesky factor of S0
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Fig. 1 Illustration of the two nearest neighbor exchange phases re-
quired to obtain a distributed vector stored in fully summed form
from the same distributed vector stored in partially summed form. The
computational mesh has been partitioned into 4 subdomains, with 5
communication objects on the interface. Four communication objects

are shared by subdomains 1-3, 1-2, 3-4, and 2-4, respectively, while
the remaining object is shared among all subdomains. The owner
subdomain of a given interface point is represented in black, while a
non-owner one in white

provides the preconditioned coarse-grid residual, which is
then distributed among all processors only in case one pro-
cessor is responsible for the solution of the coarse-grid resid-
ual.

3.4 Local Nearest Neighbor Exchange Communications

A basic communication kernel to be implemented in non-
overlapping DD preconditioners is the one that given a dis-
tributed vector stored in partially summed form returns after
communication the same distributed vector stored in fully
summed form, see (6) and (14). In contrast to global dense
collectives such as all-to-all, gather or scatter, this collective
communication is highly sparse as it only requires commu-
nication among (a moderate number of) nearest neighbors.
For example, for structured meshes, each part has only 8 and
26 neighbors in 2D and 3D, respectively. An implementa-
tion of this kernel requires a representation of the local inter-
face of each subdomain in terms of communication objects.
Communication objects embrace all the nodes of the mesh
interface that are shared by the same subdomains. Each
mesh point residing on the interface is assigned an owner
subdomain. The rest of subdomains sharing this mesh point
automatically become non-owners. See Fig. 1 for a graphi-
cal representation of these concepts. In a first data exchange
among nearest neighbors, non-owner subdomains send their
local contributions to the owner subdomain, while the owner

subdomain is in charge for data accumulation and update to
obtain fully summed entries. This is illustrated in Fig. 1(a).
For example, subdomains 2, 3 and 4 send x̃

(2)
21 , x̃

(3)
21 and x̃

(4)
21 ,

respectively, while subdomain 1 receives and accumulates
them to obtain x

(1)
21 . Then, in a second data exchange, own-

ers send copies of its fully summed entries to the non-owner
sides, which just copy them into their local data structures.
This exchange phase is illustrated in Fig. 1(b). The strategy
based on owner and non-owner subdomains of mesh inter-
face points is also covered in [34].

There are two main implementation issues that signifi-
cantly influence the performance and scalability of the data
exchanges among nearest neighbors. The first one targets the
strategy to determine the owner subdomain of each mesh in-
terface point, as this strategy influences the trade-off among
message size and number of messages to be exchanged.
Our implementation relies on a very simple strategy (that
we demonstrate afterwards to be quite efficient): (1) objects
shared by two subdomains are divided equally among them
(i.e., one subdomain is the owner of the first half, while
the other of the second half), so that message sizes to be
exchanged on each side are balanced; (2) objects shared
by more than two parts are (arbitrarily) owned by the part
with minimum identifier. This results in a trade-off which
chooses a smaller number of larger messages over a larger
number of smaller messages (e.g., assuming a given object
is shared among n parts, a n -to-1 followed by a 1-to-n com-
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Fig. 2 Weak scaling for the two exchange phases illustrated in Fig. 1. (a) Several implementations and fixed local problem size H
h

= 512.

(b) IRCV_ISND implementation for several local problem sizes H
h

munication pattern is preferred over two consecutive n-to-n
communication patterns with smaller messages). The sec-
ond issue targets the MPI implementation of each data ex-
change phase, as the MPI standard does not currently sup-
port sparse collectives. There are two possible solutions to
bypass this limitation: (a) to use existing MPI dense col-
lectives, in particular, irregular (vector), personalized all-
to-all exchange, in which no data are exchanged between
processes that are not neighbors (i.e., MPI_Alltoallv).
This solution has several disadvantages as discussed in de-
tail in [25]; (b) to implement the sparse collective by means
of point-to-point communication operations. This is the so-
lution followed by the vast majority of existing distributed-
memory linear algebra codes. After a comprehensive litera-
ture (see, e.g. [21, 22]) and parallel software (e.g., TRILI-
NOS [23, 24], PETSC [4, 5], PSBLAS [14, 15]) review, ex-
isting general-purpose solutions can be categorized as fol-
lows depending on the order on which the send/receive op-
erations are issued and the particular blocking semantics of
the point-to-point communication operations:

• PSND-PRCV. Each MPI rank traverses its local neighbor-
hood and issues a send operation per neighbor. Then, in
a second traversal, it issues a receive operation per neigh-
bor. Send operations are locally blocking while receive
operations are blocking (i.e., MPI_Recv). Locally block-
ing semantics ensure that the send operation immediately
returns the control to the application after the message
to be sent has been copied in an intermediate buffer and
therefore avoids the potential deadlock of blocking sends
(i.e., MPI_Send). This is the strategy followed by the PS-
BLAS library, which in turn inherited the locally blocking
semantics from the BLACS [15].

