Springer Complexity

Springer Complexity is a publication program, cutting across all traditional disciplines of sciences as well as engineering, economics, medicine, psychology and computer sciences, which is aimed at researchers, students and practitioners working in the field of complex systems. Complex Systems are systems that comprise many interacting parts with the ability to generate a new quality of macroscopic collective behavior through self-organization, e.g., the spontaneous formation of temporal, spatial or functional structures. This recognition, that the collective behavior of the whole system cannot be simply inferred from the understanding of the behavior of the individual components, has led to various new concepts and sophisticated tools of complexity. The main concepts and tools – with sometimes overlapping contents and methodologies – are the theories of self-organization, complex systems, synergetics, dynamical systems, turbulence, catastrophes, instabilities, nonlinearity, stochastic processes, chaos, neural networks, cellular automata, adaptive systems, and genetic algorithms.

The topics treated within Springer Complexity are as diverse as lasers or fluids in physics, machine cutting phenomena of workpieces or electric circuits with feedback in engineering, growth of crystals or pattern formation in chemistry, morphogenesis in biology, brain function in neurology, behavior of stock exchange rates in economics, or the formation of public opinion in sociology. All these seemingly quite different kinds of structure formation have a number of important features and underlying structures in common. These deep structural similarities can be exploited to transfer analytical methods and understanding from one field to another. The Springer Complexity program therefore seeks to foster crossfertilization between the disciplines and a dialogue between theoreticians and experimentalists for a deeper understanding of the general structure and behavior of complex systems.

The program consists of individual books, books series such as "Springer Series in Synergetics", "Institute of Nonlinear Science", "Physics of Neural Networks", and "Understanding Complex Systems", as well as various journals.

Understanding Complex Systems

Series Editor

J.A. Scott Kelso Florida Atlantic University Center for Complex Systems Glades Road 777 Boca Raton, FL 33431-0991, USA

Understanding Complex Systems

Future scientific and technological developments in many fields will necessarily depend upon coming to grips with complex systems. Such systems are complex in both their composition (typically many different kinds of components interacting with each other and their environments on multiple levels) and in the rich diversity of behavior of which they are capable. The Springer Series in Understanding Complex Systems series (UCS) promotes new strategies and paradigms for understanding and realizing applications of complex systems research in a wide variety of fields and endeavors. UCS is explicitly transdisciplinary. It has three main goals: First, to elaborate the concepts, methods and tools of self-organizing dynamical systems at all levels of description and in all scientific fields, especially newly emerging areas within the Life, Social, Behavioral, Economic, Neuro- and Cognitive Sciences (and derivatives thereof); second, to encourage novel applications of these ideas in various fields of Engineering and Computation such as robotics, nanotechnology and informatics, third, to provide a single forum within which commonalities and differences in the workings of complex systems may be discerned, hence leading to deeper insight and understanding. UCS will publish monographs and selected edited contributions from specialized conferences and workshops aimed at communicating new findings to a large multidisciplinary audience.

B. S. Kerner

The Physics of Traffic

Empirical Freeway Pattern Features, Engineering Applications, and Theory

Boris S. Kerner DaimlerChrysler AG 70546 Stuttgart Germany

ISBN 978-3-642-05850-9 ISBN 978-3-540-40986-1 (eBook) DOI 10.1007/978-3-540-40986-1

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

springeronline.com

© Springer-Verlag Berlin Heidelberg 2004

Originally published by Springer-Verlag Berlin Heidelberg New York in 2004.

Softcover reprint of the hardcover 1st edition 2004

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Print data prepared by TechBooks Cover design: Erich Kirchner, Heidelberg Printed on acid-free paper 54/3141/XO - 5 4 3 2 1 0

Preface

This monograph is devoted to a new approach to an old field of scientific investigation, freeway traffic research. Freeway traffic is an extremely complex *spatiotemporal* nonlinear dynamic process. For this reason, it is not surprising that *empirical* traffic pattern features have only recently been sufficiently understood. Such empirical features are in serious conflict with almost all earlier theoretical and model results. Consequently, the author introduced a new traffic flow theory called "three-phase traffic theory," which can explain these empirical spatiotemporal traffic patterns. The main focus of this book is a consideration of *empirical spatiotemporal* traffic pattern features, their engineering applications, and explanations based on the three-phase traffic theory.

The book consists of four parts. In Part I, empirical studies of traffic flow patterns, earlier traffic flow theories, and mathematical models are briefly reviewed. Three-phase traffic theory is considered as well. This theory is a qualitative theory. Main ideas and results of the three-phase traffic flow theory will be introduced and explained without complex mathematical models. This should be suitable for a very broad audience of practical engineers, physicists, and other readers who may not necessarily be specialists in traffic flow problems, and who may not necessarily have worked in the field of spatiotemporal pattern formation.