• IRCV-RSND. All receive operations are issued first, then
all send operations. Receive operations are non-blocking

(i.e., MPI_IRecv), while send operations are ready block-
ing (i.e., MPI_Rsend). A global barrier operation (i.e.,
MPI_Barrier) is issued between receive and send opera-
tions as required by the ready blocking semantics. At the
end, processes wait for the non-blocking receive opera-
tions to complete (i.e., MPI_Waitall). This is the strategy
implemented in Epetra-Trilinos [23].

• IRCV-SND. Same as IRCV-RSND but ready blocking
sends are replaced by blocking sends (i.e., MPI_Recv).
No barrier is required in between sends and receives.

• IRCV-ISND. Same as IRCV-SND but blocking sends are
replaced by non-blocking sends (i.e., MPI_ISend). At the
end, processes wait for both the non-blocking receives
and send communication operations.

In order to provide some evidence with respect to the per-
formance and scalability of the communication kernel cov-
ered in this section, Fig. 2 illustrates typical weak scaling
curves for the parallel execution time required to perform
the two nearest neighbor exchange phases on the HPC-FF
(see Sect. 4.1). We focus on 2D structured meshes of quadri-
lateral elements, although similar conclusions can be raised
in the 3D structured case. We refer to Sect. 4.1 for a detailed
description of the experiment set-up. Figure 2(a) compares
the parallel execution time of the aforementioned MPI im-
plementations when increasing the number of cores while
keeping fixed the local problem size to (H

h
)2 = 5122 quadri-

laterals. This figure shows that PSND-PRCV, IRCV-SND
and IRCV-ISND are weakly scalable MPI implementations,
as they reach asymptotic parallel execution time (of approx-
imately 65 µ-seconds). However, the performance of IRCV-
RSND significantly degrades with the number of cores. On
the HPC-FF, it seems that any performance gain obtained as
by-product of the ready blocking semantics (hand-shaking
and intermediate buffer copying removal) does not pay off
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the overhead associated to the barrier required in between
receives and sends, which introduces a global synchroniza-
tion point that limits the amount of parallelism by exacer-
bating the effects of load imbalance. The performance and
scalability of the implementation based on MPI_Alltoallv
is not surprising as it does not properly capture the par-
allelism inherent to the sparse communication pattern (as
pointed out in [25]). Figure 2(b) illustrates the results of the
same weak scaling study of Fig. 2(a), but it focus on one of
the three most efficient implementations (i.e., IRCV-ISND)
with problem size fixed to several values. Absolute timings
and the order of complexity with H

h
shown in Fig. 2(b) re-

veal that, as long as a weak scalable implementation such
as IRCV-ISND is employed, the contribution of this commu-
nication kernel to the overall performance of BDD meth-
ods can be considered negligible compared to that of other
building blocks in this family of algorithms, such as, e.g.,
the solution of local Dirichlet problems or the computation
of a coarse-grid correction.

3.5 Global Collectives

The global MPI communication operations required for the
implementation of the coarse-grid preconditioning level in
the one processor case are MPI_Gatherv (twice for the pre-
conditioner set-up and once per preconditioner application)
and MPI_Scatterv (once per preconditioner application),
while MPI_Allgatherv (twice for the preconditioner set-up
and once per preconditioner application) is required in case
the coarse-grid problem is solved on all processors. These
varying message size collectives are the ones that most ac-
curately capture the global communication pattern involved
in the (serial) solution of the coarse-grid problem. For struc-
tured meshes and regular partitions, boundary subdomains
do not send/receive the same amount of data than internal
ones, and for unstructured ones, the shape of each subdo-
main local interface is strongly dependent on the underlying
(irregular) non-overlapping partition. However, we have ex-
perimentally observed on several distributed-memory plat-
forms that the performance of the solution of the coarse-grid
problem may benefit from exploiting fixed message size col-
lectives, namely MPI_Gather/MPI_ Scatter/MPI_Allgather.
Figure 3 depicts what we have observed on the HPC-FF su-
percomputer. In particular, it reports the parallel execution
time with increasing number of cores for fixed and varying
message size collectives for powers-of-two message sizes in
the range 32-8192 bytes; all message sizes exchanged by
BDD methods in the case of structured 2D/3D meshes are
enclosed within this range. Figure 3 reveals that for mes-
sage sizes below or equal to 512 bytes the performance of
MPI_Gather is superior to that of MPI_Gatherv, and the
smaller the message size the more superior MPI_Gather
over MPI_Gatherv. We can observe just the opposite for