In Part II, empirical spatiotemporal traffic pattern features are considered. A microscopic three-phase traffic theory of these patterns and results of an application of the pattern features to engineering applications are presented in Part III and Part IV, respectively.

I am very grateful to Herman Haken for the opportunity to write this book. I am also very grateful to my colleagues at DaimlerChrysler AG, Peter Häußermann, Harald Brunini, Ralf Guido Herrtwich, and Matthias Schulze for their support. I thank my colleagues and friends Hani Mahmassani, Dietrich Wolf, and Michael Schreckenberg for their support in the first publications of my three-phase traffic theory. I would also like to thank the coauthors of our joint publications, Peter Konhäuser, Martin Schilke, Hubert Rehborn, Sergey Klenov, Dietrich Wolf, Matthias Herrmann, Malte Rödiger, Heribert Kirschfink, Mario Aleksić, and Andreas Haug for their very fruitful cooperation. In particular, I thank Sergey Klenov, Hubert Rehborn, Mario Aleksić,

VI Preface

Ines Maiwald-Hiller, Andreas Haug, and James Banks for their suggestions and help in the preparation of this book. I would like to thank the Hessen (Germany) Ministry of Roads and Traffic for help in the preparation of the empirical data. I acknowledge funding by the German Ministry of Education (BMBF) within projects SANDY and DAISY. I would like to thank Pravin Varaiya and his colleagues for access to traffic data of the PeMS (Freeway Performance Measurement System) database in the USA. I also thank my wife, Tatiana Kerner, for her help and understanding.

Stuttgart, August 2004 $Boris\ Kerner$

Contents

1	ntroduction 1
Т	Introduction

Part I Historical Overview and Three-Phase Traffic Theory

2	Spa	tiotem	poral Pattern Formation	
	in I	Freeway	Traffic	13
	2.1	Introdu	uction	13
	2.2	Traffic	and Synergetics	14
	2.3		nd Congested Traffic	15
		2.3.1	Local Measurements of Traffic Variables	15
		2.3.2	Examples of Freeway Infrastructures	
			and Detector Arrangements	17
		2.3.3	Free Traffic Flow	18
		2.3.4	Congested Traffic	21
		2.3.5	Empirical Fundamental Diagram	22
		2.3.6	Complex Local Dynamics of Congested Traffic	24
	2.4	Main E	Empirical Features of Spatiotemporal	
		Conges	sted Patterns	27
		2.4.1	Three Traffic Phases	27
		2.4.2	Characteristic Parameters of Wide Moving Jams	28
		2.4.3	Spontaneous Breakdown Phenomenon	
			(Spontaneous $F \rightarrow S$ Transition)	32
		2.4.4	Induced Breakdown Phenomenon	34
		2.4.5	Synchronized Flow Patterns	35
		2.4.6	Catch Effect	37
		2.4.7	Moving Jam Emergence in Synchronized Flow:	
			General Pattern	41
		2.4.8	Expanded Congested Patterns	46
		2.4.9	Foreign Wide Moving Jams	51
		2.4.10	Reproducible and Predictable Congested Patterns	53
		2.4.11	Methodology for Empirical Congested Pattern Study	57
	2.5	Conclu	sions. Fundamental Empirical Features	
		of Spat	tiotemporal Congested Patterns	58

3			of Freeway Traffic Theories	
	and		els: Fundamental Diagram Approach	63
	3.1		luction:	
			thesis About Theoretical Fundamental Diagram	63
	3.2		vements of Fundamental Diagram Approach	
		to Tra	ffic Flow Modeling and Theory	64
		3.2.1	Conservation of Vehicle Number on Road	
			and Front Velocity	66
		3.2.2	The Lighthill–Whitham–Richards Model	
			and Shock Wave Theory	67
		3.2.3	Collective Flow Concept and Probability of Passing	68
		3.2.4	Scenarios for Moving Jam Emergence	69
		3.2.5	Wide Moving Jam Characteristics	69
		3.2.6	Flow Rate in Wide Moving Jam Outflow.	
			The Line J	71
		3.2.7	Metastable States of Free Flow	
			with Respect to Moving Jam Emergence	73
	3.3	Drawb	backs of Fundamental Diagram Approach	
		in Des	scribing of Spatiotemporal Congested	
		Freewa	ay Patterns	78
		3.3.1	Shock Wave Theory	78
		3.3.2	Models and Theories of Moving Jam Emergence	
			in Free Flow	80
		3.3.3	Models and Theories with Variety of Vehicle	
			and Driver Characteristics	83
		3.3.4	Application of Classical Queuing Theories	
			to Freeway Congested Traffic Patterns	84
	3.4	Conch	usions	85
4	\mathbf{Bas}		Three-Phase Traffic Theory	87
	4.1		luction and Remarks on Three-Phase	
			e Theory	87
	4.2	Defini	tion of Traffic Phases in Congested Traffic	
		Based	on Empirical Data	88
		4.2.1	Objective Criteria for Traffic Phases	
			in Congested Traffic	88
		4.2.2	Explanation of Terms "Synchronized Flow"	
			and "Wide Moving Jam"	90
		4.2.3	Mean Vehicle Trajectories	91
		4.2.4	Flow Rate in Synchronized Flow	91
		4.2.5	Empirical Line J	93
		4.2.6	Propagation of Two Wide Moving Jams	94
	4.3	Funda	umental Hypothesis	
		of Thr	ree-Phase Traffic Theory	95

		4.3.1	Three-Phase Traffic Theory
			as Driver Behavioral Theory
		4.3.2	Synchronization Distance and Speed Adaptation
			Effect in Synchronized Flow
		4.3.3	Random Transformations ("Wandering")
			Within Synchronized Flow States 100
		4.3.4	Dynamic Synchronized Flow States
	4.4	Empir	ical Basis of Three-Phase Traffic Theory 102
	4.5		usions
5			n Phenomenon ($\mathbf{F} \rightarrow \mathbf{S}$ Transition)
			Phase Traffic Theory 105
	5.1		uction
	5.2		down Phenomenon on Homogeneous Road 106
		5.2.1	Speed Breakdown at Limit Point of Free Flow 106
		5.2.2	Critical Local Perturbation for Speed Breakdown 108
		5.2.3	Probability for Breakdown Phenomenon 110
		5.2.4	Threshold Flow Rate and Density,
			Metastability, and Nucleation Effects 111
		5.2.5	Z-Shaped Speed–Density and Passing
			Probability Characteristics
		5.2.6	Physics of Breakdown Phenomenon:
			Competition Between Over-Acceleration
			and Speed Adaptation
		5.2.7	Physics of Threshold Point in Free Flow 120
		5.2.8	Moving Synchronized Flow Pattern
	5.3		down Phenomenon at Freeway Bottlenecks
		5.3.1	Deterministic Local Perturbation
		5.3.2	Deterministic $F \rightarrow S$ Transition
		5.3.3	Physics of Deterministic Speed Breakdown
		F 0 (at Bottleneck
		5.3.4	Influence of Random Perturbations
		5.3.5	Z-Characteristic for Speed Breakdown at Bottleneck 136
		5.3.6	Physics of Speed Breakdown at Bottleneck 139
	_ ,	5.3.7	Time Delay of Speed Breakdown
	5.4	Conclu	usions
6		-	am Emergence in Three-Phase Traffic Theory 145
	6.1		uction
	6.2		Moving Jam Emergence in Free Flow
	6.3		Moving Jam Emergence in Synchronized Flow 150
		6.3.1	Hypothesis for Moving Jam Emergence
		0.0.0	in Synchronized Flow
		6.3.2	Features of Metastable Synchronized Flow States 155
		6.3.3	Stable High Density Synchronized Flow States 156

	6.4	Double	Z-Shaped Traffic Flow Characteristics	158
		6.4.1	Z-Characteristic for $S \rightarrow J$ Transition	158
		6.4.2	Cascade of Two Phase Transitions	
			$(F \rightarrow S \rightarrow J \text{ Transitions})$	161
		6.4.3	Wide Moving Jam Emergence	
			Within Initial Moving Synchronized Flow Pattern	167
	6.5	Moving	Jam Emergence	
			chronized Flow at Bottlenecks	169
		6.5.1	Why Moving Jams Do not Emerge	
			in Free Flow at Bottlenecks	169
		6.5.2	Z-Characteristic for $S \rightarrow J$ Transition at Bottlenecks	
		6.5.3	Physics of Moving Jam Emergence	
			in Synchronized Flow	172
		6.5.4	Double Z-Characteristic and $F \rightarrow S \rightarrow J$ Transitions	
			at Bottlenecks	176
	6.6	Conclu	sions	178
7			Patterns at Freeway Bottlenecks	
			hase Traffic Theory	
	7.1		iction	179
	7.2		ain Types	
			iotemporal Congested Patterns	179
	7.3		ied Diagram of Congested Patterns	
			ted Bottlenecks	
	7.4	v	onized Flow Patterns	183
		7.4.1	Influence of Fluctuations on Limit Point	
			for Free Flow at Bottlenecks	183
		7.4.2	Moving Synchronized Flow Pattern	
			Emergence at Bottlenecks	185
		7.4.3	Pinning of Downstream Front	
			of Synchronized Flow at Bottlenecks	189
		7.4.4	Transformation Between Widening	
			and Localized Synchronized Flow Patterns	
	7.5		l Patterns	
		7.5.1	Spatiotemporal Structure of General Patterns	194
		7.5.2	Dissolving General Pattern	
			and Pattern Transformation	
	7.6	-	s of General Patterns	
		7.6.1	Region of Wide Moving Jams	
		7.6.2	Narrow Moving Jam Emergence in Pinch Region	
		7.6.3	Moving Jam Suppression Effect	
		7.6.4	Width of Pinch Region	210
		7.6.5		211
	7.7	Conclu	sions	213