message sizes beyond 512 bytes, with the largest gains
of MPI_Gatherv over MPI_Gather with the largest mes-
sage sizes. In the case of scatter communication, a much
larger message size of approximately 4096 bytes is required
by MPI_Scatterv to become superior to MPI_Scatter. Be-
sides, for “small” message sizes, larger gains of MPI_Scatter
over MPI_ Scatterv are attained compared to those ob-
served for gather communication. Finally, the performance
of MPI_AllGatherv and MPI_AllGather collectives is al-
most coincident.

4 Scalability Study

4.1 Experimental Framework

The algorithms subject of study were implemented in FEM-
PAR, an in-house, developed from scratch, OO framework
which, among other features, provides the basic tools for
the efficient message-passing (MPI) implementation of sub-
structuring DD solvers, using METIS [26] for unstructured
meshes. All experiments reported in the sequel were ob-
tained on a large-scale multicore-based distributed-memory
machine, the HPC-FF (HPC for Fusion), located at the
Juelich (Germany) Supercomputing Centre. The HPC-FF is
a QDR Infiniband interconnected commodity cluster com-
posed of 1080 Bull NovaScale R422-E2 blades. Each blade
is equipped with two Intel Xeon X5570 QuadCore proces-
sors running at 2.93 GHz (8 computational cores in to-
tal) and 24 GBytes of DDR3 memory, and runs a full-
featured SUSE SLES 11 Linux OS. The codes were com-
piled using Intel Fortran compiler (12.1.4) with recom-
mended optimization flags and we used Parastation 5.0 MPI
tools and libraries for native message-passing. The codes
were linked against the BLAS/LAPACK and PARDISO
available on the Intel MKL library (version 10.3, build
10). Peak flop performance per core is 11.72 GFLOPs/sec
(i.e., 93.76 GFLOPs/sec per blade) and measured MPI in-
trasocket, intersocket and internode latency and bandwidth
for this machine are 0.26 µ-seconds and 4.6 GBytes/sec,
0.57 and 3.7, and 1.49 and 3.1, respectively. We stress that
we have also evaluated the codes on several radically differ-
ent platforms (e.g., MareNostrum, a Myrinet-interconnected
cluster composed of 2560 IBM JS21 compute nodes at
the Barcelona Supercomputing Center). We skip the corre-
sponding results because similar balances to those reported
next for the HPC-FF were achieved.

The experimental study in this paper focuses on the eval-
uation of the weak scalability of several sub-structuring DD
solvers when applied to the Poisson problem. Recall that
weak scaling studies determine at which rate a given mag-
nitude evolves with the number of cores P while keep-
ing the local problem size H

h
constant. In particular, mag-
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Fig. 3 Performance and scalability of fixed and varying message size collectives on the HPC-FF supercomputer. Fixed: (a) MPI_Gather;
(c) MPI_Scatter; (e) MPI_Allgather. Varying: (b) MPI_Gatherv; (d) MPI_Scatterv; (f) MPI_Allgatherv

nitudes of interest for our study are the total computation
time, and the number of PCG iterations required to solve
the preconditioned interface problem (3). The former mag-
nitude is in turn concentrated on three phases: the Schur-

complement system and preconditioner set-up, and the iter-
ative solution of (3) by the PCG Krylov subspace solver. In
Sects. 4.1.1, and 4.1.2 we introduce the particular ranges of
P and H

h
that our study explores for 2D and 3D, respec-
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Table 1 Arithmetic
complexities of the different
stages in the serial direct
solution of sparse linear systems

Phase 2D complexity (d = 2) 3D complexity (d = 3)

Reordering O(n) O(n)

Symbolic factorization O(n logn) O(n
4
3 )

Numerical factorization O(n
3
2 ) O(n2)

Triangular solution O(n logn) O(n
4
3 )

Table 2 Parallel complexity for the NN-PCG and BDD-PCG meth-
ods. Sparse direct solvers are assumed as well as the serial solution of
the coarse-grid problem. It is obtained as the sum of the set-up phase
complexity, with unknown constant cs , and the iterative phase com-

plexity, with unknown constant ci . In the case of BDD-PCG methods,
the unknown constants cs and ci are separated into coarse-grid (c) and
fine-grid (f) preconditioning contributions

Method 2D complexity (d = 2) 3D complexity (d = 3)

NN-PCG csn
3
2 + ci

√
Pn log(n) csn

2 + ci
3
√

Pn
4
3

BDD-PCG csf n
3
2 + cscP

3
2 + cif n log(n) + cicP logP csf n2 + cscP

2 + cif n
4
3 + cicP

4
3

tively, and how the problem is mapped to the underlying
computer.

4.1.1 Set-up for 2D Experiments

We consider the solution of the Poisson problem on a rect-
angle Ω = [0,2] × [0,1], a global conforming uniform
mesh (partition) of Ω into quadrilaterals, and a bilinear fi-
nite element discretization (i.e., Q1-elements). The 2D mesh
was partitioned into rectangular grids of P = 4m × 2m

square subdomains, and distributed over m = 1,2, . . . ,22
nodes, with 4 × 2 subdomains/MPI Ranks per node and
one MPI Rank per core of the HPC-FF. In order to eval-
uate the weak scaling of the solvers under several compu-
tation/communication balances, we consider increasing val-
ues for H

h
= 16,32,64,128,256 and 512, with the two ex-

tremes being the most and least communication-bounded
scenarios of the sample. The largest problem size H

h
= 512

was selected strategically to be the largest power-of-two
that fits into the machine given a memory limit per core of
1.7 GBytes. Note that in 2D the number of quadrilaterals on
each local mesh is therefore H

h
× H

h
, and that of the global

mesh is given by 4mH
h

× 2mH
h

.

4.1.2 Set-up for 3D Experiments

We consider the solution of the Poisson problem on a cube
Ω = [0,1] × [0,1] × [0,1], a global conforming uniform
mesh (partition) of Ω into hexahedra and a trilinear finite
element discretization (i.e., Q1-elements). The 3D mesh is
partitioned into cubic grids of P = 2m × 2m × 2m cubic
subdomains and distributed over m = 1,2, . . . ,8 nodes, with
2 × 2 × 2 subdomains/MPI Ranks per node and one MPI
Rank per core of the HPC-FF. We consider increasing values
for H

h
= 10,20,30 and 40. The largest problem size H

h
= 40

was selected strategically to be the largest multiple-of-ten
that fits into the machine given a memory limit per core of
1.7 GBytes. Note that in 3D the number of hexahedra on
each local mesh is H

h
× H

h
× H

h
, and that of the global mesh

is given by 2mH
h

× 2mH
h

× 2mH
h

.

4.2 A Simple Computational Model

Table 1 summarizes the well-known [16] order of arithmetic
complexity of the different stages of the serial direct solution
of sparse linear systems arising from the discretization of
a square or cube with a uniform mesh with n nodes, with
d = 2,3 the dimension of the space.

If the uniform mesh is distributed over a uniform subdo-
main grid with P = H−d subdomains, with n = (H

h
)d nodes

on each subdomain, the estimated complexity the NN-PCG
and BDD-PCG methods is given on Table 2. Recall that,
in our codes, Reordering, Symbolic Factorization and Nu-
merical Factorization are performed during preconditioner
and Schur complement set-up, while Triangular Solution is
performed at each PCG iteration during Schur complement
and preconditioner application. The complexity of reorder-
ing and symbolic factorization has been omitted in the ta-
ble. Besides, for simplicity, the effect of communication and
load unbalancing has been neglected. Constants cs and ci

depend on the particular stencil the sparse direct method is
applied to (linear FEs, quadratic FEs, etc.), and also on the
ability of the software for the efficient exploitation of the un-
derlying machine characteristics. For BDD-PCG methods,
ci actually depends on n, although this dependence is very
mild (see e.g. (9)) and can be neglected as stated in Sects. 2.3
and 2.4.