8	Free	eway Capacity
	in \mathbf{T}	Chree-Phase Traffic Theory 217
	8.1	Introduction
	8.2	Homogeneous Road
	8.3	Freeway Capacity in Free Flow at Bottlenecks 218
		8.3.1 Definition of Freeway Capacity
		8.3.2 Probability for Speed Breakdown at Bottlenecks 220
		8.3.3 Threshold Boundary for Speed Breakdown 223
		8.3.4 Features of Freeway Capacity at Bottlenecks 226
	8.4	Z-Characteristic and Probability
		for Speed Breakdown 228
	8.5	Congested Pattern Capacity at Bottlenecks
	8.6	Main Behavioral Assumptions
		of Three-Phase Traffic Theory 234
	8.7	Conclusions

Part II Empirical Spatiotemporal Congested Traffic Patterns

9	Empirical Congested Patterns			
	at I	solated	l Bottlenecks	241
	9.1	Introdu	uction	241
	9.2	Effectu	al Bottlenecks and Effective Locations	
		of Bott	tlenecks	242
		9.2.1	Effectual Bottlenecks on Freeway A5-South	244
		9.2.2	Effectual Bottlenecks on Freeway A5-North	247
		9.2.3	Isolated Effectual Bottleneck	247
	9.3	Empiri	cal Synchronized Flow Patterns	250
		9.3.1	Widening Synchronized Flow Pattern	250
		9.3.2	Localized Synchronized Flow Pattern	255
		9.3.3	Moving Synchronized Flow Pattern	256
	9.4	Empirical General Patterns 2		
		9.4.1	Empirical General Pattern of Type (1)	259
		9.4.2	Empirical General Pattern of Type (2)	262
		9.4.3	Dependence of Effective Location	
			of Bottleneck on Time	264
	9.5	Conclu	sions	268
10	$\mathbf{Em}_{\mathbf{i}}$	pirical	Breakdown Phenomenon:	
	\mathbf{Pha}	se Tra	nsition from Free Flow	
	to S	Synchro	onized Flow	269
	10.1	Introdu	uction \ldots	269
	10.2	Sponta	neous Breakdown Phenomenon	
		(Spont	aneous $F \rightarrow S$ Transition) at On-Ramp Bottlenecks	270

	10.3	Probab	bility for $F \rightarrow S$ Transition	. 274
		10.3.1	Empirical and Theoretical Definitions	
			of Freeway Capacities at Bottlenecks	. 275
		10.3.2	Pre-Discharge Flow Rate	. 278
	10.4		d Speed Breakdown	
		at On-	Ramp Bottlenecks	. 281
		10.4.1	$\mathrm{F}{\rightarrow}\mathrm{S}$ Transition Induced by Wide Moving Jam	
			Propagation Through Effectual Bottleneck	. 282
		10.4.2	Induced Speed Breakdown at Bottlenecks	
			Caused by Synchronized Flow Propagation	
			lown Phenomenon at Off-Ramp Bottlenecks	
			lown Phenomenon Away from Bottlenecks	
	10.7		Empirical Features of Synchronized Flow	
		10.7.1	Complex Behavior in Flow–Density Plane	
		10.7.2	Three Types of Synchronized Flow	. 296
		10.7.3	Overlapping States of Free Flow	
			and Synchronized Flow in Density	
	10.0	10.7.4	Analysis of Individual Vehicle Speeds	
	10.8	Conclu	sions	. 302
11	Emj	pirical	Features	
			Ioving Jam Propagation	. 305
			uction	
	11.2	Charac	eteristic Parameters of Wide Moving Jams	. 305
		11.2.1	Empirical Determination of Line J	. 306
		11.2.2	Dependence of Characteristic Jam Parameters	
			on Traffic Conditions	. 310
		11.2.3	Propagation of Wide Moving Jams	
			Through Synchronized Flow	
		11.2.4	Moving Blanks Within Wide Moving Jams	
			es of Foreign Wide Moving Jams	
	11.4	Conclu	sions	. 318
12	Emi	pirical	Features	
	of N	loving	Jam Emergence	. 321
			uction	
			Effect in Synchronized Flow	
		12.2.1	Narrow Moving Jam Emergence	. 323
		12.2.2	Wide Moving Jam Emergence ($S \rightarrow J$ Transition)	. 328
		12.2.3	Correlation of Characteristics for Pinch Region	
			and Wide Moving Jams	. 332
		12.2.4	Frequency of Narrow Moving Jam Emergence	. 332
		12.2.5	Saturation and Dynamic Features of Pinch Effect	
		12.2.6	Spatial Dependence of Speed Correlation Function	. 335