The simple computational model in Table 2 reveals that
the scalability of NN-PCG and BDD-PCG is composed of
two components, a scalable one that does not depend on P ,
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Fig. 4 Weak scalability for the parallel execution time of the coarse-
grid preconditioner set-up ((a) and (b)) and application ((c) and (d)) for
the 2D Poisson problem on the HPC-FF. (a) and (c): BDDC(c) precon-
ditioner, one processor is responsible for coarse-grid problem duties,

comparison of fixed and varying message size collectives. (b) and (d):
comparison of BDDC(c), BDDC(ce) and BNN preconditioners with
one or all processors responsible for coarse-grid problem duties, fixed
message size collectives

and a non-scalable one that grows with P . In the former
method, the non-scalable component is associated with the
lack of a coarse-grid correction and subsequent degradation
of PCG convergence rates with P (see Sect. 2.2). This is
inherent to the preconditioning approach and cannot be mit-
igated. In the latter method, the non-scalable component is
associated to the extra cost of the solution of the coarse-
grid problem, and there is a lot of margin for improvement
of this term via high-performance computing techniques
(e.g., fine-grid/coarse-grid overlapping, distributed-memory
implementation of coarse-grid preconditioning level). Any-
way, the key of BDD-PCG methods is that the non-scalable
component does not depend on H

h
. This means that, as long

as H
h

is “large enough”, a balance among the non-scalable
and scalable components can be reached such that the lat-
ter determines the overall (weak) scalability of the solution.
The purpose of Sects. 4.3–4.4 is to demonstrate that, with

the current software and distributed-memory machines, con-
stants in Table 2 are such that our implementation can be
very efficient for interesting ranges of applicability.

4.3 Coarse-Grid Preconditioning Weak Scalability

We first evaluate the weak scalability of the coarse-grid pre-
conditioning level for the BNN and BDDC solvers. Besides,
given the scenario depicted in Sect. 3.5, we will determine
which is the fastest solution among the following three ap-
proaches: solution on one processor with fixed or varying
message size collectives, and solution on all processors. Sec-
tions 4.3.1 and 4.3.2 cover the 2D and 3D Poisson problems,
respectively.

4.3.1 2D Experiments

Figures 4(a) and (b) illustrate the weak scalability for the
parallel execution time of the coarse-grid preconditioner set-
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up and Figs. 4(c) and (d) that of the coarse-grid precondi-
tioner application for the BNN, BDDC(c), and BDDC(ce)
solvers. The coarse-grid preconditioner set-up execution
times includes both a symbolic phase, where the graph of
S0 is built and then symbolically factorized, and a numeri-
cal phase, where S0 is assembled and then factorized by the
sparse Cholesky factorization included in PARDISO. Highly
parallel computations in this preconditioning level (such as
the computation of Φt

kSkΦk or Φt
krk) are excluded from the

figure, i.e., only those terms that grow with P in Table 2,
have been considered.

Figure 4 reveals that the weak scalability of the coarse-
grid preconditioning level degrades as higher core counts
are employed. This is caused by the combined effect of the
global collectives scalability for increasing number of cores
(see Fig. 3) and the serial preconditioner set-up and appli-
cation. The latter factor results in idling or wasted compu-
tation parallel overheads, as the processors just waste their
time waiting on a collective (if they do not have coarse-
solver duties) or performing replicated computation, respec-
tively. The coarse-grid preconditioning level is therefore a
critical component in our current MPI implementation and
any improvement can have significant impact on the per-
formance and scalability of the overall solution (which will
be later evaluated in Sect. 4.3.2). Figures 4(a) and (c) show
one such improvement for the BDDC(c) preconditioner set-
up and application, respectively, which comes from the
use of fixed message size collectives in case one proces-
sor is responsible for coarse-grid level duties. This improve-
ment can be justified by looking carefully at message sizes
sent/received in the collectives. This in turn strongly de-
pends on the particular algorithm and phase. For the as-
sembling of the coarse-grid residual, each subdomain sends
a message size proportional to the number of neighboring
subdomains plus one in case of the BNN preconditioner,
i.e., 9 elements × 8 bytes/element = 72 bytes, and to the
number of local coarse-grid nodes in case of the BDDC pre-
conditioner, i.e., 4 × 8 = 32 bytes and 8 × 8 = 64 bytes,
for the BDDC(c) and BDDC(ce), respectively. These quan-
tities are squared for the (numerical) assembling of S0, i.e.,
92 × 8 = 648, 42 × 8 = 128, and 82 × 8 = 512 bytes. As
pointed out by the above discussion of Fig. 3, these mes-
sage sizes are within the ranges where the use of fixed mes-
sage size collectives can be beneficial over varying mes-
sage size ones. Another significant improvement can be ob-
served in Fig. 4(d) if one processor instead of all proces-
sors is responsible for coarse-grid preconditioning level du-
ties. This can be justified by the superiority of the MPI_
Gather + MPI_Scatter solution over the MPI_Allgather one
for “small” message sizes (see Figs. 3(a), (b) and (c)). In-
deed, “All processor” curves in Fig. 4(d) reflect the peaks
that are observed for MPI_Allgather in Fig. 3(c). Focusing
on the winner implementation for each phase and algorithm

in Figs. 4(b) and (d), it can be observed that BDDC(ce) is
the method with the most expensive coarse-grid precondi-
tioner set-up and application and besides its computational
time degrades with the number of cores at the highest rate,
followed by the BNN and BDDC(c) solvers. This ranking is
not surprising if one takes a closer look at the stencil of the
coarse-grid coefficient matrix of each method for structured
partitions. BDDC(c) presents the stencil corresponding to
the Q1 FE discretization, BNN a more intricate one where
neighbors of neighbors in the Q1 FE discretization are also
connected, and finally that of BDDC(ce) resembles that of
the Q2 FE discretization (after static condensation of inte-
rior nodes). The complexity of the sparse direct Cholesky
method applied to a uniform grid with n = P grid points is
given in Table 1, with the particular stencil only affecting to
the constant. Therefore, it is reasonable that the more intri-
cate the stencil the higher the constant, confirming what is
observed in Figs. 4(b) and (d).

4.3.2 3D Experiments

Figures 5(a) and (b) illustrate the weak scalability for the
parallel execution time of the coarse-grid preconditioner set-
up and Figs. 5(c) and (d) that of the coarse-grid precondi-
tioner application for the BNN, BDDC(ce), and BDDC(cef)
solvers.

The solution based on fixed message size collectives is
superior to the one based on varying message size ones (see
Figs. 5(a) and (c)) and the one processor dedicated to coarse-
grid problem duties solution is also superior to the all pro-
cessors one (see Figs. 5(b) and (d)); the justification of these
results follows the one for the 2D structured case (although
with larger message sizes in 3D). A much more interesting
observation is the relative ranking of the BNN, BDDC(ce)
and BDDC(cef) coarse-grid preconditioners and the rate at
which their weak scalability degrades with the number of
cores. As illustrated by Figs. 5(b) and (d), BNN turns to be
the method with the cheapest coarse-grid preconditioner set-
up and application and the one with the smallest rate, fol-
lowed by the BDDC(ce) and BDDC(cef) in this strict order.
Table 3 provides several metrics of the coarse-grid problem
that helps to understand this observation, namely the size
and number of non-zeros in its sparse coefficient matrix,
and the size of the optimal root separator of its adjacency
graph. Although the BNN coarse-grid sparse coefficient is
denser, it is 4 and 7 times smaller than that of the BDDC(ce)
and BDDC(cef), respectively, and its optimal root separa-
tor is 1.5 and 2 times smaller than that of the BDDC(ce)
and BDDC(cef), respectively. The size of the optimal root
separator, which can be used as lower bound for the com-
plexity of the sparse direct Cholesky (actually its cube and
square for the factorization and forward/backward substitu-
tion, respectively), accurately describes what is observed in
Figs. 5(b) and (d).
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Fig. 5 Weak scalability for the parallel execution time of the coarse-
grid preconditioner set-up ((a) and (b)) and application ((c) and (d)) for
the 3D Poisson problem on the HPC-FF. (a) and (c): BDDC(ce) pre-
conditioner, one processor is responsible for coarse-grid problem du-

ties, comparison of fixed and varying message size collectives. (b) and
(d): comparison of BDDC(ce), BDDC(cef) and BNN preconditioners
with one or all processors responsible for coarse-grid problem duties,
fixed message size collectives

Table 3 Size (nc), non-zeros (nz) and optimal root separator size (ns )
for the coarse-grid coefficient matrix in the BDDC and BNN algo-
rithms. A periodic structured mesh of a cube with P = p3 subdomains
is assumed, with p the number of subdomains per Cartesian direction

Metric BDDC (ce) BDDC (cef) BNN

nc 4P 7P P

nz 234P 462P 125P

ns 3P 2/3 4P 2/3 2P 2/3

4.4 Overall Scalability

In this section we take into consideration the overall scala-
bility of the BNN and BDDC solvers. Both fine-grid and
coarse-grid preconditioning contributions to the scaling
curves are considered, as well as the number of PCG iter-

ations required to converge. Sections 4.4.1 and 4.4.2 cover
the 2D and 3D Poisson problems, respectively.