	12.2.7	Effect of Wide Moving Jam Emergence
		in Pinch Region of General Pattern
	12.3 Strong	and Weak Congestion
		g Jam Emergence in Synchronized Flow
	Away	from Bottlenecks
	12.5 Patter	n Formation at Off-Ramp Bottlenecks
		d F \rightarrow J Transition
	12.7 Conclu	1sions
13		Pattern Evolution and Transformation
	at Isolated	l Bottlenecks
		uction $\dots \dots \dots$
		ion of General Patterns
	at On-	Ramp Bottlenecks
	13.2.1	Transformation of General Pattern
		into Synchronized Flow Pattern
	13.2.2	Alternation of Free Flow and Synchronized Flow
		in Congested Patterns 350
	13.2.3	Hysteresis Effects Due to Pattern Formation
		and Dissolution
		ormations of Congested Patterns
		Weak Congestion
		rge Flow Rate and Capacity Drop
	13.5 Conclu	1sions
14	T	Courselow Datterny Formation Coursed
14		Complex Pattern Formation Caused
		rities of Freeway Infrastructure
		uction
	-	ded Congested Pattern
	14.2.1	Common Features
	14.2.2	Example of Expanded Congested Pattern
		ition of Moving Jams at Bottlenecks
	14.3.1	Dynamics of Wide Moving Jam Outflow
	14.3.2	Localized Synchronized Flow Patterns
	144 0 1	Resulting from Moving Jam Dissolution
	14.4 Conclu	sions
15	Dependen	ce of Empirical Fundamental
		on Congested Pattern Features
		uction
	15.1.1	Empirical Fundamental Diagram
	10.1.1	and Steady State Model Solutions
	15.1.2	Two Branches of Empirical Fundamental Diagram 374
	15.1.2 15.1.3	Line J and Wide Moving Jam Outflow
	TO'T'O	- mile s and maxing sam samow

15.2 Empirical Fundamental Diagram
and Line J
15.2.1 Asymptotic Behavior of Empirical
Fundamental Diagrams
15.2.2 Influence of Different Vehicle Characteristics
on Fundamental Diagrams
15.3 Dependence of Empirical Fundamental Diagram
on Congested Pattern Type 385
15.4 Explanation of Reversed- λ , Inverted-V,
and Inverted-U Empirical Fundamental Diagrams
15.5 Conclusions

Part III Microscopic Three-Phase Traffic Theory

16	Microscopic Traffic Flow Models			
	for a	Spatiot	emporal Congested Patterns 399	
	16.1	Introdu	ction	
	16.2	Cellular	: Automata Approach to Three-Phase Traffic Theory . 401	
		16.2.1	General Rules of Vehicle Motion	
		16.2.2	Synchronization Distance	
		16.2.3	Steady States	
		16.2.4	Fluctuations of Acceleration and Deceleration	
			in Cellular Automata Models	
		16.2.5	Boundary Conditions and Model of On-Ramp 407	
		16.2.6	Summary of Model Equations and Parameters 408	
	16.3	Continu	um in Space Model Approach	
		to Thre	e-Phase Traffic Theory	
		16.3.1	Vehicle Motion Rules 408	
		16.3.2	Speed Adaptation Effect Within Synchronization	
			Distance	
		16.3.3	Motion State Model for Random Acceleration	
			and Deceleration	
		16.3.4	Safe Speed	
		16.3.5	2D Region of Steady States 414	
		16.3.6	Physics of Driver Time Delays 415	
		16.3.7	Over-Acceleration and Over-Deceleration Effects 419	
		16.3.8	Lane Changing Rules	
		16.3.9	Boundary Conditions and Models of Bottlenecks $\ldots,421$	
		16.3.10	Summary of Model Equations and Parameters 425	
	16.4	Conclus	sions	
17	Mic	rosconi	c Theory of Phase Transitions	
- •		-	Traffic 433	
		-	ction	
			100	