4.4.1 2D Experiments

Figure 6 reports the weak scalability for the total com-
putation time of the winner implementation of the multi-
plicative BNN solver and two different implementations of
the BDDC(c) and BDDC(ce) solvers. The best implementa-
tion of the coarse-grid preconditioning level was used (see
Sect. 4.3). In the legend of the figure, DEF (symmetric-PD)
and IND (symmetric INDefinite) refer to the kind of linear
systems/solvers that are solved/applied for the computation
of the BDDC fine-grid correction (see Sect. 3.2.2). The win-
ner implementation of the BNN method exploits symmetric-
PD solvers and saves the solution of a Dirichlet solver per
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Fig. 6 Weak scalability for the total computation time of the multiplicative BNN (winner implementation) and two different implementations of
the BDDC(c) and BDDC(ce) solvers for the 2D Poisson problem on HPC-FF. From top to bottom and left to right H

h
= 16,32,64,128,256,512

PCG iteration (cf. [2]). Figure 7 illustrates the weak scala-
bility for the number of PCG iterations. In the PCG method,
we set the initial solution vector guess x0 = 0, and the it-
eration is stopped whenever the residual rk at a given itera-
tion k satisfies ‖rk‖2 ≤ 10−6‖r0‖2; this set-up also applies
to Sect. 4.4.2.

As predicted by our simple computational model in
Sect. 4.2, Fig. 6 clearly evidences that weak scaling curves
for the computational time of BNN/BDDC solvers result
from the sum of a non-scalable and a scalable component.
For “sufficiently small” H

h
(e.g., with H

h
= 16,32,64), the

non-scalable component (i.e., the one that grows with P )
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Fig. 7 Weak scalability for the number of PCG iterations of the multiplicative BNN and the BDDC(c) and BDDC(ce) solvers for the 2D Poisson
problem on HPC-FF. From top to bottom and left to right H

h
= 16,32,64,128,256,512

dominates. The relative ranking of the methods is there-
fore determined by the extra cost required for the solution
of the coarse-grid problem of each method, which has al-
ready been examined and properly justified in Sect. 4.3.1.
However, a very nice observation is that for gradually larger
H
h

, the scalable part becomes more and more dominant, till

the non-scalable component is completely masked, i.e., with
H
h

= 256,512. Within this range, the winner method is the
one with the least asymptotic number of PCG iterations,
i.e., the BDDC(ce) solver, as illustrated in Fig. 7; a sig-
nificant maximum improvement of 43 % and 30 % which
comes from the use of (symmetric-PD) solvers can also be
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Fig. 8 Distribution of the total computation time among Schur com-
plement and preconditioner set-up, and the iterative solution of the
interface problem for 2D Poisson on HPC-FF. Multiplicative BNN and

BDDC(ce) with H
h

= 128 ((a) and (b), respectively) and H
h

= 512
((c) and (d), respectively)

observed within this range for the BDDC(c) and BDDC(ce)
solvers, respectively. The number of cores can certainly be
increased arbitrarily so that the coarse-grid component be-
comes dominant. However, a very remarkable conclusion
from this study is that given the memory available per core
on current distributed-memory machines, and the experi-
mental evidence we have gathered so far, this is only ex-
pected to happen for simulations with several tens of thou-
sands of cores. Besides, the margin of improvement for the
coarse-grid preconditioning level is huge. In Fig. 7 it can
also be observed no degradation of PCG convergence rates
with P and fixed H

h
, and only a mild (i.e., logarithmic)

grow with H
h

and P fixed. This is a well-known property of
BNN/BDDC solvers easily derived from the condition num-
ber bounds of the preconditioned operator (see Sects. 2.3
and 2.4).