	17.2	Micros	copic Theory of Breakdown Phenomenon
		$(F \rightarrow S')$	Transition) $\ldots \ldots 434$
		17.2.1	Homogeneous Road
		17.2.2	Breakdown Phenomenon at On-Ramp Bottlenecks 438
	17.3	Moving	g Jam Emergence and Double Z-Shaped
		Charac	teristics of Traffic Flow
		17.3.1	$F \rightarrow J$ Transition on Homogeneous Road
		17.3.2	$S \rightarrow J$ Transition on Homogeneous Road
		17.3.3	Moving Jam Emergence in Synchronized
			Flow Upstream of Bottlenecks
	17.4	Conclu	sions
18	Con	gested	Patterns at Isolated Bottlenecks 449
			1ction
			m of Congested Patterns
			ated On-Ramp Bottlenecks
		18.2.1	Synchronized Flow Patterns
		18.2.2	Single Vehicle Characteristics in Synchronized Flow . 454
		18.2.3	Maximum Freeway Capacities
			and Limit Point in Diagram
		18.2.4	Pinch Effect in General Patterns
		18.2.5	Peculiarities of General Patterns
	18.3	Weak a	and Strong Congestion
		in Gen	eral Patterns
		18.3.1	Criteria for Strong and Weak Congestion 464
		18.3.2	Strong Congestion Features
	18.4	Evoluti	ion of Congested Patterns
		at On-I	Ramp Bottlenecks 469
	18.5	Hystere	esis and Nucleation Effects by Pattern
		Format	ion at On-Ramp Bottlenecks
		18.5.1	Threshold Boundary for Synchronized Flow Patterns 471
		18.5.2	Threshold Boundary for General Patterns 475
		18.5.3	Overlap of Different Metastable Regions
			and Multiple Pattern Excitation
	18.6	Strong	Congestion at Merge Bottlenecks
		18.6.1	Comparison of General Patterns at Merge Bottleneck
			and at On-Ramp Bottleneck 477
		18.6.2	Diagram of Congested Patterns
	18.7	Weak G	Congestion at Off-Ramp Bottlenecks
		18.7.1	Diagram of Congested Patterns 480
		18.7.2	Comparison of Pattern Features
			at Various Bottlenecks
	18.8		ted Pattern Capacity
		at On-I	Ramp Bottlenecks

		18.8.1	Transformations of Congested Patterns
			at On-Ramp Bottlenecks
		18.8.2	Temporal Evolution of Discharge Flow Rate 486
		18.8.3	Dependence of Congested Pattern Capacity
			on On-Ramp Inflow
	18.9	Conclu	sions
19	Con	nplex (Congested Pattern Interaction
	and	Trans	formation
	19.1	Introdu	action
	19.2	Catch	Effect and Induced Congested
		Patteri	n Formation
		19.2.1	Induced Pattern Emergence
	19.3	Comple	ex Congested Patterns
		and Pa	ttern Interaction
		19.3.1	Foreign Wide Moving Jams 498
		19.3.2	Expanded Congested Patterns
	19.4	Intensi	fication of Downstream Congestion
		Due to	Upstream Congestion
	19.5		sions
20	Spa	tiotem	poral Patterns in Heterogeneous Traffic Flow 509
	20.1	Introdu	uction
	20.2	Micros	copic Two-Lane Model for Heterogeneous Traffic
		Flow w	vith Various Driver Behavioral Characteristics
		and Ve	hicle Parameters
		20.2.1	Single-Lane Model
		20.2.2	Two-Lane Model
		20.2.3	Boundary, Initial Conditions, and Model
			of Bottleneck
		20.2.4	Simulation Parameters
	20.3	Patteri	ns in Heterogeneous Traffic Flow
		with D	ifferent Driver Behavioral Characteristics 515
		20.3.1	Vehicle Separation Effect in Free Flow
		20.3.2	Onset of Congestion in Free Flow
			on Homogeneous Road 516
		20.3.3	Lane Asymmetric Emergence
			of Moving Synchronized Flow Patterns
		20.3.4	Congested Patterns at On-Ramp Bottlenecks 519
		20.3.5	Wide Moving Jam Propagation
	20.4		as in Heterogeneous Traffic Flow
			ifferent Vehicle Parameters
		20.4.1	Peculiarity of Wide Moving Jam Propagation 530
		20.4.2	Partial Destroying of Speed Synchronization 533
			~ ~ · ·

	20.4.3	Extension of Free Flow Recovering	
		and Vehicle Separation	533
20.5	Weak I	Interogeneous Flow	535
	20.5.1	Spontaneous Onset of Congestion	
		Away from Bottlenecks	535
	20.5.2	Lane Asymmetric Free Flow Distributions	537
20.6	Charac	teristics of Congested Pattern Propagation	
	in Hete	rogeneous Traffic Flow	538
	20.6.1	Velocity of Downstream Jam Front	538
	20.6.2	Flow Rate in Jam Outflow	540
	20.6.3	Velocity of Downstream Front of Moving	
		Synchronized Flow Patterns	541
20.7	Conclu	sions	542

Part IV Engineering Applications

21	ASDA	and FOTO Models		
	of Spatiotemporal Pattern Dynamics			
	based	n Local Traffic Flow Measurements		
		roduction		
		ntification of Traffic Phases		
	21.3 D	ermination of Traffic Phases with FOTO Model		
		3.1 Fuzzy Rules for FOTO Model		
		cking Moving Jams with ASDA:		
	S	plified Discussion		
	2	4.1 Tracking Synchronized Flow with FOTO Model 557		
	2	4.2 ASDA-Like Approach		
		to Tracking Synchronized Flow		
	2	4.3 Cumulative Flow Rate Approach		
		to Tracking Synchronized Flow		
	21.5 C	nclusions		
22		emporal Pattern Recognition, Tracking,		
		$ediction \dots 563$		
		roduction $\dots \dots \dots$		
		TO and ASDA Application		
		Congested Pattern Recognition and Tracking 563		
	22	2.1 Validation of FOTO and ASDA Models		
		at Traffic Control Center of German Federal State		
		of Hessen $\dots \dots 563$		
	22	2.2 Application of FOTO and ASDA Models		
		on Other Freeways in Germany and USA $\dots \dots \dots 565$		
	22.3 S	tiotemporal Pattern Prediction		
	22	3.1 Historical Time Series		

	22	2.3.2 Database of Reproducible and Predictable	
		Spatiotemporal Pattern Features	5
	22	2.3.3 Vehicle Onboard Autonomous Spatiotemporal	
		Congested Pattern Prediction	0
	22.4 Tr	raffic Analysis and Prediction in Urban Areas	2
		2.4.1 Model for Traffic Prediction in City Networks 58:	
	22.5 Co	onclusions	
23		ol of Spatiotemporal	
		sted Patterns 59	
		troduction $\dots \dots \dots$	
		cenarios for Traffic Management and Control	2
		patiotemporal Pattern Control	
	T	hrough Ramp Metering 593	
	23	B.3.1 Free Flow Control Approach	
		B.3.2 Congested Pattern Control Approach 600	6
	23	3.3.3 Comparison of Free Flow	
		and Congested Pattern Control Approaches 610	0
	23	3.3.4 Comparison of Different Control Rules	
		in Congested Pattern Control Approach 614	
		issolution of Congested Patterns	
		revention of Induced Congestion	0
		fluence of Automatic Cruise Control	
	on	a Congested Patterns 624	
	23	B.6.1 Model of Automatic Cruise Control	4
	23	3.6.2 Automatic Cruise Control	
		with Quick Dynamic Adaptation	6
	23	3.6.3 Automatic Cruise Control	
		with Slow Dynamic Adaptation	
	23.7 Co	onclusions	9
24	Conclu	usion	1
A		and Definitions	
		raffic States, Parameters, and Variables	
		raffic Phases	
	A.3 Pl	hase Transitions	4
		ottleneck Characteristics 63	
	A.5 Co	ongested Patterns at Bottlenecks	6
		ocal Perturbations	
		ritical and Threshold Traffic Variables	7
		ome Features of Phase Transitions	
	an	nd Traffic State Stability 638	8

в	B ASDA and FOTO Models		
	for 1	Practic	cal Applications
	B.1	ASDA	Model for Several Road Detectors
		B.1.1	Extensions of ASDA for On-Ramps, Off-Ramps,
			and Changing of Number of Freeway Lanes
			Upstream of Moving Jam
		B.1.2	Extensions of ASDA for On-Ramps, Off-Ramps,
			and Changing of Number of Freeway Lanes
			Downstream of Moving Jam
		B.1.3	FOTO Model for Several Road Detectors 646
		B.1.4	Extended Rules for FOTO Model
	B.2	Statist	ical Evaluation of Different
		Reduce	ed Detector Configurations
Ref	eren	ces	
Ind	ex		