Although not explicitly provided in Figs. 6 and 7, the
NN-PCG solver required, for H

h
= 16, and P = 228 and

P = 3872, 0.18 and 1.73 seconds, with 156 and 2207
PCG iterations, respectively. These numbers are signifi-
cantly worse than those of the BNN/BDDC solvers. There-
fore, even in the most favourable scenario for the NN-PCG
solver in the experiment (i.e., the smallest local problem size
considered), the extra cost associated with the coarse-grid
correction more than pays off in terms of total computational
time (due to the significant cut down in the number of itera-
tions). For larger values of H

h
= 16, the gap among NN-PCG

and the BDDC/BNN solvers becomes progressively larger,
as predicted by Table 2 (as the term that depends on

√
P is

multiplied by a function that grows with H
h

).
Figure 8 offers a complementary view of the weak scal-

ing curves in Fig. 6. For H
h

= 128 (see Figs. 6(a) and (b)), the
computation time of the preconditioner set-up and iterative
phases grow with P (the latter at a very moderate pace com-
pared to the former as predicted by Sect. 4.2 and experimen-
tally examined in Sect. 4.3.1). However, for H

h
= 512 (see



260 S. Badia et al.

Fig. 9 Weak scalability for the total computation time of the multiplicative BNN (winner implementation) and the BDDC(ce) and BDDC(cef)
solvers (winner implementation) for the 3D Poisson problem on HPC-FF. From top to bottom and left to right H

h
= 10,20,30,40

Figs. 6(c) and (d)), the computation time of the three phases
is constant. An interesting observation for this “large” local
problem size is that the computation time for preconditioner
set-up is equivalent for the BNN and BDDC(ce) solvers. In
the latter method, an extra number, proportional to the num-
ber of edge constraints, sparse forward/backward substitu-
tions with the factor of Ai

RR are required to build the Schur
complement associated to edge constraints (see Sect. 3.2.2).
However, this is only a constant and modest multiple, com-
pletely masked by the higher order of complexity of the
sparse Cholesky factorization of Ai

RR . We stress, however,
that this is no longer true if approximate solvers (e.g., AMG)
are used as local solvers (due to their linear order of com-
plexity).

4.4.2 3D Experiments

Figures 9 and 10 compare the weak scalability for the total
computation time and number of PCG iterations of the win-
ner implementation of the multiplicative BNN solver and
those of the winner implementation of the BDDC(ce) and

BDDC(cef) solvers. Figure 9 again reveals the two compo-
nents of the weak scaling curves. For sufficiently “small”
H
h

(e.g., H
h

= 10,20), the total computational time is domi-
nated by computation and communication overheads related
to the solution of the coarse-grid system. To be more pre-
cise, it is dominated by the sparse Cholesky factorization of
the coarse-grid coefficient matrix: the shape of the curves
in Fig. 9 resembles (particularly with large P ) that of the
curves in Fig. 5(b). For a very precise explanation of the
relative ranking of the BNN/BDDC solvers for “small” H

h
,

we refer the reader to Sect. 4.3.2. For large H
h

, the fine-
grid preconditioning component of the solvers dominates
and the efficiency of the methods is very high due to their
ability to keep the condition number bounded by a con-
stant with P and H

h
fixed (see Fig. 10). It is remarkable

the nice scalability of the BNN compared to that of the
BDDC solver in terms of computational time (see Fig. 9).
For this latter method, a (mild) degradation of the weak
scalability can already be observed for large P even for the
largest H

h
.
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Fig. 10 Weak scalability for the number of PCG iterations of the multiplicative BNN and the BDDC(ce) and BDDC(cef) solvers for the 3D
Poisson problem on HPC-FF. From top to bottom and left to right H

h
= 10,20,30,40

5 Conclusions and Future Work

In this work we have covered in detail the high-performance
distributed-memory implementation of DD methods of bal-
ancing type. This comprehensive coverage presents a pool
of hints and considerations that can be very useful for scien-
tists that are willing to tackle large-scale distributed-memory
machines using these methods. On the other hand, the paper
presents a complete scalability study of BDDC/BNN pre-
conditioners on a large-scale machine with up to 4096 cores.
As far as we know, the state-of-the-art does not include any
work that performs such study with these particular meth-
ods, at least with the degree of detail and up to the scale
that are reached in this work. This scalability study answers
the very interesting question of how far can the proposed
MPI implementation go in the number of cores and the scale
of the problem to still be within reasonable ranges of effi-
ciency. The answer is up to dozens of thousands of compu-
tational cores in the solution of problems discretized with
hundreds of millions FEs. Besides, the study has also pre-
cisely identified, quantified and justified which are the main

sources of inefficiency and bottlenecks in our current im-
plementation, namely communication and computation as-
sociated to the solution of the coarse-grid problem. In light
of these conclusions, we have identified improvements that
deserve further research in order to boost the current scala-
bility of our MPI implementation, e.g., the use of approxi-
mate solvers (as AMG-preconditioned CG), multilevel BDD
formulations (see [30]) or distributed memory coarse-grid
solvers.
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