Acronyms and Conventions

SP	synchronized flow pattern
MSP	moving SP
WSP	widening SP
LSP	localized SP
ASP	alternating SP
GP	general pattern
DGP	dissolving GP
AGP	alternating GP
EP	expanded congested pattern
FCD	floating car data
TCC	traffic control center
UTA	model for traffic prediction in city networks
ASDA	model for automatic tracking of moving jams
FOTO	model for automatic identification of traffic phases
	and tracking of synchronized flow
CA model	cellular automata traffic flow model
ALINEA	model for automatic feedback on-ramp metering
ANCONA	model for automatic on-ramp control of congested
	patterns at freeway bottleneck
ACC	automatic cruise control
x	spatial coordinate in direction of traffic flow
t	time
q	flow rate
ρ	vehicle density
v	vehicle speed
d	vehicle length
$v_{\rm g}$	velocity of downstream front of wide moving jam
$v_{ m g} \ q_{ m out}^{ m (J)}$	flow rate in traffic flow formed by wide moving jam
-040	outflow
$q_{ m out}$	flow rate in free flow formed by wide moving jam
	outflow
$ ho_{ m min}$	density in free flow formed by wide moving jam outflow

XXII Acronyms and Conventions

$v_{\rm max}$	average speed in free flow formed by wide moving
	jam outflow
$ ho_{ m max}$	density within wide moving jam (jam density)
v_{\min}	average speed within wide moving jam
$L_{ m J}$	width (in longitudinal direction) of wide moving jam
$F \rightarrow S$ transition	phase transition from free flow to synchronized flow
$F \rightarrow J$ transition	phase transition from free flow to wide moving jam
$S \rightarrow J$ transition	phase transition from synchronized flow to wide moving jam
$S \rightarrow F$ transition	phase transition from synchronized flow to free flow
$J \rightarrow S$ transition	phase transition from wide moving jam to synchronized flow
$J \rightarrow F$ transition	phase transition from wide moving jam to free flow
	$s \to S$ transition followed by $S \to J$ transition
$P_{\rm FS}$	probability for $F \rightarrow S$ transition on hypothetical
- 15	homogeneous road for given observation time $T_{\rm ob}$
	and given road length
$P_{ m FS}^{ m (B)}$	probability for $F \rightarrow S$ transition at freeway
- FS	bottleneck for given observation time $T_{\rm ob}$
$a^{(B)}$	freeway capacity in free flow at freeway bottleneck
$q_{ m C}^{ m (B)} \ q_{ m max}^{ m (free B)}$	maximum freeway capacity in free flow at freeway
$q_{ m max}$	
(B)	bottleneck relative to $P_{\rm FS}^{\rm (B)} = 1$
$q_{ m th}^{ m (B)}$	minimum freeway capacity in free flow at freeway bottleneck
$q^{ m (B)}_{ m FS} \ q^{ m (bottle)}_{ m out}$	pre-discharge flow rate
$a^{(\text{bottle})}$	discharge flow rate from congested pattern at
Yout	freeway bottleneck
$q^{(\mathrm{pinch})}$	average flow rate in pinch region of GP or EP
$q_{ m lim}^{ m (pinch)}$	limiting (minimum) flow rate in pinch region of
Alim	GP or EP
$L_{ m syn}$	width of synchronized flow region (in longitudinal
5.J **	direction) in congested pattern
$q_{ m on}$	flow rate to on-ramp
$q_{ m in}$	flow rate in free flow on main road upstream of
	on-ramp bottleneck
$q_{ m sum}$	flow rate downstream under free flow condition
	at on-ramp bottleneck
η	pecentage of vehicles which want to leave main
	road via off-ramp
$ ho_{ m max}^{ m (free, \ emp)}$	maximum density relative to empirical limit point
	for free flow
$q_{ m max}^{ m (free, \ emp)}$	maximum flow rate relative to empirical limit
<u>.</u>	point for free flow
	-

$ ho_{ m max}^{ m (free)}$	maximum density relative to hypothetical limit point for free flow on homogeneous road
$q_{ m max}^{ m (free)}$	maximum flow rate relative to hypothetical limit
	point for free flow on homogeneous road
T_{av}	averaging time interval for traffic variables
$T_{ m ob} \ T_{ m I}^{ m (wide)}$	time interval for observing traffic flow
$T_{ m J}^{ m (wide)}$	mean time between downstream fronts of wide
	moving jams
$ au_{ m J}$	mean duration of wide moving jams
$T_{\mathbf{J}}$	mean time between narrow moving jams